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Abstract

Recent advances in mathematical problem-
solving with language models (LMs) inte-
grate chain-of-thought (CoT) reasoning and
code execution to harness their complemen-
tary strengths. However, existing hybrid frame-
works exhibit a critical limitation: they depend
on externally dictated instructions or rigid code-
integration templates, lacking metacognitive
awareness — the capacity to dynamically evalu-
ate intrinsic capabilities and autonomously de-
termine when and how to integrate tools. This
rigidity motivates our study of autonomous
code integration, enabling models to adapt
tool-usage strategies as their reasoning abili-
ties evolve during training.

While reinforcement learning (RL) shows
promise for boosting LLM reasoning at scale
(e.g., DeepSeek-R1), we demonstrate its in-
efficiency in learning autonomous code inte-
gration due to inadequate exploration of the
vast combinatorial space of CoT-code inter-
leaving patterns. To address this challenge,
we propose a novel Expectation-Maximization
(EM) framework that synergizes structured
exploration (E-step) with off-policy RL opti-
mization (M-step), creating a self-reinforcing
cycle between metacognitive tool-use deci-
sions and evolving capabilities.  Experi-
ments reveal our method achieves superior
results through improved exploration. No-
tably, our 7B model improves over 11% on
MATHS500 and 9.4% on AIME without ol-like
CoT. Code, models and data are released on
https://github.com/HaozheH3/AutoCode.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable performance across various do-
mains (Kaddour et al., 2023; Achiam et al., 2023;
Dubey et al., 2024; Team et al., 2023; Yang et al.,
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Figure 1: Analysis of existing tool-integrated math LLMs.
While tool integration can in principle bring complementary
benefits to CoT reasoning, existing models show critical rigid-
ity when incorporating code, lacking the metacognitive capac-
ity to earn the synergistic benefits from code integration.

2024a). Yet, solving complex mathematical prob-
lems still remains challenging, as the task requires
hybrid skills in abstract reasoning, symbolic manip-
ulation, and precise numerical computation (Gao
et al., 2023; Yue et al., 2023; Gou et al., 2023; Li,
2024). Current approaches adopt two complemen-
tary paradigms: (1) chain-of-thought (CoT) reason-
ing, which decomposes problems into intermediate
reasoning steps (Wei et al., 2022; Yu et al., 2023),
and (2) external tool integration, where models gen-
erate code snippets to offload computations to inter-
preters or symbolic solvers (Toshniwal et al., 2024;
Yue et al., 2023). While CoT reasoning excels at
semantic parsing and stepwise logic, its reliance on
token-level autoregressive generation often prop-
agates numerical errors. Conversely, tool-based
approaches ensure computational precision but suf-
fer from a semantic-to-symbolic translation gap,
where even minor syntactic errors or contextual
misinterpretations disrupt execution (Li, 2024).

Recent hybrid frameworks like Mammoth (Yue
et al., 2023), Deepseek-Math (Gou et al., 2023;
Shao et al., 2024), and Qwen-2.5-Math (Yang
et al., 2024b) attempt to combine these paradigms
through interleaved CoT-code reasoning. How-
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ever, as our empirical analysis reveals (Fig. 1),
current methods exhibit a critical rigidity: they
either default to CoT reasoning unless explic-
itly prompted for code generation or adhere to
static templates for tool invocation. We trace
this limitation to prevailing supervised fine-tuning
(SFT) paradigms that condition models to (1) pas-
sively follow user instructions (e.g., "Let’s write
a Python program" (Yue et al., 2023)), (2) repli-
cate fixed code-integration patterns from curated
datasets (Yang et al., 2024b), or (3) imitate teacher-
forced tool-use trajectories (Gou et al., 2023; Shao
et al., 2024). Consequently, LL.Ms lack metacogni-
tive awareness — the capacity to dynamically evalu-
ate their intrinsic capabilities against problem con-
texts and autonomously determine when and how
to integrate tools. This deficiency motivates our
central research question:

How can mathematical LLMs learn autonomous
code integration (AutoCode) that optimally com-
plements their inherent reasoning capabilities?

Reinforcement learning (RL) offers a promis-
ing pathway by optimizing policies through self-
generated trajectories, as evidenced by recent suc-
cesses like DeepSeek R1 (Guo et al., 2025). How-
ever, we empirically observe that standard RL meth-
ods is inefficient in learning autonomous code inte-
gration (AutoCode) strategies (see Sec. 4.2). This
stems from RL’s tendency to exploit local policy
neighborhoods, thereby insufficiently exploring the
vast combinatorial space of potential CoT-code
interleaving patterns. Such myopic exploration
constrains the discovery of high-reward reasoning
paths that judiciously blend both modalities, partic-
ularly as the model’s reasoning capabilities evolve
during training.

To address this challenge, we propose a novel
Expectation-Maximization (EM) framework that
synergizes guided exploration with policy optimiza-
tion. Our key innovation lies in formulating code-
integration decisions as latent variables within an
EM paradigm, creating a self-reinforcing cycle: the
E-step identifies high-potential code-integration de-
cisions through guided exploration, while the M-
step optimizes policy parameters for joint metacog-
nitive tool-usage and reasoning.

This dual mechanism enables models to adapt
tool-use strategies as their capabilities evolve dur-
ing training. Practically, we achieve efficiency
through two design choices: (1) an offline data

[ If $x + \frac{1}{x} = \sqrt(3}$, then find $xAnm$.L
(¢]
° To solve this problem, ... | can implement this with python ...

7 N
[ “python \

|
: from sympy import symbols, solve, simplify, sqrt, Rational ... |
| |
[ |
| output |
|\ Invalid comparison of non-real sqrt(3)/2 + 1/2 II
N 7
[The solution provided is incorrect cuz ... Instead, we can solve the ... ]
,’ _______________________________ N
| python |
: (omitted) :
| |
\ |
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[ Therefore the value is \\boxed{-1}. ]

Figure 2: Example of Autonomous Code Integration. We
aim to enable LLMs to determine tool-usage strategies based
on their own capability boundaries. In the example, the model
write code to solve the problem that demand special tricks,
strategically bypassing its inherent limitations.

curation step (E-step) that prioritizes high-return
code invocation decisions through guided explo-
ration, and (2) an off-policy RL optimization step
(M-step) that jointly improves tool-usage and rea-
soning. This approach offers enhanced control and
efficiency compared to standard RL, which is par-
ticularly beneficial for resource-constrained com-
panies or researchers.

Extensive experiments demonstrate that our
method (a) preserves higher training efficiency
while achieving better performance, and (b) learns
intelligent code integration strategies that achieves
higher accuracy than either CoT or code prompted
in isolation. Notably, our show consistent im-
provements across different benchmarks, raising
MATHS500 from 60.4% to 71.4%.

Our contribution is summarized as follows: (1)
We diagnose a critical gap in mathematical LLM —
the inability to autonomously integrate tools based
on metacognitive awareness — and demonstrate
standard RL’s inefficiency in addressing it. (2) We
propose a novel EM-based framework that jointly
adapts the tool-usage strategies with evolving rea-
soning abilities, with a simple yet efficient imple-
mentation. (3) We demonstrate superior results in
both training efficiency and accuracy on challeng-
ing benchmarks.
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2 Background

Problem Statement. Modern tool-augmented
language models address mathematical problems
x4 € Xg by generating step-by-step solutions that
interleave natural language reasoning with exe-
cutable Python code (Fig. 2). Formally, given a
problem z,, a model My iteratively constructs a
solution y, = {y1,...,yr} by sampling compo-
nents y; ~ p(y¢|y<t, £q), where y, encompasses
both prior reasoning steps, code snippets and ex-
ecution results e; from a Python interpreter. The
process terminates upon generating an end token,
and the solution is evaluated via a binary reward
7(Ya,zq) = I(yo = y*) indicating equivalence
to the ground truth y*. The learning objective is
formulated as:

meax ECIZQNXQ [r(yaa mq)]

Challenge and Motivation. Developing au-
tonomous code integration (AutoCode) strategies
poses unique challenges, as optimal tool-usage be-
haviors must dynamically adapt to a model’s in-
trinsic capabilities and problem-solving contexts.
While traditional supervised fine-tuning (SFT) re-
lies on imitation learning from expert demonstra-
tions, this paradigm fundamentally limits the emer-
gence of self-directed tool-usage strategies. Unfor-
tunately, current math LLMs predominantly em-
ploy SFT to orchestrate tool integration (Yue et al.,
2023; Gou et al., 2023; Shao et al., 2024; Li, 2024),
their rigid adherence to predefined reasoning tem-
plates therefore struggles with the dynamic inter-
play between a model’s evolving problem-solving
competencies and the adaptive tool-usage strategies
required for diverse mathematical contexts.

Reinforcement learning (RL) offers a promis-
ing alternative by enabling trial-and-error discov-
ery of autonomous behaviors. Recent work like
DeepSeek-R1 (Guo et al., 2025) demonstrates
RL’s potential to enhance reasoning without expert
demonstrations. However, we observe that standard
RL methods (e.g., PPO (Schulman et al., 2017))
suffer from a critical inefficiency (see Sec. 4.2):
Their tendency to exploit local policy neighbor-
hoods leads to insufficient exploration of the vast
combinatorial space of code-integrated reasoning
paths, especially when only given a terminal reward
in mathematical problem-solving.

To bridge this gap, we draw inspiration from hu-
man metacognition — the iterative process where

learners refine tool-use strategies through deliber-
ate exploration, outcome analysis, and belief up-
dates. A novice might initially attempt manual
root-finding via algebraic methods, observe com-
putational bottlenecks or inaccuracies, and there-
fore prompting the usage of calculators. Through
systematic reflection on these experiences, they in-
ternalize the contextual efficacy of external tools,
gradually forming stable heuristics that balance
reasoning with judicious tool invocation.

To this end, our focus diverges from standard
agentic tool-use frameworks (Yuan et al., 2025),
which merely prioritize successful tool execution.
Instead, we aim to instill human-like metacognition
in LLMs, enabling them to (1) determine tool-usage
based on their own capability boundaries (see the
analysis in Sec. 4.2), and (2) dynamically adapt
tool-usage strategies as their reasoning abilities
evolve (via our EM framework).

3 Methodology

Inspired by human metacognitive processes, we in-

troduce an Expectation-Maximization (EM) frame-

work that trains LLMs for autonomous code inte-

gration (AutoCode) through alternations (Fig. 3):

1. Guided Exploration (E-step): Identifies high-
potential code-integrated solutions by systemat-
ically probing the model’s inherent capabilities.

2. Self-Refinement (M-step):  Optimizes the
model’s tool-usage strategy and chain-of-
thought reasoning using curated trajectories
from the E-step.

3.1 The EM Framework for AutoCode

A central challenge in AutoCode lies in the code
triggering decisions, represented by the binary de-
cision ¢ € {0,1}. While supervised fine-tuning
(SFT) suffers from missing ground truth for these
decisions, standard reinforcement learning (RL)
struggles with the combinatorial explosion of code-
integrated reasoning paths. Our innovation bridges
these approaches through systematic exploration
of both code-enabled (¢ = 1) and non-code (¢ = 0)
solution paths, constructing reference decisions for
policy optimization.

We formalize this idea within a maximum like-
lihood estimation (MLE) framework. Let P(r =
1|x4; 0 denote the probability of generating a cor-
rect response to query x, under model My. Our
objective becomes:

T (0) = log P(r = 1|zg; 6) €))
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Figure 3: Method Overview. (Left) shows an overview for the EM framework, which alternates between finding a reference
strategy for guided exploration (E-step) and off-policy RL (M-step). (Right) shows the data curation for guided exploration. We
generate K rollouts, estimate values of code-triggering decisions and subsample the initial data with sampling weights per Eq. 5.

This likelihood depends on two latent factors: (1)
the code triggering decision 7y(c|z,) and (2) the
solution generation process mg(yq|zq, ¢). Here, for
notation-wise clarity, we consider code-triggering
decision at a solution’s beginning (c following x,
immediately). We show generalization to mid-
reasoning code integration in Sec. 3.2.

The EM framework provides a principled way
to optimize this MLE objective in the presence
of latent variables (Bishop and Nasrabadi, 2006).
We derive the evidence lower bound (ELBO):
JeLBo(s,0) =

mo(clzq) - P(r = 1le, 24;0)

s(claq)

Es(c\xq) log (2)

where s(c|z,) serves as a surrogate distribution
approximating optimal code triggering strategies.
It is also considered as the reference decisions for
code integration.

E-step: Guided Exploration computes the refer-
ence strategy s(c|z,) by maximizing the ELBO,
equivalent to minimizing the KL-divergence:
max, JeLBo(S,0) =

—Dxw (s(clzg)[| P(r = 1, ¢zg;0))  (3)

The reference strategy s(c|z,) thus approx-
imates the posterior distribution over code-
triggering decisions c that maximize correctness,
ie., P(r = 1,c|lzy;0). Intuitively, it guides ex-
ploration by prioritizing decisions with high po-
tential: if decision c is more likely to lead to cor-
rect solutions, the reference strategy assigns higher

probability mass to it, providing guidance for the
subsequent RL procedure.

M-step: Self-Refinement updates the model pa-
rameters 6 through a composite objective:

mg«x jELBO(sa 0) =E crs(clzg) |:7a<1.q’ ya):|

Yo~ (Ya|Tq,C)
— & ((s(elz) | molelaq)) @)

The first term implements reward-maximizing pol-
icy gradient updates for solution generation, while
while the second aligns native code triggering with
reference strategies through cross-entropy mini-
mization (see Fig. 3 for an illustration of the opti-
mization). This dual optimization jointly enhances
both tool-usage policies and reasoning capabilities.

3.2 Practical Implementation

In the above EM framework, we alternate between
finding a reference strategy s for code-triggering
decisions in the E-step, and perform reinforcement
learning under the guidance from s in the M-step.
We implement this framework through an iterative
process of offline data curation and off-policy RL.
Offline Data Curation. We implement the E-step
through Monte Carlo rollouts and subsampling. For
each problem x4, we estimate the reference strategy
as an energy distribution:
_exp (o mp(c|g)Q(xg, ¢ 0))

s*(clzq) = Z(zy) )

where (x4, c;6) estimates the expected value
through K rollouts per decision, my(c|z,) repre-
sents the model’s current prior and the Z(x,) is
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the partition function to ensure normalization. In-
tuitively, the strategy will assign higher probability
mass to the decision c that has higher expected
value Q(z4, ¢; #) meanwhile balancing its intrinsic
preference mg(c|xg).

Our curation pipeline proceeds through:

* Generate K rollouts for ¢ = 0 (pure reasoning)
and ¢ = 1 (code integration), creating candidate
dataset D.

» Compute Q(z,, ¢) as the expected success rate
across rollouts for each pair (x4, ¢).

e Subsample Di,in from D using importance
weights according to Eq. 5.

To explicitly probe code-integrated solutions, we
employ prefix-guided generation — e.g., prepend-
ing prompts like “Let’s first analyze the
problem, then consider if python code
could help” — to bias generations toward free-
form code-reasoning patterns.

This pipeline enables guided exploration by fo-
cusing on high-potential code-integrated trajecto-
ries identified by the reference strategy, contrasting
with standard RL’s reliance on local policy neigh-
borhoods. As demonstrated in Sec. 4.2, this strate-
gic data curation significantly improves training
efficiency by shaping the exploration space.
Off-Policy RL. To mitigate distributional shifts
caused by mismatches between offline data and
the policy, we optimize a clipped off-policy RL
objective. The refined M-step (Eq. 4) becomes:

E [clip <7T9(yaw,l—e,1—|—e) -A]
(%g,Ya) Tref(Ya|Tq)

~ B0 [10% 7Te(clfrsq)} (6)

where (x4, ¢, y,) is sampled from the dataset Digin.
The importance weight % accounts for off-
policy correction with PPO-like clipping. The ad-
vantage function A(z, y,) is computed via query-
wise reward normalization (Schulman et al., 2017).
Generalizing to Mid-Reasoning Code Integra-
tion. Our method extends to mid-reasoning code
integration by initiating Monte Carlo rollouts from
partial solutions (x4, y<;). Notably, we observe
emergence of mid-reasoning code triggers after ini-
tial warm-up with prefix-probed solutions. Thus,
our implementation requires only two initial prob-
ing strategies: explicit prefix prompting for code
integration and vanilla generation for pure reason-
ing, which jointly seed diverse mid-reasoning code
usage in later iterations.

4 Experiments

Our experiments investigate three key research
questions:

Ql1: Method Effectiveness. How does our ap-
proach enhance performance across both in-domain
and out-of-domain mathematical benchmarks com-
pared to existing math LLMs?

Q2: Baseline Comparisons. How does our method
compare to standard RL and SFT baselines in terms
of training efficiency and exploration patterns?
03: AutoCode Analysis. What strategies does the
model learn for code integration, and how do these
strategies contribute to performance gains?
Datasets and Benchmarks. Our method only re-
quires a query set for training. We collect public
available queries from MATH (Hendrycks et al.,
2021) and Numina (Li et al., 2024), and sample
7K queries based on difficulties. We upload the
collected data to the annonymous repo. For evalu-
ation, we employ: GSMS8k (Cobbe et al., 2021),
MATHS500 (Hendrycks et al., 2021), Gaokao-
Math2023 (Liao et al., 2024), OlympiadBench (He
et al., 2024), the American Invitational Mathe-
matics Examination (AIME24), and the American
Mathematics Competitions (AMC23). This bench-
mark suite spans elementary to Olympiad-level
mathematics. We adopt Pass@1 accuracy (Chen
et al., 2021; Guo et al., 2025) as our primary metric,
using evaluation scripts from DeepseekMath (Shao
et al., 2024) and Qwen2Math (Yang et al., 2024a).
For competition-level benchmarks (AIME/AMC),
we use 64 samples with temperature 0.6 following
Deepseek R1 protocols.

Baselines and Implementation. We compare
against three model categories:

* Proprietary models: ol (Jaech et al., 2024),
GPT-4 (Achiam et al., 2023) and Claude (An-
thropic, 2024)

* Recent math-specialized LMs:  Numina-
Math (Li et al., 2024), Mathstral (Al, 2024),
Mammoth (Yue et al., 2023), ToRA (Gou et al.,
2023), DartMath (Tong et al., 2024). We do
not compare with models that rely on test-time
scaling, such as MCTS or long CoT.

* Foundation models enhanced with our method:
Qwen2Math (Yang et al., 2024a), Deepseek-
Math (Shao et al., 2024) and Qwen-2.5 (Yang
et al., 2024b).

Our implementation uses K = 8 rollouts per
query (temperature=1.0, top-p=0.9). Training com-
pletes in about 10 hours on 8 x A100 (80GB) GPUs
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Table 1: Public SFT Data Used in this Work. We collect public query set for AutoCode Training. After Deduplication, the
total amount of query used is 119K. If the base model is not trained to write code for math problems, we use the SFT annotations

associated with the above queries.

Dataset Size Unique Queries CoT Solutions Code Solutions
Openmath (Toshniwal et al., 2024) 129917 70002 25116 104801
Math-Instruct (Yue et al., 2023) 237781 219607 188644 49137
Metamath (Yue et al., 2023) 285000 161337 285000 0
MMOS (Chen et al., 2024) 134610 69007 0 134610

across three epochs of 7K queries. We list the col-
lected public SFT data in Tab. 1.

4.1 Main Results

Notably, we observe a minimum performance gain
of 11% on the MATH500 benchmark, escalating
to an impressive 9.4% absolute improvement on
the highly challenging AIME benchmark. Across
in-domain benchmarks, our method yields an aver-
age improvement of 8.9%, and for out-of-domain
benchmarks, we achieve a substantial average gain
of 6.98%. These results validate the effectiveness
of our approach across model families and problem
difficulty levels.

4.2 Ablation Study

We conduct three primary analyses: (a) compari-
son with standard RL and SFT baselines to vali-
date our method’s effectiveness in facilitating ex-
ploration, (b) visualization of exploration patterns
to reveal limitations in the standard RL paradigam,
and (c) behavioral analysis of code integration
strategies. These analyses collectively demonstrate
our method’s benefits in facilitating guided explo-
ration and explains how it improves performance.

Training Efficiency. We evaluated the learning
dynamics of our approach in direct comparison to
three established training paradigms:

* Base+RL: On-policy Reinforcement Learning
(RL) initialized from a base model without Su-
pervised Fine-Tuning (SFT). This follows the
methodology of DeepSeek R1, designed to iso-
late and assess the pure effects of RL training.

e SFT: Supervised Fine-Tuning, the prevailing
training paradigm widely adopted in current
tool-integrated math Language Models (LMs).

* SFT+RL: Standard RL applied after SFT, serv-
ing as a conventional baseline for evaluating our
EM-based RL method.

From the figure, we make the following key ob-
servations:

* While Reinforcement Learning directly from
the base model (Base+RL) exhibits consis-
tent performance improvement, its training ef-
ficiency is lower than training paradigms incor-
porating SFT. In addition, the model rarely ex-
plores code-integrated solutions, with the code
invocation rate below 5%. This strongly suggest
that reinforcement learning tool-usage behavior
Jfrom scratch is inherently inefficient.

SFT effectively provides a strong initialization
point, but SFT alone exhibits limited asymptotic
performance. This suggests that SFT lacks the
capacity to adapt and optimize beyond the scope
of the expert demonstrations, thereby limiting
further improvement.

Standard RL applied after SFT shows initial
further improvement but subsequently plateaus,
even after an extended training stage. This
suggests the exploration-exploitation dilemma
when applying RL for LLM post-training: stan-
dard RL with vanilla rollout exploration tends to
exploit local optima and insufficiently explores
the combinatorial code-integrated trajectories.

To further substantiate the exploration lim-
itations inherent in the conventional SFT+RL
paradigm, we present a visualization of the explo-
ration patterns. We partitioned the model-generated
responses during self-exploration into three distinct
training phases and analyzed the statistical distri-
bution of code invocation rates across queries as
the model’s policy evolved throughout training. As
depicted in Figure 5, the distribution of code in-
vocation progressively concentrates towards the
extremes — either minimal or maximal code use
— indicating the model’s growing tendency to ex-
ploit its local policy neighborhood. This exploita-
tion manifests as a focus on refining established
code-triggering decisions, rather than engaging in
broader exploration of alternative approaches.

These empirical observations lend strong sup-
port to our assertion that standard RL methods are
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Table 2: Effectiveness of AutoCode4Math. The column "Code?" indicates whether code integration is involved, with %
representing autonomous determination of code integration by the model. The improvement over code-driven inference is

highlighted in the colored row, denoted as A.

Model

Code? In-domain Out-of-domain
GSM8K MATHS500 GaoKao Olympiad AIME24 AMC23
Proprietary Model
OpenAl-ol-preview (Jaech et al., 2024) X 85.5 62.1 52.1 44.6 81.8
GPT-40 (Achiam et al., 2023) X 92.9 76.4 67.5 433 9.3 45.8
Claude-3.5-Sonnet-1022 (Anthropic, 2024) X 95 78.3 16.0
Open-Source Models
Mammoth-70B (Yue et al., 2023) v 76.9 41.8 25.2
ToRA-70B (Gou et al., 2023) v 84.3 49.7 31.7
NuminaMath-72B (Li et al., 2024) v 91.4 59.2 49.4 36.7 6.5 40.6
Mathstral-7B (Al, 2024) X 84.9 56.6 46 21.5
Mammoth-Mistral-7B (Yue et al., 2023) v 74.22 37.8 22.08 9.63 6.67 20.0
NuminaMath-7B-CoT (Li et al., 2024) X 81.27 53.0 48.83 22.22 3.33 25.0
Dart-Math-DeepSeek-7B (Tong et al., 2024) X 87.64 50.0 45.45 18.52 3.33 35.0
Dart-Math-Llama3-8B (Tong et al., 2024) X 82.71 45.0 34.80 23 0.0 17.5
AutoCode Training
Qwen2Math-Base-7B (Yang et al., 2024a) X 80.74 48.80 43.37 21.62 6.5 19.8
AutoCode4Math-Qwen2 * 88.1 61.86 50.13 26.37 13.2 30.0
A 7.367 13.067 6.761 4.751 6.71 10.21
DeepseekMath-Instruct-7B (Shao et al., 2024) v 84.46 51.00 44.68 20.44 1.6 17.4
AutoCode4Math-DeepSeek * 89.26 63.32 50.53 26.95 9.5 28.8
A 4.81 12.329 5.851 6.511 7.91 11.41
Qwen-2.5-Base-7B (Yang et al., 2024b) X 84.88 60.4 45.45 30.37 13.2 39.38
AutoCoded4Math-Qwen2.5 * 89.12 71.4 51.69 32.6 22.6 45.18
A 4.241 11.01 6.241 2.231 9.41 5.81

susceptible to premature exploitation of the local
policy space when learning AutoCode strategies. In
sharp contrast, our proposed EM method facilitates
a more guided exploration by sub-sampling trajec-
tories according to the reference strategy (Sec. 3.2).
This enables continuous performance (evidenced
in Sec. 4.1) and mitigating the risk of converging
to suboptimal local optima (Fig. 4).
Analysis on Code Integration Behaviors. We
investigated the properties of the learned code in-
tegration strategies to gain deeper insights into
the mechanisms behind our method’s performance
gains. Our central hypothesis posits that optimal
code integration unlocks synergistic performance
benefits by effectively combining the strengths of
CoT and code executions. This synergy presents a
"free lunch" scenario: a well-learned metacognitive
tool-usage strategy can elevate overall performance,
provided the model demonstrates competence in
solving distinct subsets of queries using either CoT
or code execution.

To empirically validate this "free lunch" princi-
ple and demonstrate the superiority of our approach
in realizing it, we benchmarked our model against

baselines that inherently support both code execu-
tion and Chain-of-Thought (CoT) reasoning: GPT-
4, Mammoth-70B, and DeepseekMath-Instruct-7B.
Our analysis evaluated the model’s autonomous de-
cision to invoke code when not explicitly instructed
on which strategy to employ. We compared this
"AutoCode" performance against scenarios where
models were explicitly prompted to utilize either
code or CoT reasoning. We also considered the
theoretical "free lunch" upper bound — the accu-
racy achieved by combining the successful predic-
tions from either strategy (i.e., taking the union of
queries solved by CoT or code).

As visually presented in Figure 6, existing
baseline models exhibit inferior performance in
AutoCode mode compared to scenarios where
code invocation is explicitly prompted, e.g.,
DeepseekMath-Instruct-7B shows a degradation
of 11.54% in AutoCode mode. This suggests that
their AutoCode strategies are often suboptimal, per-
forming closer to random selection between CoT
and code (selection accuracy near 50%), resulting
in AutoCode falling between the performance of
explicitly triggered CoT and code. In contrast, our
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Figure 4: Training Efficiency and Convergence. We benchmark the learning dynamics of our approach against three two
training paradigms: supervised fine-tuning and reinforcement learning (RL). The Pass@1 accuracy is evaluated on an held-out
dev-set. We use Qwen-2.5-Base as the base model. SFT is conducted using collected public data (Toshniwal et al., 2024; Yue

et al., 2023). The dashed lines indicate asymptotic performance.
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Figure 5: Visualization of Exploration in the SFT+RL
paradigm. The distribution of code invocation rates across
queries to visualize policy’s exploration of code-integrated tra-
jectories. Without external guidance, LLM tends to exploit its
local policy neighborhood, concentrating code usage toward
extremes as training phase evolves.

models learn more effective code integration strate-
gies. AutoCode4Math-Qwen2.5, for example, im-
proves upon explicitly code-triggered performance
by 7%, indicating a true synergistic integration of
reasoning and code execution.

To quantify the effectiveness of these learned
"AutoCode" strategies, we calculated the CoT/-
code selection accuracy. We used the outcome
of explicit instruction (i.e., performance when ex-
plicitly prompted for CoT or code) as a proxy for
the ground-truth optimal method selection. Our
model achieves a selection accuracy of 89.53%,
showcasing the high efficacy of the learned code
integration strategy.

Pass@1 Accuracy

Selection Accuracy

4785
5087 47
0
s051
a0
20

GPT-d4-Preview 78 AutoC

4953
AutoC 5

Figure 6: Analysis of AutoCode Strategies. We compare
AutoCode performance against scenarios where models explic-
itly prompted to utilize code or CoT, and consider the union
of solved queries as the bound for AutoCode performance.
Existing models show inferior AutoCode performance than
explicit instructed, with their AutoCode strategies close to ran-
dom (50%). Our approach consistently improves AutoCode
performance, with AutoCode selection accuracy near 90%.

5 Related Work and Discussion

Tool-Integrated Math LLMs. Math language
models adopted two major paradigms: Chain-of-
Thought (CoT) reasoning and the use of external
tools, such as Python programs (Yu et al., 2023;
Yue et al., 2023; Toshniwal et al., 2024). Each
paradigm offers unique benefits, and recent hybrid
frameworks (Yue et al., 2023; Gou et al., 2023; Li,
2024; Shao et al., 2024; Yang et al., 2024b) increas-
ingly seek to combine them for synergy. However,
current models exhibit critical rigidity, motivating
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our work to realize the true metacognitive capacity
that enjoys synergistic benefits of CoT and code.
EM for RL. Expectation-Maximization (EM) has
proven effective for maximum likelihood problems
involving hidden variables, such as Expert Itera-
tion (Anthony et al., 2017), Iterative Maximum
Likelihood (Wu, 2016; Agarwal et al., 2019), Meta-
Reinforcement Learning (Zintgraf et al., 2019;
Wang et al., 2020), and Adversarial Games (Wang
etal., 2023). In the context of math LLMs, the most
relevant works are (Singh et al., 2023) and (Ni et al.,
2022), which apply EM-style iterative self-training
to math problem-solving. Unlike these approaches,
we leverage the EM framework for guided explo-
ration during reinforcement learning of language
models.

6 Conclusion

Existing tool-integrated math language models lack
the metacognitive capacity to effectively determine
code integration, hindering their ability to fully re-
alize the synergistic benefits of tool integration and
CoT. To address this critical gap, we propose a
novel EM-based framework that combines guided
exploration with policy optimization. Our experi-
ments demonstrate the limitations of standard SFT
and RL in efficiently exploring the combinatorial
space of code-integrated trajectories and highlight
the superior training efficiency and performance of
our approach.

7 Limitations

The scope of our work is primarily focused on
mathematical problem-solving. While we observe
promising results on challenging benchmarks like
MATHS500, the generalizability of our approach
to other domains requiring the metacognitive ca-
pacity of tool integration and CoT, such as sci-
entific reasoning or code generation for general-
purpose tasks, remains to be explored. Future work
should investigate the effectiveness of our frame-
work across a wider range of tasks and domains.
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A Appendix
A.1 Derivation of the EM

We first model RL as a maximum likelihood prob-
lem. Specifically, we consider ‘maximizing ex-
pected return’ as ‘maximizing the likelihood of
observing a correct response’, this is equivalent to
maximizing the following log-likelihood,

maaxlogP(r = 1|z4;0)
= maxlogZpe (clzq) Zpe (Yalzg, €)

Ya
- P(r =1yq, ¢, xq)
= J(9),

where we factorize the language model as
Po(yaley) = o, po(cleg)ps(yaleq, o).

Since the variable c is unobservable for lack of
reliable supervision, we resort to the EM frame-
work. Specifically, we treat ¢ as a hidden vari-
able, and introduce a proposal distribution s(c|z),
which represents the belief of ¢ given the fixed
LLM My and the data evidence. We have the fol-
lowing derivations, J (0) =

logz (clxq) - P |xq))
Zpe Yal2g, €)
> Zs clzq)
h;m@maz%mwﬁwan—u%mw@}

s(clzq)
= Eq(clz,) [log polelre) - PO = ey 2o 9)]
= jELBO(Sae)a

(/r - 1‘ya7c xq)

s(clzq)

where P(r = 1|c, z4; 0) denotes the likelihood of
generating correct responses given (x4, ¢) follow-
ing the solution-generation policy pg(ya|z4, c).

In the E-step, we are essentially minimizing a
KL divergence,

max JeLBo(s,0) = mSiHDKL (s(clzq) 5" (clzg))

(7N

where the minimizer is s*(c|zq) o po(clzq) -
P(r = 1|c,z4;6). Intuitively, the belief over the
methodology c following a posterior update: it is
based on the prior of the current model py(c|z,)
and the likelihood of data P(r = 1|c, z4;6). The

optimal methodology-selection strategy assigns
higher probability to method c if following the
current LLM it has higher likelihood to generate
correct responses or higher prior over it.

To compute the optimal strategy, we define
P(T —_ 1‘6, xq;g) — eXP(a‘pG(g‘(qu))Qg(me)) as an
energy-based distribution, where the negative en-
ergy function evaluates the expected return in-
duced by the current solution-generation policy:
Q(2q,60) = Epy(yalag,0)[(Tq:Ya)], & > 0is a
temperature controlling the sharpness of the distri-
bution. Then the minimizer can be computed by
enumerating over c.

In the M-step,

maxg JELBo(S,0) =

we optimize

maaXEs(dzq)[log P(T = 1|Cv Lq; 0)]

— Dk (s(clzq) [po(clzq))
= méax Es(c|xq) [Q(l’q, G 9)]

— Dk (s(clzq) [po(clzq))

which maximizes the expected return while imitat-
ing the optimal strategy.

A.2 Distribution of Multi-round

We show the distribution of multi-round responses
of the model AutoCode4Math-Deepseek in Tab. 3.

B Examples

B.1 Success Cases

Listing 1: Success case for multi-round.

Round 1:
Question: Henry and 3 of his friends
order 7 pizzas for lunch. Each pizza
is cut into 8 slices. If Henry and
his friends want to share the pizzas
equally, how many slices can each
of them have?
Solution:
There are 7 pizzas in total, and each
pizza is cut into 8 slices. So,
there are 7 * 8 = 56 slices in total.

Henry and his 3 friends want to share
the pizzas equally, so they will
each have 56 / 4 = 14 slices.

Each of them can have 14 slices.

The answer is $\\boxed{14}$.
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Table 3: Distribution of Multi-Round Responses.

Model Dataset  Queries Roundl Round2 Round3
Deepseek-math-AutoCode =~ MATH 5000 1252 3719 29
GSMS8k 1319 1013 304 2
—————————————————— each. If Peter and Martha have

totals of 64 and 56 chocolate bars
respectively, how many more
chocolate bars does Peter have in

Round2:
Question: Henry and 3 of his friends

order 7 pizzas for lunch. Each pizza
is cut into 8 slices. If Henry and
his friends want to share the pizzas
equally, how many slices can each
of them have?

Solution:

python

def pizza_slices_per_person():
"""Henry and 3 of his friends order 7

pizzas for lunch. Each pizza is cut
into 8 slices. If Henry and his
friends want to share the pizzas

equally, how many slices can each of
them have?"""

total_pizzas = 7
slices_per_pizza = 8

total_slices =

total_pizzas *
slices_per_pizza

people = 4 # Henry and his 3 friends

slices_per_person =

total_slices //
people # Use floor division to get
an integer result

return slices_per_person

slices_per_person =

pizza_slices_per_person()

print(slices_per_person)

14

output

Each of them can have $\boxed{14}$

slices.

Round3:
Question: Peter has 4 boxes with the

same number of chocolate bars in
each, while Martha has 7 boxes with
the same number of chocolate bars in

each box than Martha?

Solution:

If Peter has 4 boxes and Martha has 7
boxes, then Martha has 7/4 = 1.75
times as many boxes as Peter.

If Martha has 56 chocolate bars and
Peter has 64 chocolate bars, then
Peter has 64/56 = 1.142857 times as
many chocolate bars as Martha.

If Martha has 1.75 times as many boxes
as Peter, and Peter has 1.142857
times as many chocolate bars as
Martha, then Martha has
1.75/1.142857 = 1.5 times as many
chocolate bars in each box as Peter.

Therefore, Peter has 1.5 - 1 = 0.5 more
chocolate bars in each box than
Martha.

The answer is $\boxed{0.5}$.

Sorry, the above solution may be
incorrect. It's better to write a
program.

“*python

def chocolate_bars_difference():

"""Peter has 4 boxes with the same
number of chocolate bars in each,
while Martha has 7 boxes with the
same number of chocolate bars in
each. If Peter and Martha have
totals of 64 and 56 chocolate bars
respectively, how many more
chocolate bars does Peter have in
each box than Martha?"""

peter_total = 64

martha_total = 56

peter_boxes = 4

martha_boxes = 7

peter_bars_per_box =
peter_boxes

martha_bars_per_box =
martha_boxes

peter_total /

martha_total /
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difference = peter_bars_per_box -
martha_bars_per_box
return difference

difference = chocolate_bars_difference()
print(difference)

“output

8.0

Peter has $\boxed{8}$% more chocolate
bars in each box than Martha.

Therefore, the solution is $x \in (-\
infty,-c] \cup [1,2).%$ Since $x \in
[1,2),% we must have $-c \ge 2,$ or
$c \le -2.%

Hence, $a + b+ c =0 -1 + (-2) =\
boxed{-3}.$%
The answer is $\boxed{-3}$.

Round2:
Question: The girls are trying to raise
money for a carnival. Kim raises

B.2 Failure Cases

Listing 2: Failure case for multi-round.

Round 1:

Question: The solution to the inequality

\[\frac{x + c}{x*2 + ax + b} \le 0\lis
$x \in (-\infty,-1) \cup [1,2).$
Find $a + b + c.$

Solution:

Let's reason step by step.

The inequality is equivalent to

\[(x + c)(x*2 + ax + b) \le 0.\]Since
the roots of $x*2 + ax + b$ are $-1%
and $1,$% we can write

\[x*2 +ax +b=x+1)x-1) =x"2 -
1.\]Then

\[(x + c)(x*2 + ax + b) = (x + c)(x"2 -
1) = (x+c)x+ 1) - 1).\1The
inequality is satisfied when $x \in
(-\infty,-1) \cup [1,2),$ so

\[(x + c)(x + 1)(x = 1) \le 0\Jwhen $x \
in (-\infty,-1) \cup [1,2).$ This
means that one of $x + c¢,$ $x + 1,$%
or $x - 1$ is nonpositive, and the
other two are nonnegative.

If $x + ¢ \le 0,%$ then $x \le -c.$ Since
$x \in [1,2),%$ we must have $-c \ge
2,%$ or $c \le -2.%

If $x - 1 \le 0,$ then $x \le 1.%$ Since
$x \in (-\infty,-1),%$ we must have $
-1 \le 1,%$ which is always true.

If $x + 1 \le 0,$ then $x \le -1.$ Since
$x \in [1,2),$ we must have $-1 \le
1,%$ which is always true.

$320 more than Alexandra, who raises
$430, and Maryam raises $400 more
than Sarah, who raises $300. How
much money, in dollars, did they all
raise in total?
Solution:
“ T python
def total_money_raised():
"""The girls are trying to raise
money for a carnival. Kim raises
$320 more than Alexandra, who
raises $430, and Maryam raises
$400 more than Sarah, who raises
$300. How much money, in
dollars, did they all raise in
total?"""
alexandra_money = 430
kim_money = alexandra_money + 320
sarah_money = 300
maryam_money = sarah_money + 400
total_money = alexandra_money +
kim_money + sarah_money +
maryam_money
return total_money

total_money = total_money_raised()
print(total_money)

T Toutput
2180

The girls raised a total of $\boxed
{2180}$ dollars.

Round3:
Question: The digits from 1 to 6 are
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arranged to form a six-digit invalid_arrangements =

multiple of 5. What is the invalid_arrangements_1 +
probability that the number is invalid_arrangements_2 +
greater than 500,000? Express your invalid_arrangements_3
answer as a common fraction.
Solution: # Calculate the probability
Let's reason step by step. probability = Rational(
To form a six-digit multiple of 5, the valid_arrangements,
last digit must be either @ or 5. total_arrangements)
Since the number must be greater than
500,000, the last digit must be 5. return probability
The remaining five digits can be
arranged in $5!$ ways. result =
Therefore, the probability is $\frac probability_greater_than_five_million
{5!}{6!} = \boxed{\frac{1}{63}}$. O
The answer is $\boxed{\frac{13}{6}}$. print(result)
Based on the above reasoning, we can A
verify by writing a program. T Toutput
“Tpython 1/3

from sympy import Rational
The probability that the number is
def greater than 500,000 is $\boxed{\
probability_greater_than_five_million frac{1}{33}}$.
Ok
"""The digits from 1 to 6 are

arranged to form a six-digit
multiple of 5. What is the
probability that the number is

B.3 AutoCode 4shots

greater than 500,000? Express Listing 3: Autocode 4shots example.
your answer as a common fraction User: Simplify $\sqrt{25000}$%$.",
L Assistant:

# Total number of arrangements Let's write a program.

total_arrangements = 6x5%4%3%2x]1 python
from sympy import sqrt
# Number of arrangements that start
with 5 or 6 def simplify_sqrt():
valid_arrangements = 2x5x4x3%2%1 ""rSimplify $\sqrt{250003}$."""
simplified_sqrt = sqrt(25000)
# Number of arrangements that start
with 1 return simplified_sqgrt
invalid_arrangements_1 = 1#%5%4*x3%2x1
result = simplify_sqrt()

# Number of arrangements that start print(result)
with 2 A
invalid_arrangements_2 = 1x4%3%2%] User:The function $f(x)$ satisfies \[f(x
+ f(x)) = 4f(x)\Ifor all $x,$ and
# Number of arrangements that start $f(1) = 4.$ Find $f(21).$%
with 3 Assistant:
invalid_arrangements_3 = 1*x3%2%] Let's reason step by step.
We can start by plugging in $x = 1% into
# Total number of invalid the given equation. This gives us
arrangements \[f(1 + f(1)) = 4f(1).\]
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Since we know that $f(1) = 4%, we can
substitute this into the equation to

get

\[f(1 + 4) = 4 \cdot 4.\]

Simplifying, we have

\[f(5) = 16.\]

Next, we can plug in $x = 5% into the
given equation. This gives us

\LF(5 + f(5)) = 4f(5).\]

Since we know that $f(5) = 16$%, we can
substitute this into the equation to

get

\[f(5 + 16) = 4 \cdot 16.\]

Simplifying, we have

\[f(21) = 64.\]

Therefore, the value of $f(21)$ is $\\
boxed{64}$%.

The answer is $\\boxed{64}$.

User:Find the matrix that corresponds to

reflecting over the $x$-axis.

Assistant:

Let's reason step by step.

The reflection of a point $(x, y)$ over
the $x$-axis is $(x, -y)$.

Thus, the matrix that corresponds to
reflecting over the $x$-axis is $\\
boxed{\begin{pmatrix} 1 & @ \\ 0 &
-1 \end{pmatrix}}$.

The answer is $\\boxed{\begin{pmatrix
}1&0\0&-1\end{pmatrix}3}$.

User:If $a$ is three times $b$, $b$ is
twice $c$, and $c$ is four times $d$
, what is the value of $\frac{a\cdot

c}{b\cdot d}$?

Assistant:

Let's write a program.

“*“python

from sympy import symbols, simplify

def ratio_of_products():
a, b, ¢, d = symbols('ab cd")

# Given relations
a=3x%xb
b=2=*c
c=4xd

# Substitute the relations into the
expression

expr =a *c / (b *xd)

expr = expr.subs({a: 3 x b, b: 2 x ¢
, C: 4 xd})

# Simplify the expression
simplified_expr = simplify(expr)

return simplified_expr

result = ratio_of_products()
print(result)
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