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Abstract

English-centric large language models (LLMs)
often show strong multilingual capabilities.
However, their multilingual performance re-
mains unclear and is under-evaluated for many
other languages. Most benchmarks for multi-
linguality focus on classic NLP tasks or cover
a minimal number of languages. We introduce
MEXA, a method for assessing the multilin-
gual capabilities of pre-trained English-centric
LLMs using parallel sentences, which are avail-
able for more languages than existing down-
stream tasks. MEXA leverages that English-
centric LLMs use English as a pivot language in
their intermediate layers. MEXA computes the
alignment between English and non-English
languages using parallel sentences to evaluate
the transfer of language understanding from En-
glish to other languages. This alignment can be
used to estimate model performance in differ-
ent languages. We conduct controlled experi-
ments using various parallel datasets (FLORES-
200 and Bible), models (Llama family, Gemma
family, Mistral, and OLMo), and established
downstream tasks (Belebele, m-MMLU, and
m-ARC). We explore different methods to com-
pute embeddings in decoder-only models. Our
results show that MEXA, in its default settings,
achieves an average Pearson correlation of 0.90
between its predicted scores and actual task
performance across languages. This suggests
that MEXA is a reliable method for estimating
the multilingual capabilities of English-centric
LLMs, providing a clearer understanding of
their multilingual potential and the inner work-
ings of LLMs.
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1 Introduction

Most state-of-the-art autoregressive large language
models (LLMs) are “English-centric”, including
closed-source models such as GPT-4 (OpenAl

nafiseh.nikeghbal@tum.de

et al., 2023), open-weight models such as Llama
3 (Dubey et al., 2024); and open-source models
such as OLMo (Groeneveld et al., 2024). English-
centric refers to the majority of the pre-training data
for these models being in English (Zhong et al.,
2024; Kew et al., 2024). Even models labeled
as heavily multilingual, such as BLOOM (Big-
Science Workshop et al., 2023), have their ma-
jor pre-training data in English (Laurencon et al.,
2022).

Except for open-source models, where pre-
training data is available and language distribution
is transparent, there is still confusion about the lan-
guage capabilities and coverage of other LLMs. Pri-
marily, the focus in evaluating LL.Ms has been on
developing benchmarks to assess their performance
in English. Most benchmarks in multilingual set-
tings consist of classical monolingual NLP tasks
such as sequence labeling (Ahuja et al., 2023; Lai
et al., 2023a), automatic translation of popular En-
glish benchmarks such as MMLU (Hendrycks et al.,
2021) into a limited number of languages (Lai et al.,
2023b; OpenAl, 2024), or the creation of language-
specific benchmarks (Ghahroodi et al., 2024; Koto
et al., 2024; Son et al., 2024; Yiiksel et al., 2024,
Li et al., 2024c).

Most LLMs are English-centric, either by choice
or due to the availability of abundant data sources in
English. For these models to be effective in other
languages, the other languages must align with
the dominant language, i.e., English. Given such
alignment, English could act as a “rising tide that
raises all ships,” meaning that improvements in
English performance could benefit other languages,
especially in tasks such as reasoning (Zhu et al.,
2024). Contrarily, if a language does not align
well with English, an English-centric LLM may
not provide meaningful coverage for that language.
Indeed, Wendler et al. (2024) have found that for
Llama 2 (Touvron et al., 2023b), an English-centric
LLM, English could be seen as a kind of “pivot”
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language, enabling to solve complex semantic tasks
in a foreign language through a detour into English.
More precisely, they show that Llama 2 was able
to decode semantically correct next tokens in the
middle layers, assigning higher probabilities to the
English tokens than to the foreign version, which
is only selected in the upper layers. Zhao et al.
(2024) present a hypothesis regarding the middle
layers of English-centric LLMs, suggesting that
these models use English as a means of reasoning
while incorporating multilingual knowledge. Based
on their analysis, the number of language-specific
neurons in the middle layers decreases within the
self-attention mechanism but remains consistent
across the layers of the feed-forward structure when
processing multilingual queries.

In this paper, we introduce MEXA, a method
to estimate the actual multilingual coverage of
English-centric LLMs. It builds on the observa-
tion that these models semantically use English as
a pivot language in their middle layers, by measur-
ing how well embeddings of non-English sentences
align with their English counterparts.

We verify the MEXA estimation of language
coverage for each LLM, using Pearson correlation
between estimated and actual scores for various
tasks. We use two parallel datasets: FLORES-
200 (NLLB Team et al., 2022) and Bible (Mayer
and Cysouw, 2014); nine LLMs: Llama family,
Gemma family, Mistral, and OLMo; and three
tasks: Belebele (Bandarkar et al., 2024), m-MMLU,
and m-ARC (Lai et al., 2023b). Our results show
that MEXA achieves a promising average Pearson
correlation of 0.90 with established downstream
tasks across nine models and two parallel datasets.
In our study on the calculation of MEXA scores,
we conduct multiple design analyses to examine the
impact of token-level pooling for the embeddings
(i.e., using the last token versus a weighted average)
and layer-level pooling in computing alignment
scores. While MEXA demonstrates a high corre-
lation across most setups, we find that a weighted
average based on tokens, combined with mean pool-
ing, yields the best results. In summary, MEXA
offers a scalable way to estimate the multilingual
coverage of English-centric LLMs via alignment
with English.

2 Background and Related Work

We discuss distribution of pre-training data in
LLMs, and multilingual evaluation benchmarks

in Appendices A.1 and A.2, and focus on cross-
lingual alignment here. Research on cross-lingual
alignment either aims to uncover the underlying
mechanisms of alignment and assesses its impact
on models and downstream tasks, or attempts to en-
hance model performance by enforcing alignment
before, during, or after the pre-training phase. Most
of these papers have focused on encoder-only mod-
els, such as XLM-R (Conneau et al., 2020a) and
mBERT (Devlin et al., 2019), among others (Him-
merl et al., 2024). In this work, we focus on
decoder-only models.

Understanding Alignment. Ye et al. (2023)
show that English-centric models such as Llama 1
(Touvron et al., 2023a) possess multilingual trans-
fer abilities (after fine-tuning on one source lan-
guage, they can be applied to other languages)
and may even surpass the multilingual transfer
abilities of multilingual pre-trained models such
as BLOOM (BigScience Workshop et al., 2023).
Schifer et al. (2024) find that GPT-2-style decoder-
only models show strong cross-lingual generaliza-
tion when trained on an imbalanced mix of lan-
guages. However, when trained on a balanced lan-
guage set, they do not observe increased perfor-
mance compared to monolingual settings. Wendler
et al. (2024) perform single-token analysis to
demonstrate that English-centered LLMs, such as
Llama 2, use English semantically as an internal
latent language in the middle layers when handling
multilingual queries. Zhong et al. (2024) extend
this analysis to multiple tokens, also showing that
an LLM dominated by both English and Japanese
uses both languages as internal latent languages.
Zhao et al. (2024) explore how LLMs handle mul-
tilingualism. They hypothesize that LLMs initially
interpret the query and convert multilingual inputs
into English for task-solving. In the middle lay-
ers, the models rely on English with self-attention
mechanisms for reasoning, while employing mul-
tilingual knowledge through feed-forward struc-
tures. In the final layers, LLMs generate responses
consistent with the original query language. Li
et al. (2025) and Li et al. (2024b) are even more
closely related to ours. Li et al. (2025) uses ab-
solute cosine similarity values between last token
embeddings derived from parallel sentences with
English to predict the ranking of language perfor-
mance across various models. However, as we dis-
cuss in Section 3, relying solely on absolute cosine
values can be misleading, and as shown in Sec-
tion 5.3, absolute cosine values are less correlated
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with downstream tasks than MEXA score. Li et al.
(2024b) uses English probing tasks and their auto-
matic translations to construct a multilingual eval-
uation. While they compare embedding similarity
scores between high- and low-resource languages
with corresponding evaluation results, similar to
Li et al. (2025), they do not assess whether these
correlations hold across other downstream tasks.
In Section 5, we demonstrate that MEXA scores
align closely with a broad range of downstream
tasks.

Boosting Alignment. The idea to enforce align-
ment in encoder-only models using parallel sen-
tences dates back to Conneau and Lample (2019),
and has been explored under various guises, e.g.,
using mixed-language sentences and/or bilingual
dictionaries (Huang et al., 2019; Conneau et al.,
2020b; Cao et al., 2020; Kulshreshtha et al., 2020;
Efimov et al., 2023; Zhang et al., 2023b). Recently,
Li et al. (2024d) improved multilingual alignment
by initializing the decoder-only models to gener-
ate similar representations of aligned words us-
ing contrastive learning and preserving this align-
ment using a code-switching strategy during pre-
training. Liu et al. (2024a) propose a data alloca-
tion technique to select a core subset of languages
for fine-tuning, better aligning the multilingual ca-
pabilities of decoder-only LLLMs and making them
more truthful in their responses. Li et al. (2024a)
propose aligning internal sentence representations
across different languages using multilingual con-
trastive learning and aligning outputs by following
cross-lingual instructions in the target language for
decoder-only models.

3 MEXA

We now describe the MEXA method for comput-
ing the alignment score of language L1 with a pivot
language Lo, given the language model m. In this
paper, we use the term cross-lingual alignment, or
simply alignment to refer to the semantic similar-
ity of multilingual embeddings across languages.
Lo, for English-centric LLMs and in this paper,
is English. To assess alignment, we use paral-
lel sentences in two languages, L; and Ls. The
goal of semantic similarity is to ensure that parallel
sentences have sufficiently high similarity, reflect-
ing alignment between the two languages. How-
ever, considering only the absolute cosine similar-
ity value as the alignment score does not guarantee
proper alignment. For some languages, even non-

parallel sentences exhibit similarity scores compa-
rable to those of parallel sentences (see §5.3). This
is largely due to the anisotropy problem observed
in transformer models, which can lead to so-called
hubness issues, making it difficult to distinguish
between similar and dissimilar embeddings (Etha-
yarajh, 2019), especially in multilingual models
(Hammerl et al., 2023; Rajaee and Pilehvar, 2022).
However, a direct comparative analysis of the co-
sine similarity between parallel and non-parallel
sentence pairs across languages can help overcome
these issues. Instead of using the absolute cosine
similarity value for alignment, we assign binary
values (1 or 0) based on whether a criterion for se-
mantic similarity is satisfied. Our criterion imposes
that (a) parallel sentences should have high cosine
similarity, and (b) non-parallel pairs should also
have low similarity values, ensuring the similarity
is not random or biased. Specifically, if the cosine
similarity for a pair of parallel sentences is higher
than for any non-parallel sentences, we assign a
value of 1 for this pair; otherwise, a value of 0.
This approach sidesteps the hubness problem since
the absolute cosine similarity values themselves are
not directly used.

To compute MEXA, we first apply the cosine
similarity function to the pairs of embeddings of
parallel sentences in languages L; and Ls. In
Section 3.1, we describe how embeddings can be
computed for each layer [ of the autoregressive
language model m. We generate a square matrix
C(L1, Ly, m, ) representing cosine similarities of
embeddings at the output of layer [ for all paral-
lel sentences in languages L; and Lo,. We denote
¢ij (1) the element in the i-th row and j-th column
of C(Ly, Ly, m,l). It represents the cosine simi-
larity between the i-th sentence of L; and the j-th
sentence of Lo at layer [ of language model m.
The diagonal elements of C', denoted c¢;;(1), repre-
sent the cosine similarity between parallel sentence
pairs from L; and Ly. We define the MEXA align-
ment score M(C(Ll, Lo, m, l)) as follows:

1TL
=) 1l
33 (cstt >

max

s {es(0.0)),

where n is the number of diagonal elements (i.e.,
the dimension of the matrix), and 1(-) is the in-
dicator function, which equals 1 if its argument
condition evaluates to true and O otherwise. This
alignment score measures how often ¢;; (1) is the
maximum value in both its row and column. The
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MEXA alignment score can alternatively be un-
derstood as a measure of sentence retrieval perfor-
mance (Hu et al., 2020; Liu et al., 2024b; Himmerl
et al., 2024), with the metric of P@1 applied with
queries in language L and answers in Lo, and vice
versa. We discuss other ways to calculate semantic
similarity between languages in Appendix A.3.

Layer-wise Pooling. The MEXA alignment
score ,u(C’(Ll, Lo, m, l)) is computed for lan-
guage L respect to pivot language Lo for each
layer [ of the language model m. To compute a
single MEXA alignment score given the language
model m and L1, Lo, we use mean and max pool-
ing strategies over multiple layers.

3.1 Sentence Embeddings

We focus on autoregressive language models that
use a decoder-only architecture. In this architec-
ture, attention is not bidirectional; instead, it takes
the form of causal attention (left-to-right). In bidi-
rectional attention, each token has access to every
other token in the sequence. However, in causal
attention, the embedding of a token at position ¢
is only influenced by the embedding of preced-
ing tokens at positions 0, 1, ...,¢t — 1. Therefore,
simple averaging values biases the embeddings
towards sentence-initial words. Instead, we con-
sider alternative methods: using only the last to-
ken and weighted averaging. We use and compare
both methods to acquire the sentence embeddings
needed for MEXA.

A standard way to compute a sentence embed-
ding uses only the last token of that sentence. Jiang
et al. (2023b) show that using the last token in the
format of a prompt template for a sentence s, such
as "This sentence: {s} means in one word:’, can be
effective. Inspired by this, Li and Li (2024) used
the prompt ’Summarize sentence {s} in one word:’
to obtain the last token embedding as the sentence-
level text embedding. However, not all models
are instruction-tuned; some earlier works, such as
Neelakantan et al. (2022); Wang et al. (2024); Ma
et al. (2024), use the last token without any prompt.
Since the models studied in this paper are only pre-
trained and use multiple languages in the input, we
decided to use the last token method without any
preceding instruction. An alternative is weighted
averaging, which relies on the intuition that using
only the last token might not represent the entire
sentence, as the influence of earlier tokens may
have diminished. This implies that the tokens at
the end of the sentence should contribute more to
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Figure 1: The probability that at least k& out of n diagonal
elements in an n X n random matrix are the maximum
elements in their respective rows and columns.

the overall embedding than those at the beginning.
Another motivation for using weighted averaging
is that sentence-final tokens are influenced by pre-
ceding tokens and contain more context, while the
representation of sentence-initial tokens has sig-
nificantly less contextual representation. To ad-
dress this, Muennighoff (2022) proposes to assign
weights to each token based on its position. Thus,
the sentence embedding of layer [ using position-
weighted averaging is:

T
t
e = Zwthlt with  wy = ——,
t=1 D k=1 k
where T is the number of tokens in the given
sentence, h;; is the embedding of the ¢-th token at
layer [, and ¢; is the sentence embedding at layer /.

3.2 Robustness of MEXA

We show that the MEXA alignment score (4(.)) is
very robust, and the odds of this score randomly
achieving a high value are very slim. Recall that
,u(C’ (L1, Lo, m, l)) measures the fraction of diag-
onal elements in matrix C'(L1, Lo, m, 1) that have
the maximum value in their respective rows and
columns. If this condition is met & times out of n
diagonal elements, then /,L(C(Ll, Lo, m, l)) is %
In an n x n random matrix, the probability of a di-
agonal element being the maximum in its row and
column (a total of 2n — 1 elements) is p = ﬁ
The probability that at least & out of n independent
variables are satisfied, given that the diagonal ele-
ment is the maximum in its row and column, can
be computed using the binomial distribution:

)=1- ki (?)p"(l —p)"

=0

P(X >

SHES

In Figure 1, we plot P(X > %) This plot illus-
trates that, given a sufficient number of parallel sen-
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tences (n), the probability of achieving a high score
by chance is very low. For example, with n = 100,
the chance of obtaining MEXA alignment score
larger than 0.05 (K = 5) from a 100 x 100 random
matrix is P(X > 0.05) = 0.00016.

4 Experiments

We conduct experiments using various multi-
parallel datasets (FLORES-200 and the Bible),
models (Llama family, Gemma family, Mistral, and
OLMo), and existing benchmarks/tasks (Belebele,
m-MMLU, m-ARC). Our objective is to assess
how well the MEXA alignment score from vari-
ous parallel datasets correlates with the different
benchmarks/tasks for different models.

4.1 Parallel Data

We calculate the MEXA score using the paral-
lel datasets of FLORES-200 (NLLB Team et al.,
2022) and the Bible (Mayer and Cysouw, 2014).
While there are other high-quality parallel datasets,
such as NTREX-128 (Federmann et al., 2022),
IN22 (Gala et al., 2023), OPUS-100 (Zhang et al.,
2020), Europarl (Koehn, 2005), OpenSubtitles (Li-
son and Tiedemann, 2016), TED2020 (Reimers and
Gurevych, 2020), and Tatoeba (Tatoeba Commu-
nity, 2006), we chose FLORES-200 due to its high
quality and support for a wide range of languages,
and the Bible dataset was selected for its extensive
language coverage.

FLORES-200 is a parallel corpus with English
sentences from Wikimedia translated into 204
language-script pairs, verified by humans. It in-
cludes 997 dev, 1012 dev-test, and 992 test sen-
tences. As the test set isn’t public, we use the dev-
test set as our test corpus, following prior work.
For faster computation, we consider only the first
100 sentences from each language. As shown in
Section 3.2, this is sufficient to ensure MEXA’s
robustness, as the odds of the MEXA score ran-
domly achieving a high value with 100 sentences
are very slim. This choice also enables scaling
to more languages, many of which lack enough
parallel samples.

The Parallel Bible (Mayer and Cysouw, 2014)
covers a very large number of languages. From
this resource, we managed to create a subcor-
pus, a super parallel dataset of the Bible, with
1,401 language-script labels, each containing 103
sentences (i.e., Bible verses).! This corpus in-

"hf.co/datasets/cis-1mu/sPBC

cludes many low-resource languages, many of
which are not covered by existing language tech-
nologies (Joshi et al., 2020), and MEXA can be
adopted since only parallel data is needed. We use
all 103 sentences from each language.

4.2 Models

For our experiments, we select models with around
7B parameters, which are considered a base size
in the LLM community. The state-of-the-art
open-weight models in this range, as measured
by performance on English-based tasks such as
MMLU (Stanford CRFM, 2024), include Llama
1, 2, 3, and 3.1 (Touvron et al., 2023a,b; Dubey
et al., 2024), Gemma 1 and 2 (Gemma Team et al.,
2024a,b), Mistral 0.3 (Jiang et al., 2023a), and the
open-source model OLMo 1.7 (Groeneveld et al.,
2024). We also select a larger model, Llama 3.1
70B, to show that our findings hold even when
scaling up further. To apply MEXA, we need to
access model weights to compute input sentence
embeddings for each layer. We use three popular
open-weight model families: Llama, Gemma, and
Mistral. As a less multilingual version of state-of-
the-art LLMs, we include OLMo, which is trained
on a more English-centric corpus of Dolma (Sol-
daini et al., 2024).

4.3 Benchmarks

Among the existing evaluation benchmarks in Ta-
ble 5 from Appendix A.2, we chose Belebele (Ban-
darkar et al., 2024), m-ARC (Lai et al., 2023b),
and m-MMLU (Lai et al., 2023b), which support
the highest number of high-, medium-, and low-
resource languages and are directly related to natu-
ral understanding tasks, which is the primary focus
of this paper.

We use the entire test set for each of these bench-
marks (§A.4 for details) for more details) to evalu-
ate the models, except in one case. For Llama 3.1
70B, we use the first 500 questions of m-MMLU
instead of the whole set due to resource constraints.
Since the selected LLMs used in our experiment
are not instruction-tuned, we use 5-shot in-context
learning with the Im-evaluation-harness framework,
employing log-likelihood-based multiple-choice
scoring. Other settings, such as prompt templates,
are configured according to the framework’s de-
fault (Gao et al., 2023; Biderman et al., 2024).
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Gemma 2 Gemma 1 Llama 3.1 Llama 3.1 Llama 3 Llama 2 Llama 1 Mistral 0.3 OLMo 1.7 AVG
9B 7B 70B 8B 8B 7B 7B 7B 7B
Belebele 09178 0.8467 0.9456 0.8767 0.8689 0.4822 0.4156 0.8389 0.7711 0.7737
Task{eng) m-MMLU 0.6998 0.6138 0.7700 0.6315 0.6294 0.4523 0.3569 0.5988 0.5210 0.5859
m-ARC 0.6775 0.5870 0.7014 0.5794 0.5836 0.5128 0.5000 0.5862 0.4872 0.5795
Belebele 0.7093 0.5633 0.7684 0.5705 0.5533 0.3028 0.2755 0.4457 0.3627 0.5057
Task L\ (eng) m-MMLU 0.5582 0.4734 0.6384 0.4720 0.4664 0.3260 0.2807 0.4207 0.3390 0.4416
m-ARC 0.4779 0.4220 0.5054 0.3941 0.3892 0.3174 0.2970 0.3662 0.2731 0.3825
FLORES HMean 0.5088 0.3815 04110 0.3963 0.3939 0.0866 0.1946 0.2642 0.0413 0.2976
HMax 0.7194 0.5872 0.7725 0.6538 0.6520 0.2464 0.3579 0.4716 0.1965 0.5175
Bible HMean 0.3568 0.2152 0.3169 0.2103 0.2026 0.1246 0.0908 0.1198 0.0121 0.1832
HMax 0.6076 0.4021 0.6599 0.4212 0.4190 0.2724 0.2357 0.2606 0.0319 0.3678

Table 1: fipooling Shows MEXA scores for each pooling strategy using token-weighted embeddings. Results cover
English-only tasks, non-English tasks (Belebele: 116 languages, m-MMLU: 33, m-ARC: 31), and MEXA scores
from FLORES (116) and Bible (101). Top scores are in bold, second-best are underlined.

4.4 Evaluation Measures

We calculate the Pearson correlation coefficient
to assess the strength of the correlation between
MEXA and downstream performance on our eval-
uation benchmarks. This coefficient is a statistical
measure of the strength and direction of the lin-
ear relationship between two variables. A high
value would indicate that MEXA provides a re-
liable assessment of multilingual capabilities in
English-centric LLMs.

5 Results

Table 1 presents the downstream performance of
the selected models across three benchmarks, along
with MEXA scores from two parallel datasets. No-
tably, among models with parameter sizes ranging
from 7 to 9 billion, both Gemma 2 and Llama 3.1
outperform the other LLMs in terms of non-English
downstream performance and MEXA scores. The
Llama 3.1 and Llama 3 models exhibit similar
alignment and downstream task performance, and
both represent substantial advancements compared
to Llama 2. Moreover, results for the Llama 3.1-
70B model indicate that scaling can significantly
enhance alignment when compared to its smaller
version. Interestingly, while Mistral achieves com-
parable results to Gemma 1 on English benchmarks,
it demonstrates inferior alignment, which likely ac-
counts for its reduced performance on non-English
tasks. Furthermore, the Llama 2 model achieves
higher MEXA scores than OLMo, indicating bet-
ter alignment. However, due to Llama 2’s weaker
performance on English tasks, it fails to transfer
this alignment effectively, leading to comparable
non-English performance between Llama 2 and
OLMo. This observation is further explored in
Section 5.2, where we normalize the expected per-
formance based on the pivot language, namely En-

Avg. across models

IMean < Belebele 0.8994

2 Lmax < Belebele 0.9098

% [iMean > m-MMLU 09513

£ pimax < m-MMLU 0.9188
P% Hven ¢ M-ARC 0.9393
& fiMax > M-ARC 0.8856
= LMean <> Belebele 0.9168
- UmMax <> Belebele 0.9058

2 UMean <> m-MMLU 0.9545

3 HUMax <> m-MMLU 09134
HiMean <> M-ARC 0.9195

fiMax > M-ARC 0.8685

IMean < Belebele 0.8496

% LM & Belebele 0.8811

£ UMen <> m-MMLU 0.8823
£ piMax < m-MMLU 0.8210

E] UMean <> m-ARC 0.9018
= UMax > m-ARC 0.8354
- Mean <> Belebele 0.8147
. HMax <> Belebele 0.8070

£ fiMean <> M-MMLU 0.7572

Z  paax < m-MMLU 0.6998
fiMean <> M-ARC 0.7469

LiMax > M-ARC 0.6885

Table 2: Pearson correlation between MEXA scores
and performance on Belebele, m-MMLU, and m-ARC,
averaged across models. Results use two embedding ag-
gregation methods: weighted average and last-token.
Best scores per dataset and benchmark are in bold,
second-best are underlined.

glish.

5.1 MEXA Correlation Analysis

We compute sentence embeddings for the selected
models using two methods: weighted average
based on token positions and last token (see §3.1).
We apply mean and max pooling on the MEXA
alignment scores across all model layers to derive a
single score for each language. In Table 2 (refer to
Table 6 for the detailed table), we report the corre-
lation between the MEXA scores (computed using
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both mean- and max-pooling, for the two embed-
ding methods) and task performances. Across all
settings, the best overall result (higher correlation)
is achieved when embeddings are computed using
the weighted average, with mean pooling as the
pooling method. We adopt this configuration as the
default setting for MEXA.

FLORES vs Bible. In the default setting, the
average Pearson correlation coefficient for the
FLORES parallel dataset across different tasks is
0.9300, and while for the Bible parallel dataset, it is
0.8779. The reason the Bible scores are generally
lower than FLORES is that FLORES data is cleaner
and more aligned with modern, standardized texts,
whereas the Bible data is older and more special-
ized. For example, for some languages, the or-
thography of Bible texts no longer matches today’s
orthography. In the Bible, Arabic often includes
diacritics, which are typically omitted in modern
writing and tasks, making the text less familiar to
models trained on contemporary data. Additionally,
although the Bible dataset has been made parallel,
sentence alignment can still be inconsistent due to
translation nuances. In contrast, FLORES is care-
fully curated to ensure high-quality, sentence-level
parallelism across languages for machine transla-
tion tasks.

Weighted Average vs. Last Token Embed-
dings. The use of last token embeddings shows
promisingly high correlations with the FLORES
parallel data; however, for the Bible dataset, the
correlation is low in some cases. We believe this
may stem from the high occurrence of Bible sen-
tences (especially in English), which leads models
to memorize these phrases. Using the WIMBD
toolkit (Elazar et al., 2024), we found that, on aver-
age, there are 92 times more documents in Dolma
1.7 containing exact Bible sentences than those
in FLORES. Consequently, when using Bible ex-
amples, the last token is biased towards predict-
ing the specific memorized next token rather than
incorporating context-related signals. Therefore,
one should consider the hazard of memorized data
when using last token embeddings. The weighted-
average method, which takes into account the influ-
ence of multiple tokens, can mitigate the impact of
a poor embedding for the last token and enable the
model to capture useful information from the other
tokens more robustly.

Max Pooling vs. Mean Pooling. In our com-
parison of mean pooling and max pooling on the
Belebele benchmark, we found that mean pooling
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Figure 2: Relationship between Llama 3.1-8B MEXA
scores from Bible and FLORES, adjusted by English
task performance, on Belebele and m-ARC. Each point
represents one language.

underestimates low-resource languages (resulting
in more MEXA scores near 0), while max pool-
ing correlates better with the Belebele benchmark.
This can be explained by the fact that Belebele is
an easier task among the three evaluated, allow-
ing even low-resource languages to achieve good
scores. Conversely, based on our experiment with
m-ARC, max pooling tends to overestimate low-
resource languages, making mean pooling more
aligned with m-ARC. This can be attributed to m-
ARC being the most challenging task among the
three, where even medium-resource languages do
not achieve high scores. Changing the pooling
method from mean to max can be considered when
dealing with different levels of understanding.

5.2 Downstream Performance Estimation

A full score on Pearson correlation (i.e., p = 1.0)
indicates that a linear equation perfectly describes
the relationship between MEXA and the evalua-
tion benchmarks, with all data points lying on a
line. Given the high correlation values shown in
Table 6, it is reasonable to conclude that we can fit
a line that closely approximates this linear relation-
ship. This line converts the MEXA scores back
to downstream task performances. We employed
a linear model to predict this line by minimizing
the residual sum of squares between the MEXA
scores (multiplied by the performance on the En-
glish task) and the task performances. We needed
to adjust the MEXA scores for this purpose, as the
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MEXA score for language L, indicates how well
L, is aligned with English but does not reflect the
estimated task performance of the model for lan-
guage L. Of course, this does not change the value
of the correlation coefficient, as it is unaffected
by linear transformations. The three tasks consid-
ered in this paper involve multiple-choice questions
with four possible answers for each question, re-
sulting in a chance of being randomly correct of %.
However, the minimum score for MEXA scores
is 0. Thus, the ideal slope for the line would be
% with an intercept of % (X-axis: adjusted MEXA
scores, Y-axis: task performance). In Figure 2, we
plot this relationship for Llama 3.1-8B using the
Bible and FLORES parallel datasets for Belebele
and m-ARC. We chose max pooling for Belebele
and mean pooling for m-ARC, since these pooling
methods yield a stronger correlation (see §5.1). The
pairs of (slope, intercept) from left to right in the
Figure 2 are: (0.6804, 0.2477), (0.6103, 0.1838),
(0.6340, 0.3408), and (0.5726, 0.2423). With data
points from both high-resource and low-resource
languages, this line can be calculated; otherwise,
the ideal line may be used as a reference.

Language Coverage. We present the ad-
justed MEXA score for all languages available
in FLORES-200 in Table 7 from Appendix A.6 for
the selected models. The languages are categorized
into groups ranging from well-covered to not cov-
ered. In Table 7, we can clearly see that Llama
3.1-70B and Gemma 2-9B show a higher level of
multilinguality than other models.

5.3 MEXA vs Absolute Cosine Similarity

We compare MEXA with the use of absolute co-
sine similarities. We used parallel data from FLO-
RES and downstream task data from the Belebele
benchmark, focusing on 116 common labels. For
each non-English language, we computed the aver-
age absolute cosine similarity for parallel sentences
with English, and for non-parallel sentences with
English. Following the setup by Li et al. (2025),
which uses absolute cosine similarity values to pre-
dict language performance and ranking, we com-
puted sentence embeddings using the last-token
method and applied mean pooling over layers {5,
10, 15, 20, 25}.

To evaluate the correlation of each method with
downstream task performance, we report results
using the Gemma 1 and Llama 1 7B models. Ta-
ble 3 summarizes these results. For both models,
MEXA consistently achieves a higher correlation

Gemma 1 7B Llama 1 7B
MEXA <> Belebele 0.9260 0.8365
AC-P <> Belebele 0.7651 0.6473
AC-P <+ AC-NP 0.9232 0.9064

Table 3: Pearson correlations between alignment met-
rics and Belebele performance. AC-P denotes abso-
lute cosine similarity of parallel pairs; AC-NP, of non-
parallel pairs.

with downstream performance compared to the ab-
solute cosine similarity of parallel sentences. More-
over, the correlation between cosine similarity for
parallel and non-parallel sentences is notably high,
suggesting that absolute values may be less discrim-
inative across sentence types. This discrepancy
highlights a limitation of using absolute cosine sim-
ilarity: for some languages, similarity scores may
remain high even for non-parallel sentences. Con-
versely, a low overall similarity score does not nec-
essarily imply weak alignment, as parallel sentence
scores may still significantly exceed non-parallel
ones. In contrast, MEXA offers a more robust and
comparative measure across languages.

5.4 Visualization of Layers

In Figure 3, we show the results of applying
MEXA to 20 pairs of language_script from the
FLORES parallel dataset for Llama 1-7B and
Llama 3.1-8B across all 32 layers. We selected
these languages from different families, writing sys-
tems, and both high- and low-resource categories.
The embeddings are computed using a weighted
average based on token positions. Figure 3 shows
that high-resource languages (with more prevalence
on the web; see §A.1) achieve higher alignment
scores across different layers, while low-resource
languages achieve lower scores. In the initial lay-
ers, embeddings are more in-language, resulting in
lower alignment scores. As embeddings progress
to the mid-layers, they become more aligned with
the dominant language of the LLM, i.e., English.
MEXA is comparable between models as long
as the same parallel dataset and setting is used to
obtain the MEXA scores. Figure 3 shows that
in many languages, particularly high-resource lan-
guages, Llama 3.1 achieves a significantly higher
alignment score than its predecessor, Llama 1. Al-
though Llama 3.1 leads to better alignment scores
with English for medium and low-resource lan-
guages, there is still room for improvement. Com-
paring Arabic (arb_Arab) with its romanized ver-
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Figure 3: Llama 1 vs. Llama 3.1 MEXA alignment
score for different languages across all layers. Best
performance markers in order: A, [J, x, X, o, _

sion (arb_Latn), we see that both Llama 1 and
Llama 3.1 models perform better in the native script
than in the Latin script, even though Llama 1’s to-
kenizer for Arabic is essentially a character-based
tokenizer. In general, for very low-resource lan-
guages, those in Latin script tend to have higher
alignment scores, likely because the tokenization
is more favorable for Latin characters.

In Figure 4, we display the t-SNE (Van der
Maaten and Hinton, 2008) plots of the embeddings
of Figure 3 from 3 different layers of Llama 3.1:
embedding layer 0, mid-layer 13, and last layer 32.
We assign a different color to each language. For
layers 0 and 32, the embeddings are more language-
specific, while in the mid-layer, they become more
language-neutral. Languages that maintain their
language-specific embeddings in the mid-layer are
clustered separately and, notably, correspond to the
very low-resource languages that receive the lowest
alignment scores from MEXA.

6 Conclusion

We introduce MEXA, a method for assessing the
multilingual capabilities of English-centric large
language models (LLMs). MEXA builds on the ob-
servation that English-centric LLMs semantically
use English as a kind of pivot language in their in-
termediate layers. MEXA computes the alignment
between non-English languages and English using

nnnnnnnnnn

Layer 13

Figure 4: Llama 3.1 t-SNE plots for 3 different layers.
As shown, in the mid-layers, the embeddings become
more language-neutral. The numbers shown in the mid-
layers are the IDs of English sentences that are scattered.

parallel sentences, estimating the transfer of lan-
guage understanding capabilities from English to
other languages through this alignment. This met-
ric can be useful in estimating task performance,
provided we know the English performance in the
task and the alignment score between languages
derived from a parallel dataset. Through differ-
ent studies with two parallel datasets (FLORES-
200 and the Bible), different LLMs including the
Llama family, Gemma family, Mistral, and OLMo,
and three downstream tasks (Belebele, m-MMLU,
and m-ARC), we demonstrated that MEXA pro-
vides a reliable estimation of multilingual perfor-
mance. For MEXA score calculations, multiple
design analyses are conducted to explore the im-
pact of token-level pooling for embeddings and
layer-level pooling in computing alignment scores.
While MEXA shows high correlation across most
configurations, a weighted average of tokens com-
bined with mean pooling delivers the best results.
The results reveal a promising average value for
the Pearson correlation coefficient of 0.90 with es-
tablished downstream tasks across nine models and
two parallel datasets. Overall, MEXA proves to
be a valuable method for practitioners aiming to as-
sess the multilingual capabilities of English-centric
LLMs, easing future efforts to expand these models
to a wider range of underrepresented languages.
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Limitations

We are aware of four main limitations of our work.

First, the scope of this paper is limited to non-
generative tasks. Generation is generally more
challenging than understanding, and it is unsur-
prising that these models for many languages may
struggle to generate content in their language.
While NLP has advanced toward generative ca-
pabilities, a significant portion of evaluation still
focuses on non-generative tasks (e.g., Hugging
Face Leaderboards)? due to their convenience in
multiple-choice question evaluation and standard-
ized metrics. Assessing generated output remains
challenging, even in English benchmarks. For ex-
ample, model-based approaches (e.g., “LLM-as-a-
judge” (Zheng et al., 2023)) require an LLM fully
competent in the target language—a capability that
is both questionable and the focus of our evalua-
tion.

Second, MEXA provides a method of evalua-
tion for open science, and only model weights are
needed. Although, developers of closed-source
models could use MEXA under the hood and re-
port their multilingual results to provide insight of
their model’s multilingual capabilities. We target
the widely used settings where the LLM follows a
decoder-only transformer architecture. For other
architectures, as long as we can extract the em-
bedding given a sentence for intermediate layers,
MEXA can be calculated.

Third, we present a selection of tasks for mul-
tilingual evaluation in Table 5. As shown, for
non-generative tasks, only a few benchmarks sup-
port a high number of languages, including low-
resource ones. Benchmarks limited to around 10
languages, which mostly support high-resource lan-
guages, would not support our claims, as MEXA
would achieve high results for all of them. Belebele
includes the highest number of languages (except
sequence labeling tasks), making it an ideal task
to evaluate MEXA. Both m-MMLU and m-ARC
are the next highest covered languages for non-
generative tasks. However, since they are machine-
translated tasks, they are not ideal and may bias
some results for low-resource languages (or, more
accurately, when the machine translation is poor).
Yet, these translated versions are representative of
the current state of automatic evaluation, as seen in

2hf.co/spaces/open—llm—leaderboard/open_llm_
leaderboard

multilingual leaderboards.?

Fourth, MEXA provides a rough estimate of
the multilingual capabilities of pre-trained English-
centric LLMs. Different tasks offer diverse perspec-
tives on the abilities of LLMs, and MEXA cannot
replace all of them. Our goal is to highlight the
multilingual potential of English-centric LLMs and
propose a simple way to evaluate them. We hope
this encourages the development of more multilin-
gual LL.Ms, even though they are likely to contain
large shares of English data. Additionally, it is im-
portant to note that answers across languages do not
always need to be fully aligned (Naous et al., 2024),
and for such cases, language- and culture-specific
evaluation benchmarks should be developed.
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A Appendix

A.1 Distribution of Pre-training Data in
LLMs

The distribution of languages in the training data of
state-of-the-art LLMs is rarely fully documented.
Llama 2 (Touvron et al., 2023b) is a counter-
example and its authors have disclosed the lan-
guage distribution use in pre-training. Their analy-
sis uses the FastText (Bojanowski et al., 2017) lan-
guage identification tool and a threshold of 0.5 for
the language detection. We reproduce Touvron et al.
(2023b, Table 10), which lists 27 languages with
percentages greater than 0.005% in the Llama 2
pre-training data, in Table 4. English, with 89.70%,
constitutes the vast majority of the training data.

All the languages listed in Table 4 have a pres-
ence of more than 0.10% (top 35 languages) on the
web according to the W3Techs report (W3Techs,
2024) or more than 0.15% (top 36 languages) ac-
cording to CommonCrawl (first three snapshots
of 2024) (Common Crawl, 2024). However, not
all of the most prevalent languages on the web
appear in Table 4. The following 9 languages
are missing, most of which use non-Latin writing
systems: Turkish (tur_Latn), Persian (pes_Arab),
Arabic (ara_Arab), Greek (ell_Grek), Hebrew
(heb_Hebr), Thai (tha_Thai), Hindi (hin_Deva),
Slovak (slk_Latn), and Lithuanian (lit_Latn).

The distribution of data in the training of English-
centric LLMs is not the same as on the web, but it
does have some correlation. The amount of English
in LLM pre-training data is significantly larger than
for other languages. This is also observable for
GPT-3 (Brown et al., 2020b), where more than 92%
of the training texts was in English (Brown et al.,
2020a). The rest of the top languages in the data of
such models are mostly high-resource languages,
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Language Script Percent Language Script Percent Dataset Task #L
English (eng) Latn 89.70% Ukrainian (ukr) Cyrl 0.07% XNLI (Conneau et al., 2018) Natural Language Inference 15
Unknown (unk) - 8.38% | Korean (kor) Hang 0.06% IndicXNLI (Aggarwal et al., 2022) Natural Language Inference 11
German (deu) Latn 0.17% Cala!an (cat) Latn 0.04% AfriXNLI (Adelani et al., 2024) Natural Language Inference 15
French (fra) Latn 0.16% | Serbian (srp) Cyrl/Latn  0.04% m_HellaSwag (Lai et al., 2023b) Natural Language Inference 31

Swedish (swe) Latn 0.15% | Indonesian (ind)  Latn 0.03% PAWS-X (Yang et al., 2019) Paraphrase Identification 7
Chln?se (zho) Hans/Hant 0.13% C.zec.h (cgs) Latn 0.03% XCOPA (Ponti et al., 2020) Commonsense Reasoning 11
Span}sh (spa) Latn 0.13% meshv(hn) Latn 0.03% XStoryCloze (Lin et al., 2022) Commonsense Reasoning 11
Russian (rus) Cyrd 0.13% | Hungarian (hun) — Latn 0.03% m-ARC (Lai et al., 2023b) Common Sense Reasoning 31
Dutch (r}ld) Latn 0.12% Norwegian (nor) Latn 0.03% TyDiQA (Clark et al., 2020) Question Answering 11
Ttalian (na? Latn 0.11% Roman.ian (ron) Latn 0.03% MLQA (Lewis et al., 2020) Question Answering 7
Jap'fmese (Gpn) Jpan 0.10% Bu]ganan (bul) Cyrl 0.02% XQuAD (Artetxe et al., 2020) Question Answering 11
Polish (pol) Latn 0.09% Damshk (dan) Latn 0.02% IndicQA (Doddapaneni et al., 2023) Question Answering 10
Portuguese (por) Latn 0.09% Slovenian (slv) Latn 0.01% AfiQA (Ogundepo et al., 2023) Question Answering 10
Lo e ‘ o L ' ‘ ; 2! ., 2023

Vietnamese (vie) _ Latn 0.08% | Croatian(hrv)  Lam 0.01% m_TruthfulQA (Lai et al., 2023b) MC General Question Answering 31

UDPOS 2.7 (de Marneffe et al., 2021) ~ Part of Speech Tagging 104

. . . . .. WikiANN (Pan et al., 2017) Name Entity Recognition 282
Table 4: Language distribution in the pre-training data XLSum (Hasan et al., 2021) Summarization 44
@ ’ . WikiLingua (Ladhak et al., 2020) Summarization 18

fOr Llama 2 The large Unknown Category 18 par— Belebele (Bandarkar et al., 2024) MC Reading Comprehension 115
AfriMMLU (Adelani et al., 2024) MC Knowledge Question Answering 17

tially composed of programming code data. Common
scripts are sourced from the GlotScript resource (Kar-
garan et al., 2024).

which have the most available data on the web
(top 36 languages). However, in some models,
this could be adjusted by design, for example, to
make writing systems with non-Latin languages
less prominent (as seen in Llama 2). This weakens
the correlation between LLMs’ pre-training data
and the web.

A.2  Multilingual Evaluation Benchmarks

Multilingual evaluation methods and the devel-
opment of benchmarks not only facilitate the as-
sessment of diverse language representations in
LLMs but also help in monitoring cross-lingual
generalization, to assess the effect of quantiza-
tion across multiple languages (Marchisio et al.,
2024), the development of language-specific mod-
els (Tejaswi et al., 2024), and the optimization
of safety preferences (Li et al., 2024e), among
others. In Table 5, we list benchmarks with the
largest language coverage. This list includes bench-
marks referenced by MEGA (Ahuja et al., 2023),
MEGAVERSE (Ahuja et al., 2024), xP3 (Muen-
nighoff et al., 2023), the Aya collection (Singh
et al., 2024), the Im-evaluation-harness framework
(Gao et al., 2023; Biderman et al., 2024), and inter
alia. These datasets comprise a mix of translated
datasets, some human-translated or verified by na-
tive speakers such as AfriXNLI (Adelani et al.,
2024) and some relying only on machine trans-
lation Lai et al. (2023b). Additionally, there are
datasets created independently for each language,
such as XLSum (Hasan et al., 2021), where the
data is not parallel and the size of the data varies
between languages. Despite the efforts reflected
in Table 5, the community is still lacking highly
multilingual benchmarks for tasks such as natural
language understanding or text generation.

m-MMLU (Lai et al., 2023b)
MMMLU (OpenAl, 2024)
M3Exam (Zhang et al., 2023a)

MC Knowledge Question Answering 31
MC Knowledge Question Answering 15
MC Multimodal Question Answering 9

Table 5: Multilingual evaluation benchmarks: MC
stands for multiple-choice. # L shows the number of
languages supported by each dataset.

A.3 Semantic Similarity in Multilingual
Embeddings

There are other ways to compute similarity be-
tween languages, such as Representational Similar-
ity Analysis (RSA) (Chrupata and Alishahi, 2019)
and Central Kernel Alignment (CKA) (Kornblith
et al., 2019). RSA involves first computing the
cosine similarity for sentence embeddings within
each language, then correlating these in-language
similarities with those in other languages. CKA, an-
other metric, is adopted by Conneau et al. (2020b)
and Muller et al. (2021). Conneau et al. (2020b)
show that the CKA similarity is highly correlated
with sentence retrieval scores for four languages.
In this paper, our focus is not on finding different
ways to calculate similarity between languages, but
on how helpful a properly defined alignment score
can be in estimating the multilingual capabilities
of LLMs across multiple languages.

A.4 Benchmark Details

Belebele is a multiple-choice reading comprehen-
sion task designed to assess language models across
a range of high-, medium-, and low-resource lan-
guages. Each question in the dataset is paired with
four possible answers and linked to a brief passage
from the FLORES-200 dataset (NLLB Team et al.,
2022). The human annotation process was carefully
curated to generate questions that effectively dif-
ferentiate between various levels of language com-
prehension, supported by rigorous quality checks.
Belebele supports 122 distinct labels (language-
script combinations) corresponding to 115 distinct
languages. However, FLORES-200 does not sup-
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port 5 of these labels, corresponding to Romanized
versions of 5 Indic languages. Therefore, we con-
ducted our analysis between the FLORES-200 and
Belebele benchmarks on 117 common labels. Ad-
ditionally, there are 102 common labels between
the Bible parallel data and the Belebele benchmark.

Both ARC Challenge (Clark et al., 2018) and
MMLU (Hendrycks et al., 2021) are also set up
as multiple-choice question-answering tasks, but
they focus on different types of knowledge and
reasoning skills. ARC Challenge is classified as a
common-sense reasoning task, consisting of grade-
school level science questions, while MMLU con-
sists of questions across a wide range of fields, in-
cluding the humanities, social sciences, and more.
Lai et al. (2023b) used GPT-3.5-turbo (OpenAl,
2022) and a translation prompt to translate exam-
ples from both datasets and create m-ARC and m-
MMLU in 31 languages (excluding English). Later,
m-MMLU was expanded to also include Icelandic
(isl_Latn) and Norwegian (nob_Latn). The Ice-
landic portion was translated using the Mideind.is,
while Norwegian was generated with DeepL.com.*
m-MMLU consists of 277 questions in its training
set, 13,258 in the test set and 1,433 in the valida-
tion set. m-ARC consists of 1,116 questions in the
training set, 1,169 in the test set, and 298 in the
validation set.

A.5 Detailed Results

We show the detailed per model results of Table 2
in Table 6.

A.6 MEXA for FLORES-200

We compute MEXA with weighted average em-
bedding and max pooling for the FLORES parallel
data for 203 language labels, multiplied by the per-
formance of Belebele for each model in English.
We show the results in Table 7, and color the cells
based on 0.2 intervals from green (well-covered)
to red (not covered): (1.0-0.8), (0.8-0.6), (0.6-0.4),
(0.4-0.2), (0.2-0). Note that although FLORES is
a high-quality, human-translated dataset, we ad-
dressed two major issues before proceeding, as
noted by Kargaran et al. (2023). First, the data
labeled as Cantonese (Yue Chinese) is not actually
Cantonese, so we removed it. Second, the code
for Central Atlas Tamazight (tzm), which actually
refers to Standard Moroccan Tamazight (zgh), was
renamed accordingly. As Belebele is relatively an

*hf.co/datasets/alexandrainst/m_mmlu

easy task since the models get good scores in En-
glish, and we are using max pooling, this gives a
high estimate of the coverage the LLMs have. If
the score for a language is not very high, it likely
indicates that for more challenging tasks, it will
remain low. In Table 7, we can clearly see that
Llama 3.1-70B and Gemma 2-9B show a higher
level of multilinguality than other models.
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Gemma?2  Gemma 1 Llama 3.1 Llama 3.1 Llama 3 Llama 2 Llama 1 Mistral 0.3 OLMo 1.7 AVG

9B 7B 70B 8B 8B 7B 7B 7B 7B

P (tMean, Belebele) 0.9247 0.9421 0.8291 0.9478 0.9588 0.8364 0.8404 0.9732 0.8425 0.8994

2 p (Jmax, Belebele) 0.9623 0.9676 0.9211 0.9392 0.9326 0.8362 0.7649 0.9448 0.9198 0.9098

% p (ftMean, m-MMLU) 0.9342 0.9697 0.9362 0.9689 0.9647 0.9223 0.9406 0.9857 0.9393 0.9513

2 p(vax, m-MMLU) 0.9060 0.9596 0.8946 0.9003 0.8892 0.9386 0.8936 0.9311 0.9565 0.9188
@ H P (ttMean, m-ARC) 0.9741 0.9706 0.9374 0.9515 0.9562 0.9052 0.9268 0.9693 0.8630 0.9393
% p (ttmax, m-ARC) 0.9187 0.9499 0.8736 0.8582 0.8663 0.9297 0.8439 0.9001 0.8298 0.8856
E P (LMean, Belebele) 0.8997 0.9326 0.8491 0.9494 0.9581 0.9141 0.8340 0.9679 0.9467 0.9168
_ p (temax, Belebele) 0.9225 0.9309 0.9127 0.9244 0.9123 0.9125 0.7693 0.9460 0.9218 0.9058

2 £ (4Mean, m-MMLU) 0.9086 0.9637 0.9370 0.9687 0.9690 0.9771 0.9301 0.9659 0.9700 0.9545
E} p (ttMax, m-MMLU) 0.8448 0.9297 0.8645 0.9224 0.9177 0.9699 0.8902 0.9161 0.9649 0.9134
P (HMean, m-ARC) 0.9190 0.9541 0.9524 0.9536 0.9617 0.9390 0.9146 0.9451 0.7356 0.9195

p (ttMax, m-ARC) 0.8569 0.9147 0.9005 0.8944 0.8879 0.9464 0.8263 0.8859 0.7037 0.8685

P (HMean, Belebele) 0.8360 0.8530 0.7909 0.8781 0.8974 0.8982 0.8404 0.9118 0.7410 0.8496

2 p (jumax, Belebele) 0.8863 0.9001 0.8851 0.9242 0.9302 0.8926 0.8230 0.9337 0.7549 0.8811

é P (Mean» m-MMLU) 0.8051 0.8886 0.8958 0.9096 0.8964 0.9252 0.9159 0.9093 0.7944 0.8823
2 p (UMax, m:-MMLU) 0.5501 0.8831 0.7748 0.8683 0.8364 0.9180 0.9085 0.9107 0.7388 0.8210

2 P (LtMean, m-ARC) 0.8505 0.8998 0.9188 0.9267 09116 0.8940 0.9208 0.9317 0.8623 0.9018
= P (HMax, m-ARC) 0.6070 0.8803 0.8030 0.8769 0.8552 0.8684 0.8879 0.9178 0.8220 0.8354
8 P (tMean, Belebele) 0.7656 0.8005 0.5944 0.7934 0.8396 0.9046 0.8299 0.9177 0.8866 0.8147
- p (ttmax, Belebele) 0.7844 0.8299 0.5264 0.8000 0.8100 0.9047 0.8048 0.9235 0.8796 0.8070

2 p (ftMean, m-MMLU) 0.7194 0.7646 0.6472 0.6068 0.6516 0.8827 0.8692 0.8672 0.8060 0.7572

g p (Max, m-MMLU) 0.7075 0.6886 0.5037** 0.5228%* 0.4461%* 0.9079 0.8576 0.8643 0.7994 0.6998

£ (Mean, m-ARC) 0.7411 0.7754 0.6592 0.5976 0.6494 0.8537 0.8537 0.8927 0.6997 0.7469

p (ftmax, m-ARC) 0.7293 0.7000 0.5190%** 0.5335%* 0.4853%** 0.8494 0.8309 0.8624 0.6867 0.6885

Table 6: Pearson correlation of MEXA using FLORES and Bible data across three tasks. p ({4pooling, Task) is the
correlation of MEXA for the corresponding pooling strategy and benchmark. In all settings except **, the p-value
is p < 0.001. The best average correlations for each task are in bold, and the second bests are underlined.

27019



Gemma 2 Gemma 1 Llama 3.1 Llama 3.1 Llama 3 Llama 2 Llama 1 Mistral OLMo AVG

9B 7B 70B 8B 8B 7B 7B 7B 7B
eng_Latn 0.92 0.85 0.95 0.88 0.87 0.48 042 084 077 0.77
fra_Latn 0.92 0.84 0.94 0.88 0.87 0.37 0.41 0.84 0.70 0.75
por_Latn 0.92 0.84 0.94 0.88 0.87 0.41 0.41 084 0.63 0.75
deu_Latn 0.92 0.84 0.94 0.88 0.87 0.35 042 0.84 0.65 0.74
spa_Latn 0.92 0.83 0.95 0.88 0.87 0.37 042 0.84 056 0.74
ita_Latn 0.92 0.83 0.92 0.88 0.87 0.35 042 084 056 0.73
cat_Latn 0.92 0.82 0.94 0.88 0.87 0.39 042 084 050 0.73
nld_Latn 0.92 0.82 0.95 0.88 0.87 0.34 042 084 052 0.73
rus_Cyrl 0.91 0.82 0.94 0.88 0.87 0.34 0.41 0.83 051 0.72
zho_Hans 0.91 0.80 0.94 0.88 0.87 0.32 034 081 0.62 0.72
glg_Latn 0.92 0.83 0.91 0.88 0.87 0.31 0.41 082 052 0.72
swe_Latn 0.92 0.83 0.95 0.88 0.87 0.38 042 084 037 0.72
dan_Latn 0.92 0.83 0.94 0.88 0.87 0.31 0.41 082 044 0.71
ces_Latn 0.92 0.82 0.95 0.88 0.87 0.26 042 0.84 043 0.71
ron_Latn 0.92 0.82 0.94 0.88 0.87 0.23 0.41 0.83 048 0.71
nob_Latn 0.91 0.82 0.95 0.88 0.87 0.34 039 081 039 0.71
zho_Hant 0.91 0.81 0.94 0.88 0.87 0.31 032 079 052 0.71
pol_Latn 0.92 0.81 0.95 0.88 0.87 0.22 042 0.84 038 0.70
ast_Latn 0.90 0.80 0.91 0.88 0.86 0.21 040 077 049 0.69
ind_Latn 0.92 0.83 0.93 0.87 0.87 0.22 030 0.82 042 0.69
oci_Latn 0.89 0.75 0.95 0.88 0.87 0.22 039 0.81 040 0.68
bos_Latn 0.91 0.81 0.95 0.88 0.87 0.19 0.41 0.84 025 0.68
nno_Latn 0.92 0.82 0.92 0.84 0.84 0.26 036 0.78 038 0.68
ukr_Cyrl 0.92 0.81 0.95 0.88 0.87 0.22 042 0.84 @ 0.15 0.67
zsm_Latn 0.92 0.83 0.93 0.88 0.87 0.17 0.25 081 036 0.67
hrv_Latn 0.91 0.81 0.90 0.86 0.86 0.18 0.41 0.83 023 0.67
slv_Latn 0.91 0.79 0.93 0.86 0.86 0.20 040 0.84 [ 0.19 0.66
afr_Latn 0.91 0.81 0.93 0.87 0.87 0.20 0.37 0.79 021 0.66
slk_Latn 0.91 0.80 0.93 0.86 0.85 0.12 0.38 0.82 025 0.66
bul_Cyrl 0.91 0.80 0.90 0.86 0.86 0.12 042  0.84 | 0.14 | 0.65
Jpn_Jpan 0.90 0.80 0.93 0.83 0.82 0.29 0.25 0.76 024 0.65
hun_Latn 0.91 0.78 0.92 0.84 0.83 0.13 039 081 [ 0.18 0.64
vec_Latn 0.87 0.74 0.93 0.84 0.83 0.16 0.35 0.76 028 0.64
srp_Ciyrl 0.91 0.79 0.90 0.86 0.86 0.10 042  0.84 | 0.06 0.64
tgl_Latn 0.91 0.74 0.94 0.82 0.82 0.16 020 0.77 036 0.64
fin_Latn 0.91 0.79 0.90 0.85 0.85 0.14 0.21 0.74 033 0.64

Continued on next page
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Gemma 2 Gemma 1 Llama 3.1 Llama 3.1 Llama 3 Llama 2 Llama 1 Mistral OLMo AVG

9B 7B 70B 8B 8B 7B 7B
mkd_Cyrl 0.90 0.77 0.94 0.87 0.86 0.80 0.63
vie_Latn 0.91 0.81 0.95 0.88 0.87 0.79 0.63
epo_Latn 0.87 0.76 0.95 0.86 0.85 0.67 0.61
kor_Hang 0.88 0.74 0.91 0.84 0.83 0.71 0.60
arb_Arab 0.91 0.80 0.94 0.86 0.85 0.70 0.60
ars_Arab 0.91 0.80 0.93 0.86 0.85 0.69 0.59
lim_Latn 0.76 0.65 0.89 0.83 0.83 0.59 0.21 0.58
acq_Arab 0.91 0.78 0.92 0.83 0.82 0.67 0.58
acm_Arab 0.90 0.76 0.90 0.86 0.82 0.67 0.57
fur_Latn 0.73 0.60 0.91 0.81 0.77 0.59 0.57
pes_Arab 0.91 0.79 0.88 0.85 0.85 0.59 0.56
arz_Arab 0.88 0.74 0.90 0.84 0.83 0.63 0.56
ajp_Arab 0.88 0.76 0.86 0.85 0.83 0.60 0.56
lit_Latn 0.90 0.76 0.92 0.78 0.80 0.56 0.56
apc_Arab 0.89 0.76 0.86 0.82 0.83 0.64 0.56
ell_Grek 0.90 0.78 0.87 0.87 0.86 0.58 0.56
tur_Latn 0.89 0.78 0.90 0.82 0.81 0.61 0.55
est_Latn 0.90 0.77 0.90 0.82 0.83 0.45 0.55
pap_Latn 0.79 0.60 0.89 0.75 0.73 0.56 0.23 0.55
Imo_Latn 0.73 0.56 0.87 0.75 0.74 0.60 0.26 0.55
szl_Latn 0.77 0.59 0.87 0.73 0.74 0.64 021 0.55
prs_Arab 0.90 0.78 0.92 0.84 0.84 0.46 0.54
scn_Latn 0.77 0.59 0.88 0.79 0.77 0.57 0.54
heb_Hebr 0.91 0.81 0.89 0.83 0.83 0.47 0.54
Ivs_Latn 0.90 0.75 0.90 0.81 0.79 0.55 0.54
als_Latn 0.87 0.67 0.93 0.79 0.80 0.53 0.54
lij_Latn 0.74 0.58 0.88 0.72 0.70 0.53  0.30 0.54
ceb_Latn 0.83 0.59 0.89 0.73 0.72 049 024 0.53
srd_Latn 0.73 0.59 0.86 0.75 0.72 0.55 0.21 0.53
hin_Deva 0.90 0.74 0.91 0.80 0.79 0.44 0.53
Itz_Latn 0.79 0.59 0.84 0.75 0.74 0.44 0.52
tha_Thai 0.90 0.76 0.87 0.83 0.83 0.32 0.52
aeb_Arab 0.82 0.67 0.86 0.78 0.75 0.55 0.52
bel_Cyrl 0.88 0.65 0.88 0.79 0.79 0.50 0.51
isl_Latn 0.83 0.62 0.88 0.77 0.78 0.48 0.51
swh_Latn 0.90 0.74 0.86 0.73 0.80 0.27 0.51
mlt_Latn 0.88 0.63 0.87 0.74 0.74 0.38 0.51
war_Latn 0.76 0.55 0.88 0.65 0.61 0.35 0.20 0.49
cym_Latn 0.87 0.59 0.88 0.75 0.76 0.28 0.49
fao_Latn 0.71 0.53 0.86 0.71 0.69 0.53 0.48
urd_Arab 0.83 0.66 0.88 0.76 0.73 0.31 0.47
jav_Latn 0.75 0.54 0.84 0.69 0.67 0.29 0.47
eus_Latn 0.82 0.66 0.84 0.74 0.71 0.47
sun_Latn 0.69 0.48 0.86 0.68 0.64 : 0.23 0.47
kea_Latn 0.64 0.51 0.78 0.60 0.64 ! 0.46
ary_Arab 0.71 0.60 0.80 0.68 0.68 ! 0.46
hat_Latn 0.74 0.47 0.86 0.65 0.61 0.45
mag_Deva 0.75 0.52 0.88 0.75 0.70 0.45
min_Latn 0.56 0.45 0.81 0.68 0.68 0.44
ban_Latn 0.48 0.32 0.82 0.62 0.63 0.30 0.43
bjn_Latn 0.60 0.51 0.78 0.62 0.60 0.21 043
azj_Latn 0.75 0.53 0.86 0.68 0.66 0.43
npi_Deva 0.81 0.59 0.82 0.62 0.64 0.42
mar_Deva 0.82 0.58 0.87 0.68 0.63 0.42
awa_Deva 0.73 0.53 0.83 0.65 0.65 0.42
ben_Beng 0.82 0.58 0.82 0.60 0.60 0.41
uzn_Latn 0.70 0.47 0.84 0.60 0.62 0.40
bho_Deva 0.51 0.46 0.89 0.68 0.65 0.40
gle_Latn 0.68 0.31 0.82 0.64 0.64 0.40
hye_Armn 0.85 0.59 0.79 0.60 0.58 0.40
hne_Deva 0.67 0.44 0.80 0.65 0.63 0.40
kaz_Cyrl 0.62 0.47 0.87 0.61 0.60 0.39
tpi_Latn 0.69 0.38 0.69 0.46 0.45 0.39
hau_Latn 0.68 0.41 0.77 0.58 0.54 0.38
mai_Deva 0.61 0.43 0.86 0.61 0.59 0.38
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9B 7B 70B 8B 8B 7B 7B 7B 7B
crh_Latn 0.58 0.42 0.77 0.56 0.51 0.35 0.37
ilo_Latn 0.61 0.32 0.74 0.47 0.46 0.24 0.37
tat_Cyrl 0.56 0.38 0.83 0.58 0.55 0.21 0.36
kat_Geor 0.73 0.45 0.72 0.53 0.50 0.35
ydd_Hebr 0.74 0.45 0.78 0.48 0.47 0.34
kir_Cyrl 0.53 0.33 0.81 0.58 0.57 0.34
pag_Latn 0.33 0.23 0.63 0.35 0.39 0.33
pan_Guru 0.78 0.50 0.75 0.47 0.40 0.33
bak_Cyrl 0.56 0.36 0.82 0.51 0.51 0.33
guj_Gujr 0.79 0.52 0.67 0.42 0.39 0.33
tam_Taml 0.78 0.54 0.72 0.38 0.38 0.33
pbt_Arab 0.50 0.23 0.82 0.57 0.57 0.32
tgk_Cyrl 0.62 0.27 0.78 0.51 0.52 0.32
tel_Telu 0.77 0.52 0.67 0.38 0.43 0.32
snd_Arab 0.59 0.30 0.78 0.53 0.50 0.31
kan_Knda 0.74 0.47 0.66 0.42 0.41 0.31
mal_Mlym  0.76 0.50 0.68 0.32 0.30 0.29
ckb_Arab 0.51 0.20 0.78 0.54 0.50 0.29
gla_Latn 0.46 0.71 0.46 0.45 0.29
asm_Beng 0.63 0.35 0.70 0.39 0.36 0.29
tuk_Latn 0.49 0.31 0.63 0.43 0.41 0.28
san_Deva 0.48 0.26 0.71 0.46 0.45 0.28
kmr_Latn 0.38 0.69 0.48 0.50 0.28
lus_Latn 0.53 0.56 0.34 0.33 0.27
khk_Cyrl 0.44 0.73 0.42 0.43 0.26
Itg_Latn 0.31 0.23 0.61 0.38 0.35 0.26
azb_Arab 0.37 0.28 0.60 0.44 0.44 0.25
plt_Latn 0.59 0.25 0.25 0.25
ibo_Latn 0.64 0.38 0.37 0.25
mri_Latn 0.60 0.38 0.35 0.25
som_Latn 0.60 0.24 0.24 0.23
ace_Latn 0.49 0.32 0.31 0.23
xho_Latn 0.47 0.20 0.20 0.22
nso_Latn 0.48 0.26 0.23 0.21
sot_Latn 0.53 0.22 0.20 0.21
zul_Latn 0.44 0.21
kin_Latn 0.53 0.21
sin_Sinh 0.49 0.20
smo_Latn 0.66 0.20
nya_Latn 0.41
twi_Latn 0.46 1
sna_Latn 040 [019
uig_Arab 0.71 0.29
bug_Latn 0.35 0.22
luo_Latn 0.40
tsn_Latn 0.42
arb_Latn 0.46
khm_Khmr 0.59
lua_Latn 0.33
lug Latn 0.41
grn_Latn 0.44
ssw_Latn 0.37
lin_Latn 0.43
ory_Orya 0.66
fij_Latn 0.38
fuv_Latn 0.30
kas_Arab 0.50
quy_Latn 0.42
aka_Latn 0.37
mya_Mymr 0.46
run_Latn 0.37
bem_Latn 0.29
kas_Deva 0.37
wol_Latn 0.30
kam_Latn 0.26
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tso_Latn 0.35
kon_Latn 0.27
tum_Latn 0.32
kik_Latn 0.32
taq_Latn 0.28
mos_Latn 0.25
yor_Latn 0.30
amh_Ethi ] 0.24
sag_Latn 0.22
cjk_Latn 0.21
umb_Latn 0.20
dyu_Latn 0.22
kac_Latn 0.22
kmb_Latn 0.20
bam_Latn
ayr_Latn
lao_Laoo
dik_Latn
ewe_Latn
knc_Latn
kab_Latn
sat_Olck
gaz_Latn
bod_Tibt
fon_Latn
shn_Mymr
kbp_Latn
mni_Beng
ace_Arab
knc_Arab
bjn_Arab
nus_Latn
min_Arab
tir_Ethi
dzo_Tibt
taq_Tfng
zgh_Tfng

Table 7: Adjusted performance of MEXA using max pooling with the English performance of models on the
Belebele benchmark.
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