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Abstract
Large Language Models (LLMs) have demon-
strated remarkable generalization capabilities
across diverse tasks and languages. In this
study, we focus on natural language under-
standing in three classical languages—Sanskrit,
Ancient Greek and Latin—to investigate the
factors affecting cross-lingual zero-shot gen-
eralization. First, we explore named entity
recognition and machine translation into En-
glish. While LLMs perform equal to or bet-
ter than fine-tuned baselines on out-of-domain
data, smaller models often struggle, especially
with niche or abstract entity types. In addi-
tion, we concentrate on Sanskrit by presenting
a factoid question–answering (QA) dataset and
show that incorporating context via retrieval-
augmented generation approach significantly
boosts performance. In contrast, we observe
pronounced performance drops for smaller
LLMs across these QA tasks. These results
suggest model scale as an important factor influ-
encing cross-lingual generalization. Assuming
that models used such as GPT-4o and Llama-
3.1 are not instruction fine-tuned on classical
languages, our findings provide insights into
how LLMs may generalize on these languages
and their consequent utility in classical studies.

1 Introduction

Large Language Models (LLMs) (Brown, 2020;
Ouyang et al., 2022; Touvron et al., 2023) are
known to generalize across various tasks using
data from languages present in their pre-training
phase, even when not present in instruction tuning
(Wang et al., 2022; Muennighoff et al., 2023; Han
et al., 2024). Previous work has demonstrated gen-
eralization to several low-resource languages via
few-shot in-context learning (Cahyawijaya et al.,
2024). In this study, we focus on zero-shot gener-
alization to natural language understanding (NLU)
tasks for three classical languages—Sanskrit (san),
Ancient Greek (grc), and Latin (lat)—with a pri-
mary focus on Sanskrit. These languages represent

a unique category of low-resource languages – de-
spite scarce data for downstream NLU tasks, they
have rich ancient literature available in digitized
formats (Goyal et al., 2012; Berti, 2019), and they
exert significant influence on the vocabulary and
narrative structures of better-resourced languages
(e.g., Latin contributes approximately 28% of En-
glish vocabulary (Finkenstaedt and Wolff, 1973)).
Moreover, the high inflection of these languages
presents a challenge.

To investigate these issues, we conduct
two sets of zero-shot experiments using
gpt-4o (OpenAI, 2024; OpenAI et al., 2023),
llama-3.1-405b-instruct (Dubey et al., 2024),
and their smaller variants. First, we assess
performance on two NLU tasks with available
datasets for all three languages, namely, named
entity recognition (NER) and machine translation
to English (MT). We observe that larger models
perform comparably or even better than previously
reported fine-tuned models on out-of-domain data.
Second, we focus on Sanskrit by introducing a
factoid closed-book QA dataset and show that
question-answering performance improves with
retrieval augmented generation (RAG) (Lewis
et al., 2020) when the model is provided with
relevant texts. The tasks are illustrated in Figure 1.

Given the recent nature of these datasets rela-
tive to the models’ knowledge cut-off dates, and
the likelihood that instruction-tuning on these lan-
guages is limited, the robust performance observed
can be attributed to cross-lingual generalization.
We refer to our prompting strategy as zero-shot, as
it includes no task-specific examples, and it is un-
likely that such examples in these languages were
present in the models’ training or instruction-tuning
data. In both experimental setups, we find that
smaller models struggle, particularly with niche
entity types in NER, and in effectively leveraging
contextual information via RAG, thereby suggest-
ing model scale as an important factor.
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Figure 1: The three NLU tasks evaluated on the classical languages: Named-Entity Recognition (top-left), Machine
Translation (bottom-left) and Question-Answering (right).

Task Language Source Size

NER
san Terdalkar (2023) 139
lat Erdmann et al. (2019) 3410
grc Myerston (2025) 4957

MT-en
san Maheshwari et al. (2024) 6464
lat Rosenthal (2023) 1014
grc Palladino et al. (2023) 274

QA san Ours 1501

Table 1: An overview of NLU datasets used in this
study for Sanskrit (san), Latin (lat) and Ancient Greek
(grc). QA dataset for san is contributed in this work.
Size represents the number of sentences of test sets
(wherever train-test splits exist).

2 Datasets and Methods

The datasets used in our experiments are summa-
rized in Table 1. Our aim is to evaluate zero-
shot capabilities where evaluation is done directly
on test data without fine-tuning on the training
data. Thus, we only consider the test sets of these
datasets. Notably, the Sanskrit NER dataset (san)
is the smallest, comprising 139 sentences (1558
tokens) (Terdalkar, 2023). In addition to these pub-
licly available datasets, we contribute a new factoid
closed-domain QA dataset in Sanskrit, described
in detail in Section 2.1.

We evaluate the zero-shot capabilities of both
large and small variants of our models: proprietary
(gpt-4o and gpt-4o-mini (OpenAI, 2024)) and
open-source (llama-3.1-405b-instruct and
llama-3.1-8b-instruct (Dubey et al., 2024)).
According to official documentation, these mod-
els have knowledge cut-off dates at the end of 2023.
Many datasets considered in this work (Table 1) are
released beyond these dates, in other words, they
are unlikely to be seen in the pre-training data of

these models. Given that none of the documenta-
tion indicates explicit instruction tuning on San-
skrit, Ancient Greek, or Latin, any observed per-
formance in these languages is likely attributable
to cross-lingual generalization. Previous zero-shot
applications of LLMs to classical languages have
been limited to Latin machine translation and sum-
marization (Volk et al., 2024), although several
works have been dedicated to building language
models for these languages (Riemenschneider and
Frank, 2023; Nehrdich et al., 2024), however, with
fine-tuning restricted to morphological parsing-
related tasks like dependency parsing (Nehrdich
and Hellwig, 2022; Hellwig et al., 2023; Sandhan
et al., 2023).

All prompts used for these tasks are provided
in Appendix A. The prompts are tested in both
English and the respective languages.

2.1 Sanskrit QA

To further evaluate comprehension, we focus on
question-answering (QA) in Sanskrit – a domain
with very limited datasets. The only existing
dataset by Terdalkar and Bhattacharya (2019) com-
prises 80 kinship-related questions. To address this
gap, we created a new dataset containing 1501 fac-
toid QA pairs covering distinct domains in Sanskrit:
epics and healthcare. Specifically, we selected two
key texts: (1) Rāmāyan. a, an ancient Indian epic,
and (2) Bhāvaprakāśanighan. t.u, a foundational text
on Āyurveda. Details of the dataset are provided in
Appendix B.

For QA evaluation, we employ a closed-book
setting using prompts detailed in Appendix A.3. To
emulate extractive QA, we implement a Retrieval-
Augmented Generation (RAG) approach by re-
trieving the top-k relevant passages (k tuned to
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Figure 2: Effect of k on RAG, denoting the number
of top best matching text chunks retrieved, on the per-
formances of GPT-4o with retrievers based on BM25,
averaged FastText (AvgFT) and GloVe (AvgGV) em-
beddings respectively of datasets Rāmāyan. a (left) and
Bhāvaprakāśanighan. t.u (right).

4) from the original Sanskrit texts using BM25
(Sparck Jones, 1972; Robertson et al., 2009). We
also compare BM25 with embedding-based retriev-
ers—FastText (Bojanowski et al., 2017) and GloVe
(Pennington et al., 2014)—and vary k to assess per-
formance using gpt-4o with Sanskrit prompts. As
shown in Fig. 2, BM25 consistently outperforms
the embedding-based methods, and k = 4 emerges
as an optimal choice across metrics.

To examine whether the inclusion of answer-
bearing contexts benefits model performance, we
manually annotated the relevance of retrieved pas-
sages. Since BM25 relies on lexical similarity, typ-
ically favoring lemmas over inflected forms, we
introduce a lemmatization step using a transformer-
based Seq2Seq Sanskrit lemmatizer trained on the
DCS corpus (Hellwig, 2010-2024), achieving a
mean F1 score of 0.94 on a held-out test set. Fur-
ther details on RAG and lemmatization are pro-
vided in Appendix C, and implementation details
in Appendix D. Code and data are available at
https://github.com/mahesh-ak/SktQA.

3 Results

Figure 3 presents our zero-shot evaluation re-
sults, demonstrating that larger LLMs exhibit ro-
bust cross-lingual generalization across four NLU
tasks—named entity recognition (NER), machine
translation (MT), closed-book QA, and extractive
QA (simulated via RAG-BM25)—in three classical
languages (with QA evaluated solely on Sanskrit).
To assess variability, each test set is segmented into
10 chunks during evaluation resulting in a box-plot.
Larger models perform better than previous fine-
tuned models on out-of-domain data as reported in
Appendix E. Notably, when answer-bearing con-
texts are provided (Fig. 3d) versus when they are
absent (Fig. 3e), the models show significant perfor-

mance gains, suggesting comprehension abilities
in Sanskrit, a language characterized by high in-
flection. This behavior is however, not exhibited
by smaller models when prompted in Sanskrit.

3.1 Prompt Language: English versus Native

During evaluation, we prompted models both in
English and in each target language. As shown in
Figure 3, English prompts generally outperform
Sanskrit prompts, particularly with smaller mod-
els, providing partial evidence that these models
have not been instruction-tuned on Sanskrit (Muen-
nighoff et al., 2023). For Latin and Ancient Greek,
this English-prompt advantage holds mainly for
smaller models; larger models perform equally
well, or even better, with native-language prompts
(e.g., in Latin NER). This does not imply instruc-
tion tuning in these languages, since larger and
smaller models likely saw comparable amounts of
tuning data. Rather, it suggests that cross-lingual
transfer is especially strong for Latin and Ancient
Greek in larger models, reflecting their substan-
tial influence on high-resource languages such as
English.

3.2 Misclassified Entities in NER

Figure 4 displays confusion matrices for the NER
task. Across all three languages, the smaller mod-
els exhibit more confusion among semantically re-
lated classes (see G for descriptions of entity types),
while the larger models show fewer off-diagonal
errors. In san, mythological entities like Deva,
Asura, and Rakshasa or semantically closed en-
tities like Kingdom versus City (e.g., Kośala vs
Ayodhyā) or Forest (e.g., Dan. d. aka) versus Garden
(e.g., Nandana) often get misclassified with each
other in the smaller models. For lat, entity type
GRP proves troublesome for the smaller models,
suggesting struggles in separating individual enti-
ties from collective ones. In grc, categories such
as LOC and ORG show higher confusion counts
akin to GRP in lat while confusion between God
and Persons seems similar to what was discussed
for Sanskrit. In contrast, much clearer boundaries
emerge in the larger models’ confusion matrices.
In many of these cases, the domain or style of
the texts, especially if they involve mythological
or archaic terms typical of classical texts, can be
understood to influence performance, as models
with less exposure to specialized terminology may
conflate related entity types.
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Figure 3: Zero-shot evaluation of LLMs on three NLU tasks for classical languages (language codes in ISO 639-2).
Prompts when in English are denoted by <en>, otherwise are in respective languages. Larger LLMs are represented
in red and orange, while smaller LLMs in blue and purple. First row displays the performances on NER (a) and MT
(to en) (b) for all three languages. Second row displays the performances on QA for Sanskrit alone. Out of 1501
QA pairs considered (c), 607 QA pairs are with answer present in at least one of the k = 4 contexts extracted by
BM25 and 894 QA pairs with answer not inferable from contexts, which are respectively considered in (d) and (e).

LLM Closed-book + RAG-BM25

Inflected Lemmatized Inflected Lemmatized

gpt-4o 0.36 0.37 0.46 0.48
llama-3.1-405b-instruct 0.41 0.40 0.42 0.44
gpt-4o-mini 0.18 0.20 0.25 0.28
llama-3.1-8b-instruct 0.13 0.15 0.09 0.10

Table 2: Comparison of EM scores in san QA (English
prompts) when predicted and gold answers are consid-
ered with inflection or lemmatized.

3.3 Inflection in Answers in Sanskrit QA

In the Sanskrit question-answering task, models
are expected to generate single-word answers with
the correct inflection. For computing exact match
(EM) scores, we manually identified all acceptable
answers, excluding those with incorrect inflection
(e.g., wrong case or gender endings). To quantify
inflection errors, we also calculated EM scores on
lemmatized versions of the gold standard and pre-
dicted answers, as shown in Table 2. Most models
show only a slight increase in EM scores on lemma-
tized answers, suggesting that inflection errors are
relatively minor, a finding corroborated by manual

LLM MT (BLEU) NER (Macro F1-BI)

Devanagari IAST Devanagari IAST

gpt-4o 0.179 0.165 0.637 0.599
llama-v3p1-405b-instruct 0.193 0.148 0.561 0.556
gpt-4o-mini 0.135 0.099 0.359 0.318
llama-v3p1-8b-instruct 0.120 0.063 0.164 0.149

Table 3: Comparison of performances in san MT and
NER (English prompts) when the input sentences are
given Devanagari script or in IAST script.

inspection. Future work could extend this analysis
to investigate inflection accuracy in full sentence
generation within broader natural language genera-
tion scenarios.

3.4 Sanskrit Orthography: Devanagari versus
IAST

So far, we have shown robust cross-lingual general-
ization in the models. We now turn to one possible
underlying mechanism—orthographic transfer—
where models benefit from shared scripts across
languages. Prior work has identified orthography
as a key factor in cross-lingual transfer for LLMs
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Figure 4: Confusion matrices from the NER task in san (a-d), lat (e-h) and grc (i-l), all with <en> prompts,
normalized across rows.

(Muller et al., 2021; Fujinuma et al., 2022). To
isolate this effect, we re-ran our Sanskrit NER
and MT experiments (using English prompts) in
Roman-based IAST transliteration instead of De-
vanagari. Table 3 compares performance in both
scripts. Models perform better with the Devana-
gari script, which is shared by higher-resource
relatives like Hindi and Marathi, reinforcing the
importance of script sharing. However, results
in IAST are only slightly lower, suggesting that
Roman-based transliterations also feature promi-
nently in the pre-training data. In future, we will
investigate whether model outputs are consistent
across both scripts, that is, whether these LLMs are
effectively digraphic in Sanskrit.

3.5 Knowledge-Graph Question-Answering

Additionally, we explore the use of knowledge
graphs (KGs) for Sanskrit QA. We evaluated a
KG derived from the Bhāvaprakāśanighan. t.u text
(Terdalkar et al., 2023) and constructed a small
KG for Rāmāyan. a (details in Appendix F). Using
the Think-On-Graph (ToG) paradigm (Sun et al.,
2024), which iteratively explores the KG paths for
answer retrieval in a training-free zero-shot manner
(Xu et al., 2024), we observed that gpt-4o could
effectively execute this method. Although it occa-
sionally extracted correct answers, its performance
did not significantly exceed that of the closed-book
setting, most likely due to the incompleteness of
the KGs (see §F.3). Future work may focus on
developing more comprehensive KGs to enhance

this retrieval method.

4 Conclusions

In summary, our zero-shot evaluations demonstrate
that larger language models exhibit robust cross-
lingual generalization across diverse natural lan-
guage understanding tasks in classical languages,
including NER, machine translation, and QA. No-
tably, the significant performance gains achieved
when answer-bearing contexts are provided, par-
ticularly in Sanskrit QA, suggest comprehension
abilities in highly inflected languages. Moreover,
our contribution of a novel Sanskrit QA dataset
provides a valuable resource for evaluating and
benchmarking LLM performance on classical lan-
guage tasks. Importantly, these models have not
been explicitly instruction tuned on Sanskrit, Latin,
or Ancient Greek—evidenced by the superior per-
formance achieved when using English prompts
for Sanskrit—which indicates that their zero-shot
performance is attributable solely to cross-lingual
generalization.

Future work will focus on expanding dataset cov-
erage, knowledge graphs and exploring additional
classical languages and tasks, further advancing
our understanding of cross-lingual generalization
in LLMs and its applications in digital humanities
and multilingual NLP research.
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sign choice may obscure potential benefits achiev-
able through targeted fine-tuning. Further, a few
datasets we experimented were released within the
models’ knowledge cut-off dates raising the issue
of data contamination. Among these, only An-
cient Greek MT exhibits anomalously high per-
formance, suggesting possible exposure. In gen-
eral, NER, owing to its structural data should be
less susceptible to contamination than MT. Fur-
thermore, the effectiveness of our BM25-based re-
trieval approach depends heavily on preprocessing
steps such as lemmatization, which might not op-
timally address all linguistic variations in highly
inflected languages. Finally, our comparisons are
based on a limited set of proprietary and open-
source models, and future work should extend this
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Appendix

A Prompts

The Sanskrit prompts are in Devanagari script. In this appendix, we provide these prompts transliterated
in IAST scheme.

A.1 Prompts for Named Entity Recognition
Prompt in English
Recognize the named entities from the following sentence in {LANGUAGE}. The valid tags are {ENTITY
TYPES}. Do not provide explanation and do not list out entries of ‘O’. Example:
Sentence: <word_1> <word_2> <word_3> <word_4> <word_5>
Output: {{‘B-<entity1>’: [‘<word_1>’, ‘<word_4>’], ‘B-<entity2>’:[‘<word_5>’]}}
Sentence: {INPUT}
Output:

(The example is never a real sentence and is only provided to specify the output structure. Hence, the
evaluations are strictly zero-shot.)

Prompt in Sanskrit
adho datta vākye nāmakr.tāh. sattvāh. (named entities) abhijānīhi. tadapi vivr.tam mā kuru, kevalam pr.s.t.a
vis.ayasya uttaram dehi. api ca ‘O’-sambandhitāni na deyāni.
sattvāh. etes.u varges.u vartante - {ENTITY TYPES}. udāharan. āya -
vākyam: <padam_1> <padam_2> <padam_3> <padam_4> <padam_5>
phalitam: {{ ‘B-<sattvah. 1>’: [‘<padam_1>’, ‘<padam_4>’], ‘B-<sattvah. 2>’: [‘<padam_5>’]}}
vākyam: {INPUT}
phalitam:

Prompt in Latin
Agnosce nomina propria (named entities) ex hac sententia Latina. Notae validae sunt {ENTITY TYPES}.
Explanationem ne praebeas nec elementa ‘O’ elenca. Exemplar:
Sententia: <verbum_1> <verbum_2> <verbum_3> <verbum_4> <verbum_5>
Productus: {{‘B-<entitatem1>’: [‘<verbum_1>’, ‘<verbum_4>’], ‘I-<entitatem1>’: [‘<verbum_2>’],
‘B-<entitatem3>’:[‘<verbum_5>’]}}
Sententia: {INPUT}
Productus:

Prompt in Ancient Greek
’Aναγνώρισoν τὰ ’oνóµατα (named entities) ’εκ τ η̃ςδε τ η̃ς ‘Eλληνικη̃ς περιóδoυ. τ ὰ ’έγκυρα
ε’ίδη ’εστιν {ENTITY TYPES}.
NORP σηµαίνει ’έθνη (oι̃oν ‘Éλληνες , πέρσαι), ’εθνωνύµια, καὶ ’άλλας κoινωνικὰς ‘oµάδας
(oι̃oν θρησκευτικὰς ‘oργανώσεις).
Mὴ παρέχoυ ’εξήγησιν ’εν τ η̧̃ ’απoκρίσει µηδὲ τ ὰ εὶς ‘O’ ’εγγεγραµµένα παρατ ίθεσo.
παράδειγµα:
πρóτασις: <λέξις_1> <λέξις_2> <λέξις_3> <λέξις_4> <λέξις_5>
παραγωγή: {{‘B-<’Oντóτης1>’: [‘<λέξις_1>’, ‘<λέξις_4>’], ‘B-<’Oντóτης2>’:[’<λέξις_5>’]}}
πρóτασις: {INPUT}
παραγωγή:

A.2 Prompts for Machine Translation
Prompt in English
Translate the following sentence in {LANGUAGE} into English. Do not give any explanations.

Prompt in Sanskrit
adho datta-sam. skr.ta-vākyam āṅgle anuvādaya, tad api vivr.tam mā kuru -
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Prompt in Latin
Verte hanc sententiam Latinam in Anglicam. Nullam explicationem praebe.

Prompt in Ancient Greek
Mετάϕρασoν τ ὴνδε τ ὴν ‘Eλληνικὴν πρóτασιν εὶς τ ὴν ’Aγγλικήν. Mηδεµίαν ’εξήγησιν
παρέχoυ.

(Sanskrit QA Prompts)

In the following prompts, TOPIC is either ‘Rāmāyan. a’ or ‘Āyurveda’.

A.3 Prompts for Closed-book QA

Prompt in English
Answer the question related to {TOPIC} in the Sanskrit only. Give a single word answer if reasoning is
not demanded in the answer. With regards to how-questions, answer in a short phrase, there is no single
word restriction.
{QUESTION} {CHOICES}

Prompt in Sanskrit
tvayā sam. skr.ta-bhās.āyām eva vaktavyam. na tu anyāsu bhās.āsu. adhah. {TOPIC}-sambandhe pr.s.t.a-
praśnasya pratyuttaram. dehi. tadapi ekenaiva padena yadi uttare kāran. am nāpeks.itam. katham kimartham
ityādis.u ekena laghu vākyena uttaram. dehi atra tu eka-pada-niyamah. nāsti.
{QUESTION} {CHOICES}

A.4 Prompts for RAG-QA

Prompt in English
Answer the following question related to {TOPIC} in Sanskrit only. Give a single word answer if reasoning
is not demanded in the answer. With regards to how-questions, answer in a short phrase. Also take help
from the contexts provided. The contexts may not always be relevant."

contexts: {CONTEXTS}
question:{QUESTION} {CHOICES}

Prompt in Sanskrit
tvayā sam. skr.ta-bhās.āyām eva vaktavyam. na tu anyāsu bhās.āsu. adhah. {TOPIC}-sambandhe pr.s.t.a-
praśnasya pratyuttaram. dehi. tadapi ekenaiva padena, yāvad laghu śakyam. tāvad, tam. punah. vivr.tam mā
kuru. api ca yathā’vaśyam adhah. datta-sandarbhebhyah. ekatamāt sahāyyam. gr.hān. a. tattu sarvadā sādhu
iti nā’sti pratītih. .

sandarbhāh. : {CONTEXTS}
praśnah. : {QUESTION} {CHOICES}

B Question Answering Dataset

In this appendix, we describe the creation of Sanskrit QA dataset.
We referred to two books that contain multiple-choice questions (MCQs) with answers: one comprising

1000 MCQs on Rāmāyan. a (Singh, 2009), and another featuring a collection of 2600 questions from three
prominent texts of Āyurveda (Phull and Phull, 2017). The questions and options in these books are in
Hindi language.

We carefully selected a relevant subset of questions from these books, including all 1000 questions
from Rāmāyan. a dataset and 431 from that of Āyurveda. These questions are then translated into Sanskrit
with the help of experts in the language who are also familiar with the original Sanskrit texts. Further, we
consulted with a specialist in Āyurveda to review and discard incorrect question-answer pairs, as well as
to generate 70 new questions based on Bhāvaprakāśanighan. t.u. Ultimately, the question-answering dataset
consists of 1501 questions.
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The answers typically agree in grammatical case with the corresponding interrogative of the question.
The following is a question-answer pair as an illustration1:

Q: śītala-jalasya pānam. kasmin roge nis. iddham asti? A: gala-grahe
Q: cold-water.gen drinking what.loc disease.loc forbidden is A: pharyngitis.loc

Question: During which condition is the drinking of cold water forbidden? Answer: During pharyngitis.

Most questions in the datasets have a single-word answer except a few including those in the Rāmāyan. a
that fall under the category ‘Origins’ (Table 4). An example question-answer pair under this category that
demands reasoning in the answer:

Q: rājā-sagaren. a sagarah. iti nāma kutah. prāptam?
“How did King Sagara obtain such a name?”
A: saha tena garen. aiva jātah. sa sagaro ’bhavat
“He was indeed born along with (sa-) the poison (gara), thus he became Sagara.”
For such questions (only about 50), the answers can be paraphrased variously, thereby requiring manual

evaluation.
The broad semantic and domain-specific categories of the questions are detailed in Tables 4 and 5.

C Retrieval Augmented Generation

In the RAG paradigm, the LLM is provided with additional context that consists of top-k passages retrieved
from the original texts. The texts of Rāmāyan. a and Bhāvaprakāśanighan. t.u are obtained from GRETIL2 and
Sanskrit Wikisource3 respectively. The texts are pre-processed following standard procedures (Manning,
2008), namely, dividing the texts into chunks, followed by lemmatization, and then building a document
store. Lemmatization would not have been necessary if retrieval frameworks such as Dense Passage
Retrieval (Karpukhin et al., 2020) or a vector space retrieval framework with SentenceBERT embeddings
(Reimers and Gurevych, 2019) could be used. However, due to insufficient data in Sanskrit, such models
cannot be trained now. Hence, we used BM25 retrieval and vector space retrieval with averaged FastText
(AvgFT) (Bojanowski et al., 2017) and GloVe (Pennington et al., 2014) (AvgGV) embeddings, which are
employed on lemmatized documents and queries. To achieve this, a lemmatizer for Sanskrit was built as
described below.

Sanskrit Lemmatizer
Seq2Seq transformer-based Sanskrit lemmatizer was trained from the words and their respective lemmas
present in the DCS corpus (Hellwig, 2010-2024)4. During lemmatization, if a word in an input sentence is
a compound word or involves Sandhi, the lemmatizer is expected to break the word into sub-words and
generate their respective lemmas in the output. For example, if the input sentence is ‘haridrāmalakam.
gr. hn. āti’, the corresponding lemmatized output should be ‘haridrā āmalaka gr. h’. Our lemmatizer achieves
a mean F1-score of 0.94 across the sentences from the held-out test set (Appx. D) calculated according to
Melamed et al. (2003), however with a significant standard deviation of 0.11. While the accuracy is high,
future attempts for improvements should focus on minimizing the variance, which is rarely ever reported
although important.

The information retrieval pipelines thus formulated can be considered novel concerning Classical
Sanskrit. A known earlier attempt towards building retrieval systems in Sanskrit (Sahu and Pal, 2023)
focused on news corpora with much terminology consisting of borrowings from Hindi and even English.
As a result, the lemmatizer trained on Classical Sanskrit and thereby, our entire retrieval pipeline may not
be appropriate on such corpora and hence are not comparable.

The prompts for RAG are detailed in Appx. A.4.

1gen - genitive, loc - locative
2https://gretil.sub.uni-goettingen.de/
3https://sa.wikisource.org/wiki/
4http://www.sanskrit-linguistics.org/dcs/
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Category Description #Q

Names Names of various characters 97
Actions Who performed certain actions? 47
Origins Origin of various names 49
Numeric Questions with numerical answers 79
Quotes Who said to whom? 31
Boons and Curses Who endowed boons / curses on

whom
31

Weapons Questions related to various types of
weapons

59

Locations Locations of important events or char-
acters

71

Kinship Questions pertaining to human kin-
ship relationships

133

Slay Who slayed whom 49
Kingdoms Which king ruled which kingdom 27
Incarnations Who were incarnations of which

deities
27

MCQ Multiple choice questions 140
Miscellaneous Other questions 196

Table 4: Question Categories for Rāmāyan. a QA Dataset

Category Description #Q

Synonym Synonyms of substances 174
Type Variants or types of substances 30
Property Properties of substances 20
Comparison Comparison between properties of various

substances or their variants
24

Consumption Related to consumption of medicine includ-
ing suitability, method, accompaniments etc.

23

Count Counting types or properties of substances 59
Quantity Quantity of substances in various procedures

or methods
21

Time-Location Time or location in the context of substances
or methods

17

Effect Effect of substances 15
Treatment Diseases and treatments 23
Method Methods of preparation of substances 21
Meta Related to the verbatim source text, the struc-

ture of the text and external references
38

Multi-Concept About more than one aforementioned con-
cepts

11

Miscellaneous Miscellaneous concepts 24

Table 5: Question Categories for Āyurveda QA Dataset

Model BLEU

Google Trans (Maheshwari et al., 2024) 13.9
IndicTrans (Maheshwari et al., 2024) 13.1
gpt-4o 16.5
llama-3.1-405b-instruct 17.1

MT (san-eng) on Mann ki Baat dataset

Model Macro F1 (BI)

LatinBERT1 (Beersmans et al., 2023) 0.54
LatinBERT2 (Beersmans et al., 2023) 0.50
gpt-4o 0.55
llama-3.1-405b-instruct 0.36

NER (lat) on Ars Amatoria dataset

Table 6: Comparison of out of domain performances of LLMs against previously reported fine-tuned models.

D Implementation

This appendix outlines the implementation details. All LLMs are operated through API calls using
LangChain5. In case of Llama-3.1, we used API provided by Fireworks AI6.

The lemmatizer was implemented using HuggingFace transformers (Wolf et al., 2020) upon base model
T5 (Raffel et al., 2020) initiated with the model configuration of 4 layers per each encoder and decoder, 4
attention-heads, embedding of size 256, and hidden size of 1024, totaling about 100M parameters. The
tokenizer trained by Akavarapu and Bhattacharya (2023) was used7. The lemmatizer was trained for 15
epochs on DCS (Hellwig, 2010-2024) data with batch size of 32, that took about 15 hours on NVIDIA
RTX 2080 with 11GB graphics memory. There are total 1.04M sentences in the data, that are randomly
divided into proportions 0.675 : 0.075 : 0.15 respectively for training, validation and testing. FastText
and GloVe embeddings are trained on lemmas obtained from DCS (Hellwig, 2010-2024) with embedding
size 100.

E Supplementary Results

In Table 6, we compare the out-of-domain performance of our evaluated models against previously
reported fine-tuned models. For MT (san-eng) on Mann ki Baat dataset (Maheshwari et al., 2024),
open-source model llama-3.1-405b-instruct outperforms both Google Trans and IndicTrans, while
for NER (lat) on Ovid’s Ars Amatoria dataset (Beersmans et al., 2023), the performance of gpt-4o is
better than that of fine-tuned LatinBERT variants. Although fine-tuned models yield superior results on
in-domain data, our findings indicate that multilingual LLMs are superior in their zero-shot generalization.

5https://www.langchain.com/
6https://fireworks.ai/
7https://huggingface.co/mahesh27/vedicberta-base
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F LLMs with Knowledge Graphs

Figure 5: Overview of augmenting a LLM with a knowledge graph (KG) through Think-on-Graph (ToG) paradigm.

Arriving at an answer by an LLM integrated with a knowledge graph (KG) through Think-on-Graph
(ToG) (Sun et al., 2024) paradigm involves several prompting steps for each hop from starting entity nodes
as illustrated in Fig. 5. Firstly, the LLM lists entities from the input questions further lemmatized by
our lemmatizer previously described. The relationships from and to these entities are then extracted by
traversing the KG. The LLM then lists relationships with relevance scores, which are further used to prune
the relationships, retaining only the best three. Unexplored entities connected by these relationships are
then known from the KG, which are similarly pruned to retain the three most relevant ones. The LLM then
reasons whether these extracted paths suffice to answer the given question. If no, the cycle is repeated,
i.e., it traverses a hop further up to a depth d. Otherwise, the LLM answers using the context from the
extracted paths.

The prompts for each step and an outline pseudo-code can be found respectively in Appx. F.2, Alg. 1.
Technical terminology such as ‘entity’, ‘knowledge graph’, and so forth are mostly retained in English in
these prompts resulting in minimal and unavoidable code-mixing. Further, the output of these prompts is
often a list of elements and, hence, has to abide by a structured format.

F.1 Knowledge Graphs

A knowledge graph (KG) was constructed for Rāmāyan. a using two key references, (Ray, 1984) and
(Rai, 1965). The graph was annotated with the help of two experts proficient in both Sanskrit and
Rāmāyan. a. For annotation, we used a custom deployment of Sangrahaka (Terdalkar and Bhattacharya,
2021). The resulting knowledge graph contains 867 nodes and 944 relations, encompassing entities like
characters of the story including humans and divine beings, places (cities, rivers, kingdoms), and animals,
and relationships such as kinship, actions, locations, and others, highlighting associations between the
characters, natural features, and other elements from the text.

Additionally, a work-in-progress knowledge graph for Bhāvaprakāśanighan. t.u obtained from the authors
of (Terdalkar et al., 2023) was referenced. The KG currently includes 4685 nodes and 10596 relations
from 12 out of 23 chapters covering substances such as grains, vegetables, meats, metals, poisons, dairy
products, prepared substances and other miscellaneous medicinal substances.

The knowledge graphs were loaded and accessed through Neo4j8. Python packaage,
indic-transliteration9 is used to move among transliteration schemes of Sanskrit. The pseudo-
code for our implementation of ToG (Sun et al., 2024) is given in Algorithm 1. The sample limit S is set
to 15, depth limit D to 1 and width limit W to 3.

8https://neo4j.com/
9https://github.com/indic-transliteration/indic_transliteration_py
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Algorithm 1 Outline of LLM-KG i.e., ToG (Sun et al., 2024)
Require: Input: x

LLM prompt-chains: ExtractEntities, RelationPrune, EntityExtractPrune, Reason, Answer
Interface to KG: FetchRelations, FetchEntities; Depth limit: D; Sample limit for KG: N ; Width limit
for LLM: W
Current Entities E ← ExtractEntities(x)
Current depth d← 0
Stored Paths P ← []
while d < D do

R← FetchRelations(E, N )
R← RelationPrune(R, W )
E,P ← FetchEntities(E, R, P , N )
E,P ← EntityExtractPrune(E, R, P , W )
if Reason(x, E, P ) then

Answer(x, E, P )
break

end if
d← d+ 1

end while
if d = D then Answer(x, E, P )
end if

F.2 LLM-KG Prompts

ExtractEntities

system tvam knowledge-graph-tah. uttarān. i nis.kars.yitum. praśnāt entities vindasi ca tāni saha relevance-
score (0-1 madhye) samarpayasi.
output udāharan. am (‘rāmah. ’, 0.8), (‘sītā’, 0.7). tato vivr.tam. mā kuru.
human praśnah. : {QUESTION} {CHOICES}

RelationPrune

system tvam datta-praśnasya uttarān. i knowledge-graph-tah. nis.kars.itum. knowledge-graph-tah. idānīm.
paryantam. nis.kars.ita-sambandhebhyah. avaśyāni saha relevance-score (0-1 madhye) samarpayasi.
output udāharan. am (‘IS_FATHER_OF’, 0.8), (‘IS_CROSSED_BY’, 0.7), . . . . tato vivr.tam. mā kuru.
human praśnah. : {QUESTION} {CHOICES}
nis.kars.itāni sambandhāni: {RELATIONS}

EntityExtractPrune

system tvam datta-praśnasya uttarān. i knowledge-graph-tah. nis.kars.itum. knowledge-graph-tah. idānīm.
paryantam. nis.kars.ita-sambandhebhyah. avaśyāni nodes (lemmas) saha relevance-score (0-1 madhye)
samarpayasi.
output udāharan. am (‘rāmah. ’, 0.8), (‘sītā’, 0.7). tato vivr.tam. mā kuru.
human praśnah. : {QUESTION} {CHOICES}
nis.kars.itāni sambandhāni: {RELATIONS, ENTITIES}

Reason

system tvam datta-praśnasya uttarān. i knowledge-graph-tah. nis.kars.itum. knowledge-graph-tah. idānīm.
paryantam. nis.kars.itam. yat-kiñcid praśnasya uttaram. dātum. alam (1) vā nālam (0) iti vaktavyam.
output 1 athavā 0. na anyat vadasi
human praśnah. : {QUESTION} {CHOICES}
nis.kars.itam: {PATHS}
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Method gpt-4o claude-3.5-sonnet gemini-1.5-pro mistral-large-2 llama-3.1-405b-instruct

Closed-book 0.381 0.242 0.148 0.333 0.346
RAG-BM25 0.478 0.521 0.459 0.434 0.323
LLM-KG 0.381 0.254 - 0.341 -

Table 7: Exact Match (Scores) of various models (including those not part of main experiments) in Sanskrit
Question-Answering task (Sanskrit Prompts) with LLM-KG paradigm compared against zero-shot and RAG-BM25
paradigms.

Method gpt-4o claude-3.5-sonnet mistral-large-2

closed-book 0.32 0.21 0.25
LLM-KG 0.34 0.34 0.35

(a)

Method gpt-4o claude-3.5-sonnet mistral-large-2

closed-book 0.40 0.25 0.36
LLM-KG 0.39 0.23 0.34

(b)

Table 8: Comparison of Exact Match (EM) scores between closed-book and LLM-KG paradigms for selected
questions when the answer (a) can likely be inferred from KG and (b) cannot be inferred from KG.

Answer
system adhah. {TOPIC}-sambandhe pr.s.t.a-praśnasya pratyuttaram. dehi. tadapi praśnocitavibhaktau bhavet
na tu prātipadika rūpe. tadapi ekenaiva padena yadi uttare kāran. am nāpeks.itam. katham kimartham
ityādis.u ekena laghu vākyena uttaram. dehi atra tu eka-pada-niyamah. nāsti.
api ca yathā’vaśyam adhah. dattaih. knowledge-graph-tah. nis.kars.ita-vis.ayaih. sahāyyam. gr.hān. a. tattu
sarvadā sādhu iti nā’sti pratītih. . uttaram yāvad laghu śakyam tāvat laghu bhavet.
human praśnah. : {QUESTION} {CHOICES}
nis.kars.itam: {PATHS}
uttaram:

F.3 LLM-KG Results
The LLM-KG paradigm was evaluated exclusively using Sanskrit prompts on the two QA datasets and
included additional models not part of the main experiments—namely, claude-3.5-sonnet (AnthropicAI,
2024), gemini-1.5-pro (Google, 2024), and mistral-large-2 (MistralAI, 2024). Table 7 presents the
results in comparison with the closed-book and RAG-BM25 paradigms. Overall, performance gains
from closed-book to LLM-KG are modest and fall short of the improvements observed with RAG. This
may be partly attributed to the complexity of the LLM-KG setup, which requires multi-step prompting
and adherence to a structured output format. Notably, models like gemini-1.5-pro and llama-3.1
frequently fail to follow this structured format, rendering them ineffective for running ToG. The strict
formatting requirements may also pose challenges for other models, particularly those less adapted to
Sanskrit. Interestingly, while claude-3.5-sonnet achieves the best results with RAG-BM25, it lags
behind gpt-4o and mistral-large-2 in both the closed-book and LLM-KG paradigms.

Table 8 presents a breakdown of performance based on whether the question topics are covered in the
current KG—specifically, the kingdoms category (27 questions) in the Rāmāyan. a dataset and the annotated
chapters (299 questions) in Bhāvaprakāśanighan. t.u. For these subsets, which are likely answerable from
the KG, LLM-KG shows clear improvements over the closed-book setting, indicating that access to a near-
complete KG can significantly enhance performance. In contrast, for questions outside these categories or
chapters, no such improvement is observed, reinforcing the hypothesis that KG completeness is crucial
for the effectiveness of LLM-KG. Determining domains where knowledge graphs may outperform or be
more appropriate than RAG remains an open question for future research.

G Categories for Named Entity Recognition

The categories for NER in Sanskrit, Ancient Greek, and Latin, along with their rough translation and brief
explanations, wherever applicable, are provided here.
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Entity Type Translation Description

Manus.ya Human A mortal human being
Deva Deity Divine celestial being; god or goddess
Gandharva ∼ Heavenly musician in the service of the gods
Apsaras ∼ Beautiful female spirits known for dance and charm
Yaks.a ∼ Guardian spirit of natural treasures.
Kinnara ∼ Certain Semi-divine beings
Rāks.asa ∼ Malevolent being
Asura Anti-god Powerful beings opposed to the gods
Vānara Monkey-being Monkey-like humanoid
Bhallūka Bear-being Bear or Bear-like humanoid
Gr.dhra Vulture-being Vulture-like being
R. ks.a Bear-being Bear-like humanoid
Garud. a Eagle-being Eagle-like being
Nāga Serpent-being Semi-divine serpent race
Svarga Heaven Abode of the gods
Naraka Hell Realm of punishment after death
Nadı̄ River Flowing body of freshwater
Sāgara Sea Vast saltwater body
Sarovara Lake Large inland water body
Kūpa Well Man-made water source
Tı̄ra Riverbank Edge or shore of a river
Dvı̄pa Island Land surrounded by water
Parvata Mountain Large natural elevation of earth
Nagara City Urban settlement or metropolis
Tı̄rtha Sacred Place Holy pilgrimage spot, often near water
Grāma Village Small rural settlement
Rājya Kingdom Territory ruled by a king
Vana Forest Dense growth of trees; wilderness
Udyāna Garden Cultivated green space
Marubhūmi Desert Dry, arid region
Prāsāda Palace Royal residence
Mandira Temple Sacred structure for worship
Āśrama Hermitage Secluded place for spiritual practice
Gr.ha House Dwelling or home
Kut.ı̄ra Hut Small and simple shelter
Guhā Cave Natural underground chamber
Mārga Road Pathway or route
Ratha Chariot Two- or four-wheeled ancient vehicle
Vimāna Airborne Vehicle Flying chariot or aircraft
Khadga Sword Bladed weapon
Dhanus Bow Weapon for shooting arrows
Bān. a Arrow Projectile shot from a bow
Cakra Discus Spinning circular weapon
Gadā Mace Blunt weapon, often spiked
Tomara Javelin Thrown spear or missile
Śūla Spear Long-shafted piercing weapon
Kavaca Shield Defensive armor piece
Kañcuka Armor Protective body gear
Paraśu Axe Bladed tool/weapon
Astra Divine Weapon Supernatural weapon, often invoked
Ābharan. a Ornament Decorative jewelry
Śaṅkha Conch Sacred spiral shell
Vādya Musical Instrument Instrument used in music
Nān. a Currency Form of money or coin
Kula Clan Extended family or lineage
Jāti Species Species/Socio-economical Group
Gan. a Tribe / Group Assembly or community
R. tu Season Climatic period of the year
Sam. vatsara Year Vedic year cycle
Māsa Month Lunar or solar month
Tithi Lunar Day Phase in the moon’s waxing/waning
Paks.a Fortnight Half of a lunar month
Ayana Solstice Cycle Six-month movement of the sun
Yuga Epoch Cosmic age or era
Yoga Astronomical Combination Planetary conjunction
Karan. a Half of Tithi Subdivision of a lunar day
Muhūrta Moment / Auspicious Time Small unit of time (about 48 minutes)
Lagna Ascendant Zodiac rising at time of birth
Graha Planet Celestial influencer
Naks.atra Lunar Mansion One of 27 lunar constellations
Rāśi Zodiac Sign Segment of the zodiac
Dhuma-ketu Comet Celestial object with a tail
Utsava Festival Celebratory event
Pūjā Worship Ritual offering and prayer
Yajña Vedic Sacrifice Sacred fire ritual
Upacāra Ritual Offering Ceremonial gesture or item
Sam. skāra Life-Cycle Rite Hindu ritual of life transition
Aniścita Undecided Something that is not yet determined
Vr.ks.a Tree Large woody plant
Guccha Shrub Small bushy plant
Lata Vine Climbing or trailing plant
Pus.pa Flower Blossom of a plant
Phala Fruit Edible plant product
Patra Leaf Green foliage part
Stambha Stem Main structural plant part
Tvak Bark Outer layer of tree
Mūla Root Underground part of plant
Paks.ı̄ Bird Feathered flying animal
Sarpa Snake Legless reptile

Table 9: Entity types occuring in Sanskrit NER

Entity Type Description

NORP Ethnic groups, demonyms, schools
ORG Organizations
GOD Supernatural beings
LANGUAGE Languages and dialects
LOC Cities, empires, rivers, mountains, and so forth.
PERSON Individual persons

Table 10: Entity types occuring in Ancient Greek NER
(Myerston, 2025). The types without descriptions—
EVENT and WORK—have very few occurances in the
dataset.

Entity Type Description

PER Person
LOC Locations, places
GRP Other groups such as tribes

Table 11: Entity types occuring in Latin NER are quite
standard types.
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