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Abstract

Counterfactual reasoning is crucial for robust
video understanding but remains underexplored
in existing multimodal benchmarks. In this pa-
per, we introduce COVER (COunterfactual
VidEo Reasoning), a multidimensional mul-
timodal benchmark that systematically evalu-
ates MLLMs across the abstract-concrete and
perception-cognition dimensions. Beyond prior
multimodal benchmarks, COVER decomposes
complex queries into structured sub-questions,
enabling fine-grained reasoning analysis. Ex-
periments on commercial and open-source
models reveal a strong correlation between sub-
question accuracy and counterfactual reasoning
performance, highlighting the role of structured
inference in video understanding. Furthermore,
our results suggest a key insight: enhancing the
reasoning capability of models is essential for
improving the robustness of video understand-
ing. COVER establishes a new standard for as-
sessing MLLMs’ logical reasoning abilities in
dynamic environments. Our work is available
at https://github.com/gongyifan-hash/COVER-
Benchmark.

1 Introduction

In recent years, the rapid advancement of large
language models (LLMs) has spurred growing
interest in multimodal large language models
(MLLMs) (Hurst et al., 2024; Anthropic, 2024;
Chen et al., 2024; Zhang et al., 2024a, 2025; Wang
et al., 2024; Wu et al., 2024b). Various early bench-
marks have been proposed to assess multimodal
understanding ability of MLLMs, particularly in
static images (Fu et al., 2023; Hudson and Manning,
2019; Liu et al., 2024; Yu et al., 2024). More re-
cently, benchmarks involving complex images and
dynamic videos have emerged to evaluate MLLM’s
capabilities in temporal reasoning, spatio-temporal
recognition, and object detection (Fu et al., 2024;

*Equal contribution.
†Corresponding Author.

Li et al., 2024b, 2023). Despite these advances,
these benchmarks often overlook counterfactual
reasoning, which is a critical component for eval-
uating inference in complex and realistic environ-
ments. As a result, they fall short of providing a
comprehensive assessment of MLLMs’ reasoning
capabilities.

Counterfactual reasoning, which posits hypothet-
ical alternatives to observed realities, is pivotal for
advanced video inference and is closely tied to out-
of-distribution generalization (Yang et al., 2023;
Bao et al., 2025). Previous work has attempted
to construct counterfactual queries for images and
videos (Li et al., 2024d,e,c; Patel et al., 2022; Wu
et al., 2023). Most existing multimodal counterfac-
tual benchmarks tend to focus on assessing subtask-
specific robustness of reasoning ability (Li et al.,
2024e; Wu et al., 2024c, 2023). However, they do
not assess the underlying factors that contribute
to the robustness of these reasoning capabilities.
Such benchmarks often lack a systematic progres-
sion from abstract to concrete dimensions and from
low-level perception to high-level cognition, lim-
iting their ability to comprehensively capture mul-
timodal reasoning processes in MLLMs. Further-
more, these benchmarks rarely investigate how ro-
bust video understanding interacts with stepwise
reasoning in dynamic environments, leaving a gap
in our assessment of advanced inference skills.

To bridge this gap, we propose COVER, a
counterfactual video reasoning benchmark driven
by a multidimensional abstraction level evalu-
ation mechanism. Unlike existing multimodal
counterfactual benchmarks, which often focus on
multitask-oriented questions, COVER systemati-
cally classifies tasks into four quadrants. We de-
fine specific tasks for each quadrant to evaluate
MLLMs’ diverse reasoning capabilities in complex
video scenarios. Beyond merely posing counterfac-
tual questions, COVER introduces a sub-question
reasoning mechanism derived from necessary con-
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Question Structure

ori Q : Is the young boy blowing air through a balloon, 

then he releases the air in the video?

(A) yes  (B) no

cf Q : Is the young boy blowing air through a balloon, 

then he releases the air in the video, if the sequence of 

actions in the video is reversed?

(A) yes  (B) no

sub Q1 : Which action happened first, if the sequence of 

actions in the video is reversed?

(A) the young boy kicks a ball

(B) the young boy releases the air from a balloon

(C) the young boy eats an apple

(D) the young boy jumps

sub Q2 : Which action happened later, if the sequence of 

actions in the video is reversed? 

(A) the young boy runs

(B) the young boy sings

(C) the young boy blows air through a balloon

(D) the young boy dances

Figure 1: An example from the COVER benchmark. The ground-truth answers are highlighted in green. All
data—including original questions, counterfactual questions, sub-questions, and videos—have been manually
verified as part of COVER. The diagram in the upper right corner illustrates the division of each COVER task into
four quadrants.

ditions, enabling a deeper evaluation of perfor-
mance across MLLMs. This approach allows us
to establish a connection between the accuracy
of intermediate steps and the overall robustness
of counterfactual reasoning. As shown in Fig-
ure 1, when asked to determine whether a boy
completes a series of actions in a specified order,
COVER decomposes the problem into multiple
steps, each representing a necessary condition. For
instance, sub-question Q1 may inquire about which
action occurs first in the reversed video, while sub-
question Q2 targets the final action. This struc-
tured approach not only helps evaluate how a model
adapts to event-sequence changes but also reveals
its strengths and weaknesses in extracting and syn-
thesizing critical information under counterfactual
assumptions. By encompassing a broad range of
abstraction levels, COVER stands as the most com-
prehensive dataset of its kind, paving the way for
more rigorous and holistic evaluations of MLLMs’
dynamic and counterfactual reasoning capabilities.

Building on the COVER benchmark, we con-
ducted a series of systematic experiments using
both open-source and commercial closed-source
models of varying scales. Our results indicate a
strong positive correlation between the models’
sub-question accuracy and performance in coun-
terfactual reasoning and robust video understand-
ing. The findings underscore the tight linkage

between sophisticated inference capabilities and
high-level video comprehension. Furthermore,
we examine how automatically generated versus
human-guided sub-question decomposition (chain-
of-thought, CoT (Wei et al., 2022)) influences com-
plex reasoning and identifies the key factors impact-
ing inference accuracy in MLLMs. Through these
experiments, COVER offers valuable insights into
how structured reasoning can enhance the robust-
ness of video understanding by constructing a sub-
question–based counterfactual video QA bench-
mark across multiple levels of abstraction and thor-
oughly evaluating mainstream MLLMs’ logical rea-
soning abilities.

2 Related Work

Multimodal Large Language Models and Their
Evaluation. Recent advances in MLLMs have
greatly improved their capacity to understand and
reason over diverse modalities, such as images,
text, and videos. To evaluate these models, bench-
marks targeting static image comprehension have
emerged, including MM-Vet (Yu et al., 2024),
MME (Fu et al., 2023), MMBench (Liu et al.,
2024), and GQA (Hudson and Manning, 2019).
These primarily assess visual recognition and spa-
tial reasoning. Extending beyond static content,
video-centric benchmarks like Video-MME (Fu
et al., 2024), MvBench (Li et al., 2024b), and
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Benchmark Video Q&A Qs Source CF SQP PCD ACD

CoFCA (Wu et al., 2024a) ✗ ! H&A ! ! ✗ ✗

CFMM (Li et al., 2024e) ✗ ! H ! ✗ ✗ ✗

Video-MME (Fu et al., 2024) ! ! H ✗ ✗ ! ✗

CRIPP-VQA (Patel et al., 2022) ! ! H ! ✗ ✗ ✗

VITATECS (Li et al., 2024c) ! ✗ H&A ! ✗ ✗ ✗

COVER (ours) ! ! H&A ! ! ! !

Table 1: Comparison with existing benchmarks. Video: whether the benchmark involves video data; Q&A:
whether it follows a question-and-answer format; Qs source: H indicates human annotation, A indicates automatic
annotation; CF: whether counterfactual questions are included; PCD: whether the benchmark is categorized by the
model’s perceptual and cognitive demands; ACD: whether tasks are divided based on object abstraction (abstract vs.
concrete).

SEED-Bench (Li et al., 2023) focus on temporal dy-
namics and contextual reasoning. Together, these
benchmarks reflect the growing demand for evalu-
ating multimodal understanding in both static and
dynamic environments.

Chain-of-Thought and Counterfactual Reason-
ing in MLLMs. Chain-of-Thought (CoT) reason-
ing (Wei et al., 2022) enhances logical inference
by breaking down complex tasks into intermedi-
ate steps. Multimodal adaptations (Zhang et al.,
2024b; Zheng et al., 2023) extend this strategy
across modalities, showing gains in structured rea-
soning. Counterfactual reasoning, which exam-
ines hypothetical changes and their consequences,
has also gained traction. Prior work explores this
in text (Wu et al., 2024c,a), visual QA (Li et al.,
2024e), and hybrid settings. ACQUIRED (Wu
et al., 2023) proposes a taxonomy of counterfac-
tual types, while AuroraCap (Chai et al., 2024) and
CoFCA (Wu et al., 2024a) assess models’ sub-task
decomposition and multi-step reasoning. These
approaches collectively underscore the importance
of structured, causal reasoning in complex multi-
modal tasks.

Multimodal Generalization and Video Counter-
factual Benchmarks. Although several bench-
marks target video-based counterfactual under-
standing—such as CRIPP-VQA for physical prop-
erties, VITATECS for captioning, and ACQUIRED
for scenario taxonomy (Li et al., 2024c; Patel et al.,
2022)—they remain narrow in scope. Most fail
to capture the breadth of reasoning demands in
real-world counterfactual scenarios.

To address this, COVER introduces a fine-grained
framework for evaluating counterfactual video rea-
soning via sub-question decomposition. It explic-
itly distinguishes between abstract vs. concrete ob-

ject attributes and perceptual vs. cognitive reason-
ing demands. As summarized in Table 1, COVER
broadens the evaluation spectrum, enabling a more
nuanced and comprehensive assessment of multi-
modal counterfactual reasoning than prior efforts.

3 The COVER Benchmark

COVER

9
1

Procedure 

Understanding

Action 

Recognition

Size

Color

Material

Figure 2: Overview of the 13 tasks in COVER. Numbers
on the outer edge of the rose chart indicate the total num-
ber of question pairs for each task, while inner labels
denote the corresponding dimension: A&C (Abstract
Cognition), C&C (Concrete Cognition), A&P (Abstract
Perception), and C&P (Concrete Perception).

This section provides a comprehensive overview
of the construction of COVER. We introduce our
data partitioning framework designed to evaluate
MLLM reasoning ability across four complemen-
tary dimensions. Next, we describe the data cura-
tion process, which domain experts have rigorously
validated to ensure the high quality and reliability
of the benchmark.

Our benchmark includes approximately 2,800
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videos, which are paired with around 12,000 to
13,000 individual QA instances. As stated in L-
Figure 6, the enhanced version of our dataset con-
sists of about 2.9k question pairs, with each pair
comprising at least three individual QA items: one
original question, one counterfactual question, and
at least one sub-question (often multiple).

3.1 Benchmark Definition
As illustrated in Figure 2, we categorize the 13
benchmark tasks into four quadrants based on
the abstract-concrete and perceptual-cognitive di-
mensions. Abstract-Perception: (1) Emotion:
Understanding and recognizing emotional states.
Concrete-Perception: (2) Counting: Quantity
recognition and calculation. (3) Color: Perceiv-
ing object colors. (4) Direction: Sensing motion
trends. (5) Size: Identifying object dimensions.
(6) Shape: Perceiving object shapes. (7) Material:
Recognizing object materials. (8) Location: De-
tecting object positions. Concrete-Cognition: (9)
Action Recognition: Identifying specific actions.
(10) Object Recognition: Recognizing specific ob-
jects. Abstract-Cognition: (11) Action Prediction:
Forecasting future actions. (12) Procedure Under-
standing: Comprehending sequential processes and
logic. (13) Social Relation: Understanding social
relationships.
Division of Abstract and Concrete Scenes. This
distinction reflects a functional differentiation
within cognitive representation systems. Neuro-
scientific studies (Katja Wiemer-Hastings and Xu,
2005) suggest that concrete concepts rely heavily
on multi-modal perceptual simulations (e.g., ob-
ject shape, material), while abstract concepts are
primarily represented through language-mediated
symbolic operations. Abstract tasks often require
integrating non-perceptual information, such as
contextual encoding for emotion recognition or
constructing temporal causal models for action pre-
diction.
Division of Perception and Cognition. Percep-
tion involves the initial reception of external stim-
uli through sensory organs, converting them into
neural signals that provide raw environmental data.
Cognition, built upon perception, refers to the fur-
ther processing of these signals, encompassing
higher-level mental functions such as memory, at-
tention, language comprehension, problem-solving,
and reasoning. This distinction underscores differ-
ent stages of information processing, with percep-
tion forming the foundation upon which cognitive

functions are built.

3.2 Data Construction

Distribution of Quadrants

Distribution of Tasks

(a)

(b)

Figure 3: (a) Distribution of question pairs across the
four quadrants. (b) Distribution of question pairs across
the 13 tasks.

To construct COVER, we carefully selected a di-
verse range of open-source and research-available
video sources, including Sigurdsson et al. (2016);
Yi et al. (2020); Xie et al. (2024); Tan et al. (2020);
Shahroudy et al. (2016); Pătrăucean et al. (2023);
Zhang et al. (2023); Gao et al. (2017); Jang et al.
(2017); Wang et al. (2019); Krantz et al. (2020).
These sources encompass various real-world sce-
narios, ranging from daily activity recognition to
complex scene understanding. As shown in Ap-
pendix Figure 6, we collected 146 videos and de-
signed 150 aspect-specific QA pairs, each of which
underwent dual-team review for validation. To en-
sure balanced coverage across the four quadrants,
we expanded the seed data using GPT-generated
instances (720-760 per quadrant) to mitigate any
potential biases. The detailed statistical findings
are comprehensively presented in Figure 3. The
frame count of videos in COVER ranges from 16
to 1739, with an average of 294.34 frames. We fi-
nally constructed 2,923 high-quality counterfactual
question-answer pairs. Each question-answer pair
consists of an original question, which presents no
hypothetical context, and a counterfactual question,
which introduces situational assumptions and sub-
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oriacc cfacc subacc

GPT-4o 70.26 45.93 56.94
GPT-4o-mini 67.32 51.47 55.94
Claude-3.5-Sonnet 63.60 38.04 49.40
Gemini-1.5-Pro 74.82 49.64 63.76
Gemini-1.5-Flash 73.90 48.75 62.52
Gemini-2.0-Flash 77.18 46.90 62.92

InternVL2.5-78B 76.74 59.46 67.23
LlaVA-Video-72B 64.35 56.04 61.54
InternVL2.5-26B 75.40 51.08 62.65
InternVL2.5-8B 74.31 57.75 61.65
VideoLlama3-8B 73.04 51.25 60.09
LlaVa-OV-7B 62.74 51.80 56.42
LLaVA-Video-7B 60.52 51.93 55.11
Qwen2-VL-7B 71.83 46.90 58.40
VILA-U-7B 60.01 38.42 47.32
VILA1.5-7B 60.25 57.34 53.18

Table 2: General assessment results of COVER. oriacc,
cfacc, and subacc denote the accuracies of the original,
counterfactual, and sub-questions, respectively.

questions that enable granular reasoning analysis.
Eight annotators further validated the dataset and

checked logical consistency to ensure the reason-
ing relied solely on the video content. Additionally,
three experts cross-validate the dataset (see Ap-
pendix Table 9) to confirm the structural balance.

4 Experiments

In this section, we systematically evaluate MLLMs
of varying scales on the COVER benchmark to
foster transparent and reproducible research. Our
evaluation spans four key dimensions: cognition,
perception, abstraction, and concreteness. It en-
compasses diverse reasoning sub-tasks, including
counterfactual reasoning, direct inference, and sub-
question-guided reasoning. We compare both open-
source and proprietary models across different pa-
rameter scales to analyze their relative strengths
and limitations. We begin by detailing the experi-
mental setup.

4.1 Settings

To ensure a thorough evaluation, we selected a
diverse set of representative MLLMs, including
commercial closed-source models such as GPT-
4o (Hurst et al., 2024), Claude (Anthropic, 2024),
and Gemini (Reid et al., 2024), as well as leading
open-source models such as InternVL2.5 (Chen
et al., 2024), LLAVA-Video (Zhang et al., 2024a),
LLaVA-OV (Li et al., 2024a), Qwen2-VL (Wang
et al., 2024), VideoLLaMA3 (Zhang et al., 2025),
vila-u (Wu et al., 2024b), and VILA (Lin et al.,
2024). These models span a wide range of pa-

rameter scales and design paradigms, offering a
comprehensive view of the current landscape in
multimodal learning.

We evaluate model performance on video under-
standing using three metrics: oriacc (original ques-
tion accuracy), cfacc (counterfactual question ac-
curacy), and subacc (sub-question accuracy), with
scores averaged over at least three runs. All models
are tested under identical conditions, using a con-
sistent frame extraction strategy that samples 16
frames per video segment. The impact of alterna-
tive sampling strategies is discussed in Chapter 5.

4.2 Main Results
As shown in Table 2, Gemini-2.0-Flash (oriacc
77.18%) and InternVL2.5-78B (oriacc 76.74%)
rank as the top two models, demonstrating their
strong foundational video understanding. The
lower scores of VILA-U-7B (oriacc 60.01%) and
LLaVA-Video-7B (oriacc 60.52%) highlight the
limitations of smaller models in processing long se-
quences. InternVL2.5-78B (cfacc 59.46%) shows
significant dominance in handling conditional rea-
soning and complex contexts. Notably, coun-
terfactual questions cause sharp accuracy drops
compared to the original questions: GPT-4o (-
24.33%) and Gemini-1.5-Pro (-25.18%), indicating
that most models struggle with counterfactual rea-
soning.

Most models exhibit higher subacc than cfacc
(e.g., Claude-3.5-Sonnet 49.40% vs. 38.04%,
LLaVA-Video-72B 61.54% vs. 56.04%). This sug-
gests better stability in localized reasoning tasks
than in holistic tasks, where error accumulation
impacts performance. In the Appendix, we provide
detailed case demonstrations in Figure 8.

Closed-source Model Performance. As shown
in Table 3, Gemini 1.5 Pro demonstrates strong
dominance in both concrete cognition (oriacc
82.14%) and abstract perception tasks (oriacc
75.48%). Gemini 2.0 Flash excels in abstract per-
ception (oriacc 75.90%) and concrete perception
tasks (oriacc 74.22%), showcasing strong capabili-
ties in handling high-complexity perceptual tasks.

Open-source Model Performance. As shown
in Table 3, InternVL2.5-78B leads in abstract cogni-
tion (oriacc 72.88%) and concrete perception tasks
(cfacc 58.25%), reflecting a deep understanding of
abstract concepts and complex logic. Lightweight
models like Qwen2-VL-7B perform well in con-
crete cognition (oriacc 82.14%) but face limitations
in abstract tasks (oriacc 65.96% in A&C) due to
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Models A&C (%) C&C (%) C&P (%) A&P (%)

oriacc cfacc subacc oriacc cfacc subacc oriacc cfacc subacc oriacc cfacc subacc

GPT-4o 71.05 41.81 41.70 74.87 43.65 68.36 69.95 42.62 50.52 65.01 55.65 63.97
GPT-4o-mini 62.29 52.40 42.97 76.32 54.37 66.49 64.62 40.85 44.78 65.56 58.26 65.96
Claude-3.5-sonnet 56.92 37.01 35.55 70.11 42.33 61.77 60.03 32.88 40.08 66.94 39.81 56.81
Gemini 1.5 Pro 69.49 44.49 53.36 82.14 51.98 72.78 71.76 43.93 56.81 75.48 57.99 69.54
Gemini 1.5 Flash 70.48 45.34 52.23 82.01 49.34 71.51 70.67 42.02 51.90 72.04 58.26 71.36
Gemini 2.0 Flash 74.29 44.36 51.38 83.99 47.75 72.84 74.22 38.74 58.26 75.90 57.71 66.84

InternVL2.5-78B 72.88 59.60 57.67 80.95 63.62 75.62 75.99 58.25 63.65 76.86 56.20 70.07
LLaVA-Video-72B 53.11 54.94 53.14 65.34 60.45 67.03 67.94 52.39 53.49 70.66 56.20 70.01
InternVL2.5-26B 71.05 47.74 50.53 80.95 58.99 72.17 76.13 47.20 60.12 73.14 50.00 65.61
InternVL2.5-8B 69.77 58.62 49.96 80.95 64.55 71.02 73.94 55.80 54.66 72.18 51.79 68.19
VideoLLama3-8B 68.08 45.62 49.68 81.35 54.89 68.36 72.99 50.75 51.62 69.28 53.44 67.90
LLaVA-ov-7B 54.66 51.69 47.49 62.96 53.04 61.77 64.53 49.66 49.48 68.60 52.75 64.73
LLaVA-Video-7B 50.14 55.23 44.52 61.64 50.53 60.50 63.57 52.52 49.97 66.39 49.59 63.03
Qwen2-VL-7B 65.96 49.15 48.41 82.14 43.39 67.03 71.21 45.57 50.52 67.49 49.72 65.02
VILA-U-7B 58.19 39.83 38.87 63.10 41.93 54.51 59.07 37.93 37.94 59.50 33.88 55.34
VILA1.5-7B 54.80 55.93 39.29 66.93 62.30 63.52 55.25 58.53 44.64 63.64 52.34 61.91

Table 3: Performance of MLLMs on COVER, based on our quadrant formulation (A&C, C&C, C&P, A&P),
measured by original, counterfactual, and sub-question accuracy.

Model Without CoT With CoT Guide-CoT
cfacc cfacc cfacc cfwithans

GPT-4o-mini 51.47 58.62 57.93 68.07
InternVL2.5-78B 59.46 60.42 58.33 68.29
LlaVA-Video-72B 56.04 56.24 53.51 63.12
InternVL2.5-8B 57.75 57.06 52.41 57.75
VideoLlama3-8B 51.25 52.82 53.06 52.79
LLaVA-Video-7B 51.93 51.42 51.39 54.12
Qwen2-VL-7B 46.90 50.36 45.71 50.88

Table 4: Comparison between CoT and Guide-CoT performance across MLLMs on the COVER benchmark.

their smaller parameter size, revealing distinct ca-
pabilities across model types. Commercial models,
such as the Gemini series, maintain strong perfor-
mance in concrete cognition and abstract percep-
tion tasks but generally fall behind open-source
models in counterfactual reasoning. Most mod-
els struggle with counterfactual reasoning, with
only InternVL2.5-7BB and VILA1.5-7B showing
some task-specific advantages, highlighting the
need for targeted optimization in conditional hy-
pothesis modeling.

4.3 Sub-question Guideline

We propose Guide-CoT to study the influence of
different reasoning paths on model performance
through human-annotated sub-problems. We de-
sign comparative experiments between CoT and
Guide-CoT to analyze how automatically generated
sub-questions from CoT versus manually annotated
sub-questions affect model reasoning capabilities.

Comparing the Without CoT and CoT ap-
proaches based on Table 4, we find that the cfacc

of most models under CoT significantly exceeds
the Without CoT baseline, such as Qwen2-VL-7B
(+3.46%) and GPT-4o-mini (+7.15%), which indi-
cates that CoT enhances reasoning processes, par-
ticularly in more complex tasks.

However, examining Guide-CoT results reveals
that manually designed sub-questions may not al-
ways lead to substantial improvement over auto-
matically generated ones, as seen with GPT-4o-
mini’s cfacc of 57.93% under Guide-CoT, slightly
lower than the 58.62% under CoT. This does not
imply the ineffectiveness of manual sub-questions
but suggests that model behaviors may not always
align with human-designed reasoning paths, po-
tentially due to task complexity or the nature of
the sub-questions themselves. We hypothesize that
manually provided sub-questions could introduce
extraneous patterns or "pseudo-features" that are
not directly relevant to the reasoning task, leading
to a subtle reduction in performance.

The cfwithans column in Guide-CoT indicates
sub-questions that include standard answers. For
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Frames InternVL2.5-1B InternVL2.5-2B InternVL2.5-4B InternVL2.5-8B

oriacc cfacc subacc oriacc cfacc subacc oriacc cfacc subacc oriacc cfacc subacc

2 66.16 35.61 55.27 65.31 44.20 54.99 72.56 48.31 60.88 71.26 58.50 60.07
4 68.32 34.72 55.52 68.83 42.11 58.84 74.41 46.49 61.79 73.35 58.47 60.96
8 68.94 35.10 55.11 68.22 41.43 55.75 75.03 45.60 61.79 74.14 57.06 61.60

16 69.76 35.89 55.19 70.07 40.68 55.49 75.61 45.23 61.63 74.31 57.75 61.65
32 69.04 36.50 55.04 70.13 39.69 55.48 75.54 45.09 60.96 74.10 57.03 61.42
64 68.18 37.39 54.80 68.90 40.06 55.44 74.41 46.56 60.70 74.20 58.09 61.30

Table 5: Performance of MLLMs on COVER using different frame sampling strategies. The frame se-
lection follows standard practices in video QA benchmarks, where the number of input frames is set to
min(video length, predefined sampling count).

InternVL2.5-78B, cfwithans reaches 68.29%, re-
flecting an 8.63% improvement over the no-CoT
baseline, in contrast to CoT’s modest gain of only
0.96% (from 59.46% to 60.42%). This suggests
that providing complete answers substantially en-
hances reasoning accuracy, particularly in complex
or multi-step tasks. Standard-answer sub-questions
enable the model to better integrate information
and verify intermediate reasoning steps, resulting
in improved consistency and overall performance.
Detailed case studies are presented in Appendix
Figure 9 to further illustrate these findings and ana-
lyze the interplay between reasoning paths and task
complexity.

The results from our experiments strongly sup-
port the notion that reasoning plays a pivotal role
in model robustness and generalization. Our study
extends these insights by demonstrating that mul-
timodal models, especially in the context of video
tasks, rely heavily on robust reasoning capabili-
ties for effective generalization. The significant
performance improvements observed with counter-
factual reasoning and sub-question decomposition
highlight that models’ ability to handle complex,
conditional, and dynamic contexts is crucial for
their robustness, a finding not fully explored in
prior research.

5 Analysis

In this chapter, we begin by analyzing the impact
of video frame sampling rates on MLLMs’ video
understanding and reasoning abilities. We then
proceed with an in-depth examination of MLLMs’
robustness and logical reasoning performance.

5.1 Ablation Study of Video Frames

As shown in Table 5, as the parameter size of
LLMs increases, there is a rising trend in oriacc,
cfacc, and subacc. For instance, with 16 frames,

the InternVL2.5-1B model achieves oriacc, cfacc,
and subacc of 69.76%, 35.89%, and 55.19% re-
spectively. The InternVL2.5-2B scores 70.07%,
40.62%, and 55.49%, while the InternVL2.5-4B
reaches 75.61%, 45.23%, and 61.68%, indicating
that larger LLMs have enhanced capabilities in
handling complex problems. Under the same vi-
sion tower settings, oriacc shows a clear upward
trend as the number of frames increases. For exam-
ple, the InternVL2.5-8B’s oriacc rises from 71.26%
at 2 frames to 74.20% at 64 frames. However,
cfacc tends to decrease with more frames. The
InternVL2.5-2B’s cfacc drops from 44.20% at 2
frames to 40.06% at 64 frames. Models with
more parameters generally perform better in oriacc,
cfacc, and subacc, highlighting the significant role
of LLMs in multimodal reasoning. Additionally,
increasing visual information (by raising the frame
count) can enhance oriacc, but excessive visual in-
formation, especially in complex or counterfactual
reasoning scenarios, may impair the model’s rea-
soning ability, leading to a decline in cfacc.

5.2 Robustness and Logical Reasoning in
MLLMs

The ability of MLLMs to answer original questions
serves as a key indicator of their overall under-
standing capabilities, while performance on sub-
questions reveals single-step reasoning proficiency.
A notable observation is the strong Pearson cor-
relation between oriacc and subacc reaches 0.836,
indicating a strong connection between model un-
derstanding and reasoning capabilities. Further-
more, as shown in Figure 5, the correlation between
subacc and cfacc is 0.608. These moderately strong
correlations indicate that a model’s ability to com-
prehend original questions plays a fundamental role
in enabling effective step-by-step reasoning. Sim-
ilarly, the correlation between oriacc and subacc
suggests that models with a higher understanding
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Figure 4: Heatmaps of task performance for Gemini-1.5-pro and InternVL2.5-78B, using hollow circles to depict
task distributions across the four quadrants. The top three panels show results for Gemini-1.5-pro, and the bottom
three for InternVL2.5-78B. Left: Accuracy on original questions. Middle: Performance on counterfactual questions.
Right: Accuracy on sub-questions. A gradient color bar—from azure (low accuracy) to crimson (high accuracy)—is
placed along the right margin of each heatmap to indicate performance levels.

Model P(cfright|subright) P(cfwrong |subright) P(cfright|subwrong) P(cfwrong |subwrong)

gemini-1.5-pro 56.54 43.45 44.99 55.01
GPT-4o-mini 59.49 40.51 47.65 52.35
InternVL2.5-78B 62.90 37.10 56.67 43.34
LlaVA-Video-72B 63.28 36.72 51.60 48.40

Table 6: Conditional probabilities of counterfactual accuracy given sub-question outcomes. P(cfright | subright) and
P(cfwrong | subright) denote the likelihood of answering the counterfactual question correctly or incorrectly when
the sub-question is correct; similarly, P(cfright | subwrong) and P(cfwrong | subwrong) apply when the sub-question
is incorrect.

capability tend to perform better when solving de-
composed sub-questions, reinforcing the notion
that comprehension and reasoning are interdepen-
dent. However, the moderate correlation between
subacc and cfacc suggests that counterfactual rea-
soning involves additional complexities, making it
a more challenging task than single-step reasoning.

As illustrated in Table 6, We observed
that across multiple models, the probability
P (cf_right|sub_right) was significantly higher
than P (cf_right|sub_wrong), clearly indicating
that the correctness of sub-questions is a strong
predictor of overall counterfactual performance.

Analysis of the heat maps in Figure 4 reveals dif-
ferent performance patterns in the quadrants, high-

lighting the interaction between comprehension,
step-by-step reasoning, and counterfactual infer-
ence. In abstract reasoning tasks such as social
inference and procedural understanding, the drop
from subacc to oriacc is minimal, and the transition
to cfacc remains stable. This suggests that models
can effectively leverage sub-question reasoning and
maintain performance even under counterfactual
assumptions. In contrast, the concrete perception
quadrant—involving tasks like object recognition
and motion understanding—shows a sharper de-
cline from subacc to oriacc, and further to cfacc.
This indicates that perception-heavy tasks pose
greater challenges, as models struggle to decom-
pose complex sensory input into reasoning steps
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Figure 5: Scatter plot showing correlations among oriacc, subacc, and cfacc across models. The red line represents
the linear function fitted between oriacc and subacc, while the purple line represents the linear function fitted
between cfacc and subacc.

required for counterfactual understanding.
Overall, our findings indicate that counterfac-

tual reasoning is inherently more challenging than
single-step reasoning, especially in perception-
intensive tasks where models must infer causal-
ity beyond pattern recognition. In contrast, the
relatively stable gap between subacc and cfacc in
abstract-cognitive tasks suggests that models can
better leverage conceptual knowledge. Enhancing
counterfactual reasoning in perception-heavy sce-
narios remains a key challenge, likely requiring
improved causal inference and reasoning mecha-
nisms.

5.3 The Effects of Model Scale

We conduct systematic analyses to characterize per-
formance gaps across original, counterfactual, and
sub-question accuracies. Our goal is to mitigate
these gaps by examining factors such as model
scale, training alignment, and reasoning strate-
gies. As shown in Table 7, with similar visual
backbones, increasing language model size signifi-
cantly reduces the performance gap—particularly
between sub-question and counterfactual accuracy.
Specifically, the absolute difference between oriacc
(70.07%) and cfacc (40.68%) is 29.39% for the 2B
model, increases slightly to 30.38% for the 4B

model, and then drops substantially to 16.56% for
the 8B model. Similarly, the gap between cfacc and
subacc grows from 14.81% (2B) to 16.40% (4B),
before narrowing sharply to 3.90% (8B).

Model oriacc cfacc subacc

InternVL2.5-2B 70.07 40.68 55.49
InternVL2.5-4B 75.61 45.23 61.63
InternVL2.5-8B 74.31 57.75 61.65

Table 7: Variations in three accuracy metrics across
different model sizes.

6 Conclusion

We introduce COVER, a comprehensive bench-
mark for counterfactual video reasoning that eval-
uates MLLMs across four dimensions: abstract-
concrete and perception-cognition. By decompos-
ing complex queries into structured sub-questions,
COVER enables fine-grained analysis and reveals
a strong correlation between sub-question accuracy
and overall reasoning performance. Our results
highlight the need for improved reasoning abilities
in dynamic video tasks, and position COVER as
a new standard for evaluating multimodal logical
reasoning.
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Limitations

COVER offers a novel benchmark for counterfac-
tual video reasoning, but some limitations exist.
First, while it focuses on video reasoning, its appli-
cability to other multimodal tasks, such as image
or text reasoning, remains unexplored. Second,
COVER relies on sub-question decomposition, and
automated methods may not always match human-
designed questions, especially in complex scenar-
ios. Finally, while we demonstrate COVER’s ef-
fectiveness on various models, further validation
across different model architectures and real-world
tasks is needed to assess its generalizability.
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COVER is designed with ethical considerations
in mind, aiming to enhance counterfactual reason-
ing in video understanding while ensuring fairness,
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and encourage the broader research community to
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value of their work. Furthermore, we took steps
to ensure that the annotation process did not pose
any risks to their physical or mental well-being.
The tasks were designed to be manageable, and
we provided adequate support to ensure a safe and
respectful working environment.

In this study, AI was used solely for data aug-
mentation and grammar/typo correction, with no
involvement in generative or creative tasks. We
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parency of the research.
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A Appendix

A.1 Data Construction Details
In this section, we present additional details on
COVER construction, including information about
the task splitting scores, annotation agreements,
data augmentation prompts and process flow.

We invited three expert annotators to indepen-
dently score each benchmark task based on our
two-dimensional quadrant framework (abstract vs.
concrete and perception vs. cognition). Their scor-
ing results in Table 8 demonstrates the strictness,
consistency, and logical coherence of our task cate-
gorization, effectively preventing overlaps and am-
biguity.

The annotators were recruited to evaluate
COVER across multiple dimensions, with the re-
sultant assessments systematically compiled in Ta-
ble 9, ensuring comprehensive evaluation coverage.
The methodological workflow for data augmenta-
tion is schematically outlined in Figure 6.

The schematic framework outlined in Figure 7
delineates the methodology employed for contex-
tual data augmentation, leveraging the generative
capabilities of GPT-4o(Hurst et al., 2024) to con-
struct domain-specific instructional prompts.

A.2 Additional Results
In this section, we present additional experiments
on COVER. The comprehensive evaluation frame-
work delineated in Table 14 presents granular per-
formance metrics across 13 meticulously defined
tasks.

GPT-4o exhibited notable vulnerability in the
Procedure Understanding task. While it attained a
respectable raw accuracy of 78.17%, its counterfac-
tual accuracy plummeted to 28.97%, representing
a precipitous decline of 49.2%. This substantial
drop suggests that the performance of GPT-4o in
understanding procedures may be overly reliant
on surface-level features. Counterfactual perturba-
tions, such as changes in conditions, can severely
disrupt its reasoning capabilities, thereby highlight-
ing a robustness limitation of the model when han-
dling complex tasks.

Figure 5 (a) depicts the relationship between
oriacc and subacc across different models, with a
purple regression line characterizing the functional
correlation between mean oriacc and mean subacc.
Figure 5 (b) demonstrates the association between
cfacc and subacc across different models, with a
red regression line characterizing the functional
correlation between mean cfacc and mean subacc.
The bivariate correlation analysis delineated in Fig-
ure 5 demonstrates statistically significant covari-
ation patterns (r = 0.836) between semantic com-
prehension and multi-step reasoning capabilities in
MLLMs.

We conducted an additional ablation study to
examine whether the observed trend where ex-
cessive visual information impairs reasoning ac-
curacy holds consistently across both short and
long videos. Our results are summarized in Ta-
ble 10, 11. We observed a clear pattern across
both short and long videos: model accuracy typi-
cally peaks within a moderate frame range (8–32
frames) and subsequently declines at the maximum
setting (64 frames). This decline is particularly pro-
nounced in tasks involving the original questions
(ori) and sub questions (sub), suggesting that an
excessive amount of visual input can indeed neg-
atively impact model performance, regardless of
video length.
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Task Ax Ay Bx By Cx Cy Avgx Avgy

Counting -3.2 -3.4 -3.1 -3.6 -3.3 -3.7 -3.2 -3.57
Color -4.1 -4.4 -4.4 -4.2 -4.2 -4.3 -4.23 -4.3
Material -3.8 -3.3 -3.9 -3.2 -4.0 -3.4 -3.9 -3.3
Size -2.4 -2.5 -2.6 -2.3 -2.2 -2.4 -2.4 -2.4
Shape -3.3 -3.2 -3.5 -3.2 -3.8 -4.0 -3.53 -3.47
Emotion -2.4 4.0 -2.5 3.5 -2.4 3.1 -2.43 3.53
Location -1.7 -1.4 -2.0 -1.6 -1.3 -1.7 -1.67 -1.57
Direction -2.1 -1.7 -2.5 -1.5 -2.6 -1.8 -2.4 -1.67
Object Recognition 3.0 -3.0 2.4 -2.0 1.2 -2.3 2.2 -2.43
Action Recognition 2.5 -3.1 2.3 -3.0 2.1 -3.5 2.3 -3.2
Action Prediction 3.9 2.4 3.8 2.5 3.2 2.2 3.63 2.37
Procedure Understanding 3.0 3.5 3.6 3.2 2.2 3.3 2.93 3.33
Social Relation 3.4 4.3 3.0 4.4 3.1 4.1 3.17 4.27

Table 8: Annotator scoring table. Annotators A, B, and C provide ratings along two axes: the perceptual–cognitive
dimension (x-axis, from −5 to 5, where higher values indicate more cognitive tasks) and the concrete–abstract
dimension (y-axis, from −5 to 5, where higher values indicate more abstract tasks).

Procedure Understanding

Focus on: Steps in a process or sequence

Consider: The importance of order and completeness of steps

Task Requirements 

Generation

Who is interviewed first, if the sequence of interviews in the vi

deo is reversed?

A. a single child B. two children

C. the teacher D. a group of students

The answer is B 

Who is interviewed first, if the sequence of interviews in the vi

deo is reversed?

A. a single child B. two children

C. the teacher D. a group of students

The answer is B  The answer is AInspecting

Cross-Validation

Data Quality

Data Diversity

Relevance and Appropriateness

Annotation Quality

Dataset Usability

Innovation and Contribution

in-context learning

prompt optimization

1

2

3

2923 checked data

labeled text selected videos

Seed Data

Figure 6: Flowchart depicting the data augmentation pipeline.

Additionally, we evaluated test-time reasoning
strategies on manually curated seed data using long-
chain reasoning models in Table 12. Notably, mod-
els such as InternVL2.5-78B-CoT show significant
improvement in bridging the cf–sub–ori gap, fur-
ther supporting that reasoning-guided prompting
(e.g., CoT) helps align sub-level and cf-level accu-

racy. These observations suggest a promising direc-
tion: larger and better-aligned models, when com-
bined with explicit reasoning strategies, are more
capable of maintaining coherence across percep-
tion, decomposition, and abstract reasoning tasks.

2952



Enlarge  Prompt

System:

Enlarge  Prompt

System: You are a professional video Q&A data annotator. Your task is to generate question-answer pairs 

based on video frames while adhering to strict formatting rules and avoiding information leakage.

User: Below is your task description and examples provided.

Required Q&A Types

original_qa: A question focused on {aspect} with multiple-choice options (ABCD).

counterfactual_qa: Identical to original_qa but adds one carefully constructed if-clause.

sub_qas: At least two sub-questions addressing intermediate reasoning steps for counterfactual_qa, also with 

multiple-choice options.

Rules

All questions must strictly follow {aspect_rules[aspect]}.

No information leakage: Questions must not reveal answers without analyzing the video.

Choices: Must have semantic distinctions; avoid overlapping or ambiguous options.

Format consistency: original_qa and counterfactual_qa share identical choices; sub_qas inherit the if-clause.

Expected Output Format

original: "qs": "...?"

counterfactual: "qs": "If <clause>, ...?"

sub: "qs": "If <clause>, ...?“

In-Context Examples

original: "qs": "...?"

counterfactual: "qs": "If <clause>, ...?"

sub: "qs": "If <clause>, ...?“

Action Instructions

Analyze Video Frames: Extract key visual elements relevant to {aspect}.

Generate Q&A Triplets: Follow the format and rules strictly.

Validate: Ensure no information leakage and logical consistency.

    

Notes:

Use double quotes for JSON keys/values.

Ensure the if-clause in counterfactual_qa and sub_qas is logically 

compatible with the question body.

Final Output: <Your generated JSON here> 

Figure 7: Methodological framework for data augmentation using GPT-4o.

Aspect A B C Average

Data Quality 4 4 5 4.3

Data Diversity 5 4 5 4.7

Relevance 4 5 4 4.3

Annotation Quality 4 5 5 4.7

Dataset Usability 4 4 4 4

Innovation 5 5 4 4.7

Table 9: Cross-annotator validation on COVER. The
table summarizes quality scores assigned by three an-
notators. A, B, and C denote randomly assigned codes
for the assessment data, and Average indicates the mean
score across all entries.

A.3 Sample Reaults on Test Time Long
Reasoning Models

As illustrated in Figure 10, the reasoning model
QVQ-72B-Preview (Team, 2024), equipped with a
built-in Chain-of-Thought (CoT) mechanism, ex-
hibits human-aligned reasoning patterns. Its cog-
nitive process integrates detailed scenario descrip-
tions, systematic elimination of implausible options
(e.g., excluding candidates A/B/C), and rigorous
conclusion verification. In contrast, InternVL2.5-
78B employs a CoT mechanism that presents an-

Frame InternVL2.5-4B InternVL2.5-8B

oriacc cfacc subacc oriacc cfacc subacc

2 69.09 45.94 60.33 68.72 56.53 61.14
4 70.81 46.18 60.91 68.97 56.90 60.68
8 71.31 43.97 60.62 69.83 56.28 61.14
16 70.81 44.83 59.86 70.07 56.40 61.20
32 70.69 43.84 59.57 69.21 56.90 61.26
64 69.95 46.55 59.63 69.09 57.27 60.62

Table 10: Performance of MLLMs with different num-
bers of sampled frames for short videos (1–64 frames).

Frame InternVL2.5-4B InternVL2.5-8B

oriacc cfacc subacc oriacc cfacc subacc

2 73.90 49.22 61.09 72.24 59.26 59.67
4 75.79 46.61 62.13 75.04 59.07 61.07
8 76.46 46.23 62.24 75.79 57.37 61.78
16 77.45 45.38 62.31 75.94 58.27 61.82
32 77.40 45.57 61.49 75.98 57.08 61.49
64 76.13 46.57 61.11 76.17 58.41 61.55

Table 11: Effect of different frame sampling strate-
gies on MLLM performance for long videos (64–2000
frames).
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Model ori_acc cf_acc sub_acc

QVQ-72B-Preview 69.33 59.33 58.76
InternVL2.5-78B-CoT 70.00 71.33 70.80

Table 12: Variation in accuracy across different test-
time reasoning strategies.

swers in a bullet-point format without explanatory
justification, reflecting weaker anthropomorphic
reasoning characteristics.

However, the cfacc discrepancy in Table 13
(QVQ-72B-Preview: 59.33% < InternVL2.5-78B:
71.33%) suggests that contemporary reasoning
models may rely more on memorization than on
structured reasoning. InternVL2.5-78B’s concise
response paradigm appears to leverage rapid pat-
tern recognition and information retrieval, leading
to superior accuracy. While QVQ-72B-Preview’s
elaborate reasoning workflow better approximates
human cognition, potential redundancies or logical
inconsistencies may reduce answer precision.

Table 13 further indicates that InternVL2.5-
78B achieves a substantial lead in the subacc met-
ric (70.80%), significantly outperforming QVQ-
72B-Preview (58.76%) and Claude-3.7-sonnect
(46.72%). This performance hierarchy remains con-
sistent across models when evaluated on the oriacc
metric: InternVL2.5-78B (70.00%) > QVQ-72B-
Preview (69.33%) > Claude-3.7-sonnect (46.00%).
Empirical evidence suggests a statistically signifi-
cant positive correlation between reasoning capa-
bility (subacc) and comprehension ability (oriacc).
In addition, under the CoT paradigm, reasoning
capability demonstrates stronger generalization, ex-
hibiting a positive correlation with performance on
human-annotated essential logical sub-problems,
thereby reinforcing the intrinsic relationship be-
tween logical reasoning and generalizability.

Moreover, the reasoning processes of models
such as QVQ frequently generate sub-problem con-
tent that aligns with human-annotated data, which
to some extent suggests that the inferential patterns
of test-time long-reasoning models demonstrate
closer correspondence with human cognitive intu-
ition. For instance, in the Figure 11 the analytical
content regarding the opening and closing scenes
of videos (highlighted in blue font) exhibits precise
alignment with the manually curated sub-problems
in the upper-right annotation (specifically address-
ing inquiries about video commencement and con-
clusion scenarios), thereby empirically validating

oriacc cfacc subacc

QVQ-72B-Preview 69.33 59.33 58.76
Claude-3.7-sonnect 46.00 59.33 46.72

InternVL2.5-78B 70.00 71.33 70.80
VILA1.5-13B 65.33 44.67 53.65

Table 13: Performance of different chain-of-thought
(CoT) reasoning architectures on a manually annotated
dataset of 150 samples. QVQ and Claude-3.5-Sonnet
represent dedicated reasoning models, while the others
apply CoT-based augmentation.

this cognitive congruence.

A.4 Examples of Sub-question Guidelines
Figure 8 illustrates how sub-question errors propa-
gate to counterfactual question failures. In Figure 9,
we observe that subtle errors in the reasoning pro-
cess lead to reasoning failures, highlighting the
model’s sensitivity to the integrity of its reasoning
steps.
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Model Type
Task

Action Procedure Social Action Object
Color Counting Direction Location Material Shape Size Emotion

Prediction Understanding Relation Recognition Recognition

GPT-4o
oriacc 65.20 78.17 69.00 74.87 74.87 92.23 75.25 50.88 70.59 79.12 72.00 52.88 65.01
cfacc 41.41 28.97 56.33 44.65 42.67 37.86 40.59 33.33 42.86 59.34 58.00 29.81 55.65

subacc 51.85 22.82 52.43 69.54 67.09 51.94 47.52 56.90 48.96 58.08 55.56 36.08 63.97

GPT-4o-mini
oriacc 50.22 72.22 63.32 78.61 74.08 84.47 70.30 52.63 57.98 71.43 62.00 56.73 65.56
cfacc 44.05 51.19 62.01 56.42 52.36 26.21 39.60 36.84 59.66 52.75 53.00 17.31 58.26

subacc 53.16 19.44 58.85 68.03 64.82 38.35 38.12 53.88 47.72 53.89 53.44 28.85 65.96

Claude-3.5-Sonnet
oriacc 43.61 63.10 63.32 66.31 73.82 79.61 68.32 48.25 52.10 63.74 66.34 45.19 66.94
cfacc 39.21 33.33 38.86 43.85 40.84 36.89 19.80 35.96 40.34 37.36 40.59 18.27 39.81

subacc 46.19 15.87 46.68 62.54 60.93 39.81 24.26 48.28 48.55 46.11 37.70 34.13 56.81

Gemini-1.5-Pro
oriacc 54.63 80.95 71.62 83.42 80.89 84.47 73.27 61.40 76.47 81.32 67.33 59.62 75.48
cfacc 46.70 29.76 58.52 45.45 58.38 46.60 37.62 35.96 42.86 54.95 55.45 36.54 57.99

subacc 57.52 39.68 64.38 72.58 72.99 73.30 43.56 61.21 58.09 59.88 55.50 45.67 69.54

Gemini-1.5-Flash
oriacc 53.74 85.32 70.74 82.62 81.41 82.52 70.30 57.02 70.59 79.12 69.31 68.27 72.04
cfacc 45.81 34.92 56.33 49.20 49.48 41.75 37.62 33.33 41.18 64.84 53.47 25.96 58.26

subacc 61.87 32.94 63.94 73.28 69.60 46.60 43.07 62.93 54.77 62.87 55.50 37.98 71.36

Gemini-2.0-Flash
oriacc 60.35 86.90 74.24 87.97 80.10 90.29 69.31 64.04 78.99 81.32 70.30 66.35 75.90
cfacc 42.29 36.51 51.97 44.12 51.31 20.39 39.60 31.58 37.82 57.14 56.44 31.73 57.71

subacc 60.78 35.52 59.51 73.16 72.49 69.90 59.41 65.95 53.53 58.08 58.64 42.31 66.84

InternVL2.5-78B
oriacc 67.84 75.00 75.55 79.68 82.20 94.17 82.18 52.63 76.47 76.92 83.17 69.23 76.86
cfacc 43.61 76.19 57.21 65.51 61.78 87.38 37.62 47.37 75.63 61.54 57.43 39.43 56.20

subacc 62.09 44.64 67.70 76.90 62.28 79.13 69.80 66.38 58.09 62.28 59.69 50.48 70.07

LLaVA-Video-72B
oriacc 43.17 50.79 65.50 60.70 69.90 85.44 69.31 51.75 73.11 74.73 61.39 61.54 70.66
cfacc 44.93 59.92 59.39 63.10 57.85 62.14 42.57 47.37 66.39 53.85 51.49 41.35 56.20

subacc 59.26 32.94 69.47 67.56 66.46 63.59 52.97 61.21 45.23 55.69 53.40 43.27 70.01

InternVL2.5-26B
oriacc 57.27 78.58 76.42 82.35 79.58 91.26 74.26 62.28 85.71 74.73 78.22 66.35 73.14
cfacc 47.14 45.24 51.09 60.43 57.59 59.23 25.74 45.61 60.50 57.14 25.00 25.00 50.00

subacc 59.91 61.08 62.39 71.18 73.24 65.05 56.44 68.97 58.09 61/08 50.96 50.96 65.61

InternVL2.5-8B
oriacc 55.51 75.00 78.17 81.28 80.63 90.29 70.30 63.16 78.99 74.63 74.26 66.35 72.18
cfacc 48.02 76.19 49.78 71.39 57.85 84.47 36.63 53.51 70.59 59.34 55.45 28.85 51.79

subacc 55.99 29.37 66.81 69.89 72.24 52.43 52.97 60.34 53.53 56.89 54.97 51.44 68.19

VideoLLama3-8B
oriacc 52.42 81.75 68.56 80.48 82.20 94.17 70.30 63.16 81.51 70.33 68.32 62.50 69.28
cfacc 35.68 53.97 46.29 55.08 54.71 66.02 42.57 42.11 64.71 58.24 48.51 32.69 53.44

subacc 49.45 33.93 67.48 67.91 68.84 57.77 39.60 58.62 49.79 53.89 54.45 47.12 67.90

LLaVA-ov-7B
oriacc 48.90 48,81 66.81 60.43 65.45 86.41 63.37 44.74 63.03 72.53 61.39 63.46 68.60
cfacc 43.61 64.29 45.85 55.35 50.79 59.22 42.57 45.61 52.94 60.44 57.43 30.77 52.75

subacc 50.11 30.36 63.94 62.78 60.68 54.85 42.08 53.45 45.64 50.90 48.69 50.96 64.73

LLaVA-Video-7B
oriacc 50.66 35.71 65.50 56.15 67.02 83.50 67.33 41.23 58.82 74.72 64.36 59.62 66.39
cfacc 44.93 73.02 45.85 59.09 42.15 73.79 42.57 48.25 60.50 58.24 48.51 35.58 49.59

subacc 48.58 29.96 56.64 62.19 58.67 55.34 41.09 56.03 43.15 54.49 52.88 48.08 63.03

Qwen2-VL-7B
oriacc 44.49 84.12 67.25 84.22 80.10 88.35 70.29 57.89 73.94 74.73 65.34 69.23 67.49
cfacc 42.29 58.73 45.41 44.92 41.88 56.31 21.78 42.11 58.82 60.44 45.54 33.65 49.72

subacc 53.37 30.16 63.72 67.33 66.71 43.20 42.08 59.48 51.87 52.69 51.83 51.44 65.02

VILA-U-7B
oriacc 45.37 73.02 54.59 66.31 59.95 81.55 61.39 54.39 71.43 47.25 47.52 47.11 59.50
cfacc 22.47 53.17 42.36 44.39 39.53 45.63 45.54 23.68 43.70 35.16 35.64 36.54 33.88

subacc 38.78 34.33 44.03 52.16 57.04 41.26 22.28 39.22 40.66 35.93 42.93 42.31 55.34

VILA1.5-7B
oriacc 52.86 50.40 61.57 67.65 66.23 61.17 56.44 40.35 40.34 71.43 60.40 62.50 63.64
cfacc 28.64 85.71 50.22 68.45 56.29 86.41 57.43 49.12 76.47 51.65 41.58 44.23 52.34

subacc 34.86 24.80 59.96 61.73 65.45 48.06 31.19 50.86 42.74 47.31 45.55 46.63 61.91

Table 14: Overall performance of MLLMs on 13 tasks in COVER, including original accuracy, counterfactual
accuracy, and sub-question accuracy.
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Video Reasoning Steps

Sub1 Question:
Which action happened first, if the sequence of actions in the video is reversed?

A: The woman places a plate of food on the table     B: The woman sits down 

C: The woman eats the food           D: The woman leaves the room

Model Prediction:
D: The woman leaves the room.

Golden: A

Sub2 Question:
Which action happened later, if the sequence of actions in the video is reversed?

A: The woman wraps a blanket around herself          B: The woman sits down

C: The woman places a plate of food on the table     D: The woman eats the food

Model Prediction:
A: The woman wraps a blanket around herself.

Golden: B

Counterfactual Question:
Does the woman place a plate of food on the table before sitting down in the video, 

if the sequence of actions in the video is reversed?

A: yes  B: no

Model Prediction:
A: yes.

Golden: B

Figure 8: Example from COVER, showing a video accompanied by three related questions. The video is divided
into four key action frames (left), with dashed lines indicating reasoning steps. Single-step prediction errors are
marked with red crosses on the right, while sub-questions that do not support counterfactual reasoning are marked
with red crosses on the left.

Question
Does the man work on a computer and then engage in a conversation 

in the video, if the sequence of actions in the video is reversed?

Video

Step 1: 

Does the man work on a computer in the video?

Prediction: 

Yes, the man is seen working on a computer.

Step 2: 

Does the man engage in a conversation in the video?

Prediction: 

Yes, the man is seen engaging in a conversation.

Step 3: 

Is the sequence of actions in the video reversed?

Prediction: 

Yes, the sequence of actions in the video is reversed.

Analysis of the Main Question

The man is first seen engaging in a conversation  and 

then working on a computer.

Step 1:

Which action happens first, if the sequence of actions in the 

video is reversed?

A: the man starts working on a computer

B: the man engages in a conversation

C: the man stands up

D: none of the above

Prediction: 

A: the man starts working on a computer

Step2:

Which action happens later, if the sequence of actions in the 

video is reversed?

A: the man engages in a conversation

B: the man starts working on a computer

C: the man adjusts his seat

D: none of the above

Prediction: 

A: the man engages in a conversation

Analysis of the Main Question

Therefore, the man does work on a computer and then 

engage in a conversation in the reversed sequence.

Step 1:

Which action happens first, if the sequence of actions in the 

video is reversed?

A: the man starts working on a computer 

B: the man engages in a conversation 

C: the man stands up

D: none of the above

Prediction : 

B: the man engages in a conversation

Step 2:

Which action happens later, if the sequence of actions in the 

video is reversed?

A: the man engages in a conversation

B: the man starts working on a computer

C: the man adjusts his seat

D: none of the above 

Prediction :

B: the man starts working on a computer

Analysis of the Main Question

Based on the provided sub-questions and answers, the 

sequence of actions in the video, if reversed, would have 

the man engaging in a conversation first and then 

working on a computer later. This suggests that in the 

original sequence, the man would have been working on a 

computer before engaging in a conversation.

CoT Guide-CoT Guide-CoT with answer

Golden: No

Final Prediction

          NO

Final Prediction

          Yes

Final Prediction

          NO

Figure 9: An example from COVER. The top section shows the video input and corresponding counterfactual
questions. The middle section presents three reasoning processes—CoT, Guide-CoT, and Standard—where correct
steps are marked with green checkmarks. In the analysis, correct reasoning paths are shown in green text, while
incorrect ones are highlighted in red. The bottom section displays the final model predictions, with green checkmarks
indicating correct answers and red crosses denoting errors.
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Question
Is the woman leaving or returning home in the video, if the video is played in reverse?

A: leaving B: sitting in the car C: walking in the park D: returning

Video

let's start by describing what I see.

First, there's a woman in a white tank top and blue jeans. She's walking out of a house through a blue door. The 

house looks like a single-story building with white siding. As she exits, she walks down a small set of stairs and 

heads towards a driveway where several vehicles are parked. In the driveway, there's a black car parked closest to 

the house, followed by a dark blue pickup truck, and then another black vehicle that looks like a larger truck or 

possibly a tractor trailer. The woman walks past these vehicles, seemingly in a hurry, as she moves quickly across 

the driveway and onto a grassy area beyond. The setting appears to be rural or semi-rural, given the open spaces, 

the style of the house, and the types of vehicles present. There are some trees and other buildings visible in the 

background, further suggesting a countryside environment.

Now, the question mentions that if the video is played in reverse, the woman would be leaving or returning home. 

The options provided are: A: leaving B: sitting in the car C: walking in the park D: returning. Given that in the 

original video, the woman is seen exiting the house and walking away from it, playing the video in reverse would 

show her walking towards the house and entering through the blue door. So, in reverse, she would be returning 

home. Therefore, the correct answer should be D: returning.

But let's double-check to make sure I'm not missing anything.

The question says, "if the video is played in reverse," and the woman is seen walking out of the house in the 

original video. Reversing the video would show her walking back into the house, which implies she's returning 

home. Option A: leaving \u2013 that would correspond to the original direction, not the reverse. Option B: sitting in 

the car \u2013 there's no indication of her sitting in the car in the reverse video. Option C: walking in the park 

\u2013 while the reverse video might show her walking, it's not specifically in a park; it's more likely the same path 

back to the house. Option D: returning \u2013 this seems the most accurate based on the reverse scenario. So, 

my final answer is D: returning.

Step 1:

What is the woman doing at the beginning of the 

video?

Prediction : 

The woman is putting on her boots

Step 2:

What is the woman doing at the end of the video?

Prediction : 

The woman is walking towards the truck

Step 3:

What is the woman's location at the beginning of the 

video?

Prediction : 

The woman is inside a house

Step 4:

What is the woman's location at the end of the video?

Prediction : 

The woman is outside, near the truck

Omit similar content below

QVQ InternVL2.5-CoT

Golden 

D: returning

Final Prediction

    D:returning

Final Prediction

    D:returning

Figure 10: An example from the 150 seed samples. The top section shows the video input and corresponding
counterfactual questions. The middle section compares two reasoning frameworks: the test-time long reasoning
model QVQ and InternVL2.5-78B with CoT, with green marks indicating validated response components. The
bottom section displays final model predictions, where green checkmarks indicate correct answers.

Alright, I've got this video to analyze..

It seems like there are a few different scenes here, and I need to think about the sequence of events if the video is reversed. Let 

me try to map out the scenes in the order they appear: 1. Large crowd with person at podium giving a speech. 2. Group of people 

(possibly officials or security) walking outdoors. 3. Hillary Clinton posing with children.\n\nIf the video is played in reverse, the 

order would be: 1. Hillary Clinton posing with children. 2. Group of people walking outdoors. 3. Large crowd with person at 

podium giving a speech. So, in the reversed version, the speech comes at the end, not at the beginning. But the question is 

specifically about the beginning of the reversed video. So, is Hillary Clinton giving a speech at the start of the reversed video? 

Based on my understanding, no, because in the reversed video, the first scene would be her posing with children, followed by the 

outdoor walking group, and then the speech. Therefore, the answer should be B: no.

Wait a minute, but I need to make sure I'm not missing something.

Let's see. The large crowd and podium suggest a political rally or event, possibly related to an election or campaign. The group of 

people walking outdoors could be part of the same event, perhaps arriving or departing. And the photo op with Hillary Clinton and 

children might be part of the event's agenda, focusing on family or education issues. If the video is reversed, the sequence starts 

with the photo op, then the outdoor walking, and then the speech. So, again, the speech is not at the beginning in the reversed 

version. Perhaps the confusion comes from the fact that Hillary Clinton is known for giving speeches, especially in political 

contexts. But based on the images provided, in the reversed video, her speech would come after the other scenes, not before. 

Therefore, I think the answer is B: no, Hillary Clinton is not giving a speech at the beginning of the reversed video. 

Just to double-check

Let's consider if there's any possibility that the speech and the photo op are simultaneous, but that seems unlikely. Typically, such 

events have a schedule: there might be speeches, then photo ops, or vice versa, but not both happening at the same time. So, 

unless there's something unusual about this particular event, I think my reasoning holds. Alright, I think I've thought this through 

sufficiently. The answer is B: no.

QVQ InternVL2.5-CoT

Question
Is hillary clinton is giving a speech at the beginning of the video, if the video is played in reverse? 

A: yes   B: no

Video

Golden 

B: no

Final Prediction

        B: no

Step 1:

What is Hillary Clinton doing at the 

beginning of the video?

Prediction : 

She is giving a speech to a large crowd.

Step 2:

What is the context of the video?

Prediction : 

The video shows Hillary Clinton giving a 

speech and interacting with people, 

including children

Step 3:

Is the video played in reverse?

Prediction : 

yes

Final Prediction

        B: no

Sub q1

What is hillary clinton doing at 

the beginning of the video, if 

the video is played in reverse?

Sub q2

What is hillary clinton doing at 

the end of the video, if the 

video is played in reverse?

Manual annotationInput

Figure 11: An example from the 150 seed samples. The top section presents the video input and corresponding
counterfactual questions. The middle section compares QVQ and InternVL2.5-78B with CoT, using a dual-color
annotation scheme: blue indicates conceptual alignment with manual sub-problem annotations, and green highlights
validated response components. The bottom section shows the final model predictions, with green checkmarks
indicating correct answers.
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