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Abstract

Large language models (LLMs) demonstrate
impressive results in natural language process-
ing tasks but require a significant amount of
computational and memory resources. Struc-
tured matrix representations are a promising
way for reducing the number of parameters of
these models. However, it seems unrealistic to
expect that weight matrices of pretrained mod-
els can be accurately represented by structured
matrices without any fine-tuning. To overcome
this issue, we utilize the fact that LLM out-
put is invariant under certain orthogonal trans-
formations of weight matrices. This insight
can be leveraged to identify transformations
that significantly improve the compressibility
of weights within structured classes. The pro-
posed approach is applicable to various types
of structured matrices that support efficient pro-
jection operations. Code is available at: https:
//github.com/GrishKate/ProcrustesGPT.

1 Introduction

Large language models have achieved remarkable
success in language processing and are widely used
in a variety of applications, but their deployment
is still challenging, as these models hardly fit into
a single GPU and require much computational re-
sources during the inference and training processes.
The research community is actively seeking effi-
cient algorithms to reduce the size of pretrained
models without sacrificing accuracy.

One approach that has not been fully explored
is the use of structured matrices, which can poten-
tially not only reduce the number of parameters in
the model but also speed up computations. Low-
parametric matrix decomposition can be applied
directly to the weight matrices, minimizing the
difference between the original and decomposed
weights, i.e., ∥W −W ′∥ → minW ′∈S , where S is
the low-parametric matrix class. Such a factoriza-
tion may appear to be a reasonable initial guess for

further fine-tuning. Unfortunately, it often leads
to high approximation errors for any S when no
additional training is performed, as there are no
restrictions on the structure of the weight matrices
during pretraining.

To overcome this issue, we utilize invariance of
the network output under certain orthogonal trans-
formations, which was first observed in (Ashkboos
et al., 2024). In particular, for each layer, we aim to
find such transformations that lead to the best com-
pressibility within the chosen matrix class S . In our
paper, we focus on the sum of Kronecker product
representation and GS-matrices (Gorbunov et al.,
2024; Dao et al., 2022), but other representations
are also possible. Finding an optimal orthogonal
transformation is a known linear algebra problem
and is called the orthogonal Procrustes problem.
The resulting framework is formulated as an opti-
mization problem on the weights of the pretrained
network, is free from the need for fine-tuning and
applicable for different structured matrix represen-
tations. In Figure 1, we present relative errors in the
Frobenius norm for different layers with and with-
out using orthogonal transformations. We observe
a noticeable increase in compression ability thanks
to optimally chosen orthogonal transformations.

The main contributions of our work:

• We propose a new fine-tuning free framework
for compressing LLM weights. The frame-
work utilizes orthogonal transformations of
the network weight matrices to ensure their
compressibility using a low-parametric repre-
sentation of choice.

• We formulate this framework as an optimiza-
tion problem and develop efficient numerical
methods to solve it.

• We conduct experiments with OPT (Zhang
et al., 2022) and Llama2 (Touvron et al., 2023)
models. We show that in most scenarios, our
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Figure 1: Illustration of compressibility of different layers of OPT-125m with and without applying orthogonal
transformations Q. We consider two types of structured representations: sum of Kronecker products (Section 4.1)
and GS-matrices (Section 4.2). Both representations result in approximately 25% compression for each compressed
matrix within the layers.

approach yields more accurate results than
alternative fine-tuning-free methods at com-
parable compression rates (in the range from
14% to 36%).

2 Related work

Existing approaches to neural network compression
can be divided into four categories: quantization,
distillation, pruning, and matrix factorization. Ma-
trix factorization is a promising and relatively un-
derexplored technique, and the most widely used
approach within this category is a low-rank ap-
proximation. The work (Sharma et al., 2023) has
shown that by carefully selecting ranks for each
of the weights, the performance of LLMs can be
improved on some tasks. However, direct applica-
tion of SVD to uniform compression of weights
leads to poor performance because weights usually
have high ranks (Yu and Wu, 2023). Instead, the
authors (Wang et al., 2024; Hsu et al., 2022; Yuan
et al., 2023; Yu and Wu, 2023; Ji et al., 2024; Chen
et al., 2021) use calibration datasets or Fisher in-
formation matrix to approximate activations. Other
works explore low-rank plus sparse (Li et al., 2023)
and low-rank plus quantized decompositions (Saha
et al., 2024).

The works (Tahaei et al., 2021; Edalati et al.,
2021) have been among the first to apply the
Kronecker-product decomposition for the compres-
sion of BERT and GPT2. The paper (Abronin et al.,
2024) proposes to enhance the performance of the
Kronecker decomposition by adding permutations.
These works compress the weight matrices directly
and require knowledge distillation or fine-tuning in
order to recover performance.

The authors of ModeGPT (Lin et al., 2024) pro-
pose to split the weight matrices of the transformer
into pairs and jointly compress them using SVD,
CR or Nyström approximation. This method is
training-free and efficiently preserves model perfor-
mance; however, it does not address compression
of embedding and head matrices.

Many studies have investigated embedding com-
pression, but most of the proposed algorithms re-
quire additional training. The works (Xu et al.,
2023; Hrinchuk et al., 2020) apply the Tensor Train
decomposition to the embedding layer, which of-
fers strong compression, but requires training from
scratch or hinders model performance. Other meth-
ods (Lioutas et al., 2020; Acharya et al., 2019)
approximate embedding with low-rank decom-
position, but these methods require fine-tuning.
GroupReduce (Chen et al., 2018) utilizes knowl-
edge about words occurrence by weighing tokens
with their frequencies and applies block low-rank
approximation.

Our goal in this study is to maintain model per-
formance after weight factorization without addi-
tional training. The authors of the prunning ap-
proach SliceGPT (Ashkboos et al., 2024) have in-
troduced the concept of computational invariance,
meaning that orthogonal transformations can be ap-
plied to transformer weights without changing the
output of the model. SliceGPT uses invariance to
project layer activations onto their principal com-
ponents and remove columns or rows from weight
matrices. In this work, we utilize computational
invariance to find a better approximation of the
weights with structured representations.
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3 Our approach

Our approach consists in iteratively finding orthog-
onal transformations Q to obtain optimal com-
pression properties of the matrix weights. For
brevity, we call these orthogonal transformations
“rotations”, although they do not necessarily have
determinants equal to one. In Section 3.1, we
present the concept of rotational invariance. Then,
in Section 3.2, we present our approach as an
optimization formulation to be solved. Notably,
SliceGPT (Ashkboos et al., 2024) appears to be a
particular instance of this formulation, which we
also discuss further in Section 4.3.

3.1 Rotational invariance
In this section, we introduce notation and explain
the concept of rotational invariance (Ashkboos
et al., 2024). The transformer architecture consists
of the repeated series of multi-head self-attention
(MHSA) blocks and feed-forward network (FFN)
blocks. Between these blocks, there is the Layer-
Norm or RMSNorm block. The RMSNorm nor-
malizes the input vector:

RMSNorm(x) =
x

∥x∥2
.

LayerNorm is a linear transformation of RMSNorm
and a network with LayerNorm can be easily trans-
formed to a network with RMSNorm (Ashkboos
et al., 2024).

Each of the MHSA and FFN blocks consists
of input linear mappings, an activation function,
and an output linear mapping. For example, the
MHSA block first obtains queries, keys and values
(XWq, XWk, XWv) through a linear projection of
the input X . Then these matrices are nonlinearly
transformed and multiplied by an output weight
matrix (Wo). If we denote the stacked weight ma-
trices of the input linear mappings of each block
as Win and the weight matrix of the output linear
mapping as Wout, then we can write:

MHSA(X) = σ(X[Wq,Wk,Wv])Wo + b =

= σ(XWin)Wout + b,

where σ is multi-head attention operation. Simi-
larly, the FFN block can be written as

FFN(X) = σ(XWin + bin)Wout + bout,

where σ denotes an element-wise activation func-
tion, e.g. ReLU.

Let Q be an orthogonal matrix, which is a square
matrix satisfying QTQ = I . It is well known that
the Frobenius norm of a matrix ∥X∥2F =

∑
i,j x

2
ij

is invariant under orthogonal transformations of X ,
i.e., for any orthogonal Q1 and Q2:

∥Q1XQ2∥F = ∥X∥F . (1)

Using this invariance and QTQ = I , we may write
(

XWout +Xskip

∥XWout +Xskip∥F

)
Win =

=

(
XWoutQ+XskipQ

∥XWoutQ+XskipQ∥F

)
(QTWin),

(2)

where Xskip comes from the skip connection. As a
result, we modify the skip connections to apply Q
to the input of the RMSNorm (Xskip) and QT to
the output of RMSNorm (the part of (2) in brackets)
to keep the model unchanged.

3.2 Optimization problem formulation
We aim to improve the compression of the model
weights via structured matrices by utilizing rota-
tional invariance. In essence, for a given structure
of layers, we want to find the rotations that comple-
ment well with the chosen structure, then rotate the
network and project rotated weights on the struc-
tured matrix layers, with as little degradation of per-
formance as possible. For each layer, our objective
is thus minimizing the L2-difference between the
outputs of the rotated network and the outputs of
the compressed network on the calibration dataset.

For the ease of presentation and prior to delving
into a detailed motivation, let us first articulate the
final formulation of the optimization problem for
the ℓ-th layer:

∥Xℓ
out(W

ℓ
outQℓ − Ŵ ℓ

out)∥2F+ (3)

+ λin∥Xℓ
in(W

ℓ
in −QℓŴ

ℓ
in)∥2F → min

QT
ℓ Qℓ=I,Ŵ ℓ

α∈Sα,
α∈{in, out},

where Sin and Sout are structured matrix classes
that are utilized for compression. Despite the seem-
ing simplicity, it is a nontrivial nonconvex opti-
mization problem. We propose to approach it by al-
ternatingly optimizing between Qℓ and Ŵ ℓ

in, Ŵ
ℓ
out.

Individual optimization problems are respectively a
Procrustes problem for finding optimal orthogonal
matrix and a projection step in a weighted norm
for low-parametric representations. Importantly,
problems for each layer are independent from each
other and can be solved in parallel. We further dis-
cuss how we tackle this optimization problem in
Section 5.
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Figure 2: Illustration of the process of compression of a single transformer layer.

3.3 Motivating the optimization formulation

Let us discuss the motivation for (3) with a more
general approach. Besides giving us motivation,
it also uncovers the connection to the pruning ap-
proach of (Ashkboos et al., 2024). As discussed
in Section 3.1, by utilizing rotation invariance, one
can transform different layers of the network with
different rotations without changing the network
outputs. However, orthogonal matrices arise in skip
connections after the “rotation” step (see Figure 2),
and it can be fruitful for future work to additionally
compress them.

We denote the weights of the network with the
applied set of rotations Q = {Q1, Q2, . . . , QL} as
WQ,ℓ

in ,WQ,ℓ
out and the intermediate corresponding

inputs as XQ,ℓ
in , XQ,ℓ

out , X
Q,ℓ
skip (see Figure 2). Let us

denote the input of RMSNorm as

fQ,ℓ
out (X

Q,ℓ
skip) = XQ,ℓ

outW
Q,ℓ
out +XQ,ℓ

skipQ
T
ℓ−1Qℓ,

and the output of the linear mapping following
RMSNorm as

fQ,ℓ
in (XQ,ℓ

in ) = XQ,ℓ
in WQ,ℓ

in .

For the l-th rotation, objective can be written as

∥fQ,ℓ
out (X

Q,ℓ
skip)− f̂ ℓ

out(X
Q,ℓ
skip)∥2F+

+ λin∥fQ,ℓ
in (XQ,ℓ

in )− f̂ ℓ
in(X

Q,ℓ
in )∥2F → min

f̂ℓ
in,f̂

ℓ
out,

QT
ℓ Qℓ=I

Utilization of rotations affects matrices W ℓ
in,W

ℓ
out,

while also adding extra matrix QT
ℓ−1Qℓ in the skip

connection. We aim to compress rotated weights
WQ,ℓ

in ,WQ,ℓ
out while also having the possibility of

compressing matrices QT
ℓ−1Qℓ into a separate struc-

tured matrix Ŵ ℓ
skip. Then, our objective becomes:

λin∥XQ,ℓ
in WQ,ℓ

in −XQ,ℓ
in Ŵ ℓ

in∥2F+
∥(XQ,ℓ

outW
Q,ℓ
out +XQ,ℓ

skipQ
T
ℓ−1Qℓ)−

(XQ,ℓ
out Ŵ

ℓ
out +XQ,ℓ

skipŴ
ℓ
skip)∥2F → min

QT
ℓ Qℓ=I, Ŵ ℓ

α∈Sα,
α∈{in,out,skip}

Which can be rewritten as

∥Xℓ
out(W

ℓ
outQℓ − Ŵ ℓ

out)+

Xℓ
skip(Qℓ −Qℓ−1Ŵ

ℓ
skip)∥2F+

λin∥Xℓ
in(W

ℓ
in −QℓŴ

ℓ
in)∥2F → min

QT
ℓ Qℓ=I, Ŵ ℓ

α∈Sα,
α∈{in,out,skip}

We can approximate this further by abandoning
the compression of Ŵ ℓ

skip, setting it to be equal to
QT

ℓ−1Qℓ. This way we arrive at (3), and optimiza-
tion problem for the ℓ-th layer becomes indepen-
dent of the solution for the previous layers. This
allows solving problems for different layers in par-
allel. Additionally, experiments have shown that
balancing the terms in (3) using λin = ∥XoutWout∥2

∥XinWin∥2
improves the quality compared to λin = 1 (see Ta-
ble 1).

4 Structured matrix representations

In this section, we present different structured ma-
trix representations on which we focus in our work.
The sum of Kronecker products yields the most
consistent accuracy gain within different models.
Although the GS-matrix representation resulted in
slightly lower accuracy overall, its computation-
ally efficient structure offers significant potential
to accelerate inference. Finally, we examine matri-
ces with zero blocks, revealing connections with
pruning techniques (Ashkboos et al., 2024).
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4.1 Kronecker products

Definition 4.1. Given matrices A ∈ Rm×n and
B ∈ Rp×q, the Kronecker product A ⊗ B is the
pm× qn block matrix:

A⊗B =



a11B . . . a1nB

...
. . .

...
am1B . . . amnB


 .

One Kronecker product is a very restrictive struc-
ture, and one usually considers the sum of r > 1
Kronecker products for more accurate results. For-
tunately, the problem of obtaining the best approx-
imation within such a structure (projection opera-
tion):

∥∥∥∥∥W −
r∑

i=1

Ai ⊗Bi

∥∥∥∥∥

2

F

→ min
Ai,Bi

, (4)

has an analytical solution that can be obtained using
SVD (Golub and Van Loan, 2013), see Algorithm 1.
For better results, we need to use the weighted
Frobenius norm (3). The Kronecker product ap-
proximation problem with the weight matrix X
reads as:

∥∥∥∥∥X
(
W −

r∑

i=1

Ai ⊗Bi

)∥∥∥∥∥

2

F

→ min
Ai,Bi

. (5)

Although it does not admit a simple solution, the
SVD-based solution of (4) can be used for initial-
ization for the iterative process. As an iterative
procedure, we optimize (5) alternatively with re-
spect to {Ai} and {Bi}. Each of the alternating
subproblems is solved exactly, details are presented
in Appendix A.

Algorithm 1 SVD-based solution to (4).

Input: W ∈ Rmp×nq, rank r.
Output: {Ai}, {Bi} from (4).
Wr = W.rearrange((m p) (n q) →

(m n) (p q))
USV T = SVD(Wr)
A′ = U [:, :r]S[:r, :r]1/2

B′ = S[:r, :r]1/2V [:, :r]T

A = A′.rearrange(’(m p) r → r m p’)
B = B′.rearrange(’(n q) r → r n q’)
return A,B

4.2 GSmatrices

Definition 4.2. GS-matrices are matrices that can
be represented in the form PL(LPR)PR, where
L,R are block-diagonal matrices and PL, P, PR

are permutation matrices.

This class of matrices (Gorbunov et al., 2024)
generalizes Monarch (Dao et al., 2022) matrices
and describes matrices with low-rank blocks up to
a permutation of rows and columns. Thanks to this
property, the projection step

∥W − PL(LPR)PR∥2F → min
L,R

can be performed efficiently using an SVD-based
procedure described in (Gorbunov et al., 2024).
Likewise for the Kronecker decomposition, the
weighted approximation problem

∥X(W − PL(LPR)PR)∥2F → min
L,R

does not admit a simple solution. Nevertheless,
it can still be solved numerically by alternating
iterations with respect to L and R, see Appendix B.

4.3 Matrices with zero blocks and relation to
SliceGPT

Another structured class one could consider is
block-sparse matrices, which include matrices with
a single nonzero block. For example, this includes
matrices of the forms:

(
W 0

)
,

(
W
0

)
,

(
W 0
0 0

)
.

Such structures are not frequently used due to their
simplicity and poor expressivity. Nevertheless,
when paired with rotations, they can become a use-
ful representation. Interestingly enough, we find
that utilizing these classes and solving our objec-
tive have some relation to the SliceGPT method.

Proposition 4.3. Let λin = 0. Let Sin and Sskip

be matrices with zero columns. Then, solving our
objective is equivalent to finding the rotation of the
SliceGPT method and column slicing of Wout and
QT

ℓ−1Qℓ. Row slicing of Win and QT
ℓ−1Qℓ arises

naturally due to the sparse structure of inputs.

Proof. See Appendix C.
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5 Optimization algorithm

5.1 Orthogonal Procrustes problem
The problem of finding an orthogonal matrix Q,
which most closely fits a given matrix A to B, is
called an orthogonal Procrustes problem (OPP):

∥QA−B∥F → min
QTQ=I

.

It was first solved in the work (Schönemann, 1966).
The solution is Q = UV T , where U and V T are
from the SVD: BAT = UΣV T .

The extension of the Procrustes problem, where
an orthogonal matrix Q is multiplied from two
sides, is called the weighted orthogonal Procrustes
problem (WOPP):

∥CQA−B∥F → min
QTQ=I

.

Unfortunately, WOPP does not have a simple an-
alytical solution (Lissitz et al., 1976). We solve
it by parametrizing Q using the so-called Cayley
transform (Golub and Van Loan, 2013) and using
conjugate-gradients (see Algorithm 3 and (6)).

5.2 Efficient initialization
As we mentioned above, the optimization prob-
lem (3) does not admit a simple solution. There-
fore, we suggest finding a proper initialization for
the arising matrices first. As a good initial point we
can use optimal solution in the Frobenius norm:

∥WoutQ−Ŵout∥2F+∥QTWin−Ŵin∥2F → min
Ŵout,Ŵin,
QTQ=I

To solve this problem, we can rewrite it as:
∥∥∥[Wout,W

T
in]Q− [Ŵout, Ŵ

T
in]
∥∥∥
2

F
→ min

Ŵout,Ŵin,
QTQ=I

,

which is solved using the alternating scheme called
alternating least squares (ALS), see Algorithm 2.
In particular, we first find optimal Ŵout, Ŵin for
the fixed Q, and then optimal orthogonal matrix
Q for the fixed Ŵout, Ŵin (orthogonal Procrustes
problem). The process is repeated until the maxi-
mum number of iterations is reached.

5.3 Alternating iteration
After obtaining initializations for orthogonal lay-
ers from ALS in Frobenius norm, we proceed with
more computationally challenging weighted opti-
mization scheme, described in Algorithm 3. Even

Algorithm 2 ALS in the Frobenius norm
Input: Wout,Win.
Set Q = I .
for 1 . . . n_iters do

▷ Projection step (Section 4):
Ŵin = argmin

W∈Sin

∥QTWin −W∥2F
Ŵout = argmin

W∈Sout

∥WoutQ−W∥2F
Wappr = [Ŵout, Ŵ

T
in]

W = [Wout,W
T
in]

▷ Solve OPP, using SVD (Section 5.1)
Q = argmin

QTQ=I

∥WQ−Wappr∥2F
end for
return Q, Ŵin, Ŵout

though we only do a handful of steps of the algo-
rithm, this step is crucial and noticeably improves
results, as is shown in Table 1.

Algorithm 3 ALS in the weighted norm
Before compression in weighted norm, rotate the
network with Qinit from Algorithm 2.
Input Wout,Win, Xout, Xin.
Set Q = I
for 1 . . . n_iters do

▷ Weighted norm projection (Appx. A, B):
Ŵout = argmin

W∈Sin

∥Xout(WoutQ−W )∥2F
Ŵin = argmin

W∈Sout

∥Xin(Win −QW )∥2F
▷ Solve WOPP by parametrizing Q with Cay-

ley transform (6) and using conjugate gradients:
Q = argmin

QTQ=I

∥Xout(WoutQ− Ŵout)∥2F+

+∥Xin(Win −QŴin)∥2F
end for
return Q, Ŵin, Ŵout

5.4 Practical aspects
Computing inputs. The input of the linear layer X
is a matrix of the shape bs × n, where b, s and n
are respectively the sequence length, the number
of calibration samples and the hidden dimension.
Typically, b and s are large, so making computa-
tions with X is challenging. However, we can use
square root of the smaller n× n correlation matrix
XTX ∈ Rn×n instead of X to solve the optimiza-
tion problem. Indeed,

∥(XTX)1/2(. . . )∥F = ∥X(. . . )∥F .
26942



To efficiently compute the correlation matrix, we
divide X ∈ Rbs×n into smaller matrices (batches)
Xi ∈ Rbis×n, which fit into memory, and compute
XTX =

∑
iX

T
i Xi.

Embedding and head layers. For the embed-
ding layer the inputs Xin are one-hot vectors with
ones standing in the position of the chosen tokens.
Therefore, the correlation matrix XT

inXin is equal
to the diagonal matrix D, where Dii is the number
of times the i-th token appears in the calibration
dataset. This simplifies the weighted problem to:

∥
√
D(WembQ− Ŵemb)∥2F + ∥ . . . ∥2F → min

Q
,

where Wemb is the weight of embedding, Ŵemb is
its approximation with the matrix decomposition.
This prompted us to also experiment with different
functions of D and we found that

√
D + 1 gave

the best results, although log(D + 1) also worked
well (see Tables 1, 2). We have also discovered that
weighting the model’s head with the same diagonal
matrix as embedding during compression in Frobe-
nius norm additionally improves the performance.

Orthogonal parametrization. When rotat-
ing the network with the set of weights Q =
{Q1, Q2, . . . QL}, one downside is additional
weights QT

ℓ−1Qℓ that arise in skip connections and
should also be stored as the weights. This nega-
tively affects the compression ratio. One trick to
reduce the number of parameters is an observation
that QT

ℓ−1Qℓ is an orthogonal matrix.
Orthogonal matrices (except for those that have

an eigenvalue exactly equal to −1) of size d × d
can be represented through the Cayley transform:

Q = (I +K)(I −K)−1, (6)

or through the matrix exponential (if detQ = 1):

Q =

∞∑

n=0

Kn

n!
(7)

where K is skew-symmetric: K = −KT . This
allows us to only store the upper triangular part of
the matrix K, which reduces the number of param-
eters from d2 to d(d−1)

2 . If detQ = −1, any row of
Q can be multiplied by −1 to change det to 1. For
the Cayley transform, if there exist eigenvectors ui
corresponding to −1 eigenvalues, we multiply Q
by Householder matrices I − 2vvT /∥v∥22, where
v = Re(ui) or v = Im(ui), to eliminate all −1
from the spectrum.

6 Experiments

6.1 Setup

We implement our method for OPT (Zhang et al.,
2022) and Llama2 (Touvron et al., 2023) models
using Hugging Face Transformers (Wolf, 2020).
As the calibration data we use 128 sequences of
length 2048 from WiKiText2 dataset (Merity et al.,
2016). Experiments were run on a single V100
GPU with 32GB memory or A100 GPU with 80GB
memory. We evaluate zero-shot performance using
LM Evaluation Harness (Gao et al., 2024a) across
ARC-e, ARC-c (Clark et al., 2018), PIQA (Bisk
et al., 2020), WinoGrande (Sakaguchi et al., 2021),
and HellaSwag (Zellers et al., 2019) datasets.

6.2 Details of implementation

Every pair of the blocks Wout,Win is rotated inde-
pendently with its own orthogonal matrix, which
allows us to parallelize the computation of the or-
thogonal matrices. We have implemented paral-
lelization of ALS in Frobenius norm (Algorithm 2).
The speedup depends on the number of processes
that can be run simultaneously in GPU memory.

The compression process consists of two stages.
Firstly, we compute optimal orthogonal matrices
in the Frobenius norm (Algorithm 2), then we ro-
tate the network using them and run compression
in the weighted norm (Algorithm 3). We use 50
ALS iterations in Frobenius norm for small models
and 25 iterations for 13b models. We use 1 itera-
tion of ALS in the weighted norm for all models.
We parametrize orthogonal matrix with the Cayley
transform and apply 500 iterations of conjugate
gradients to find optimal orthogonal matrices in the
weighted norm. We do not compress the Values
matrix at all, as it noticeably degrades the results.

6.3 Results

Generation performance. We assess the gener-
ation performance of the compressed models us-
ing the WikiText2 test set. Table 1 compares our
method against SliceGPT at approximately 25%
compression of the weight matrices. For the de-
tails on choice of matrix sizes in decompositions,
see Appendix D. The “F” row demonstrates the
perplexity achieved by finding optimal orthogonal
matrices in the Frobenius norm (see Section 5.2).
We observe that compression using the Frobenius
norm alone is not sufficient to preserve model per-
formance, particularly for small models. However,
further compression in the weighted norm helps to
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Method Norm Struct. Coef.
OPT Llama2

125m 2.7b 13b 7b 13b
ppl % ppl % ppl % ppl % ppl %

Dense 27.65 0 12.47 0 10.13 0 5.47 0 4.88 0
SliceGPT 38.65 20.12 14.84 16.51 11.12 16.00 7.60 16.04 6.60 15.94

ProcrustesGPT F Kron. log(D + 1) 58.17 19.59 82.47 15.57 15.20 15.00 16.37 15.04 8.43 14.93
ProcrustesGPT W Kron. log(D + 1) 38.48 19.59 14.17 15.57 10.87 15.00 8.48 15.04 5.72 14.93
ProcrustesGPT F Kron.

√
D + 1 55.91 19.59 78.97 15.57 15.38 15.00 11.98 15.04 8.39 14.93

ProcrustesGPT W Kron.
√
D + 1 36.08 19.59 13.95 15.57 10.67 15.00 6.54 15.04 5.71 14.93

ProcrustesGPT F GS
√
D + 1 154.09 19.45 152.51 15.57 261.57 15.00 11.65 15.05 8.80 14.93

ProcrustesGPT W GS
√
D + 1 39.58 19.45 13.81 15.57 10.68 15.00 6.76 15.05 5.96 14.93

Table 1: Perplexity results on WikiText2. The calibration dataset size is 128 sequences of 2048 tokens. “Ppl” denotes
perplexity, the columns with % show the percentage of parameters compressed. “F” stands for the optimization
in Frobenius norm, which is used before optimization in weighted norm, denoted as “W”.“Coef.” stands for the
diagonal matrix, which weighs embedding and head. In the rows with log(D + 1), λin = 1; in the rows with√
D + 1, λin = ∥XoutWout∥2

∥XinWin∥2 .

Model Method Struct. Coef. ARC-c ARC-e HellaS. PIQA WinoG. Average

OPT-13b

Dense 35.75 61.83 69.88 76.82 65.19 61.89
SliceGPT 33.62 61.95 62.99 73.67 63.30 59.10

ProcrustesGPT Kron. log(D + 1) 36.52 58.71 68.27 76.22 63.61 60.67
ProcrustesGPT Kron.

√
D + 1 36.60 62.25 68.41 76.44 64.96 61.73

ProcrustesGPT GS
√
D + 1 35.07 59.09 67.14 76.06 65.59 60.59

Llama2-7b

Dense 46.25 74.58 75.99 79.11 68.82 68.95
SliceGPT 35.15 56.10 53.04 65.78 62.98 54.61

ProcrustesGPT Kron. log(D + 1) 41.98 68.35 69.72 73.94 67.40 64.28
ProcrustesGPT Kron.

√
D + 1 42.32 68.01 70.20 76.39 66.30 64.64

ProcrustesGPT GS
√
D + 1 36.69 62.88 66.91 74.37 67.40 61.65

Llama2-13b

Dense 49.23 77.53 79.36 80.52 72.30 71.79
SliceGPT 39.51 62.92 56.98 67.25 67.64 58.86

ProcrustesGPT Kron. log(D + 1) 44.97 73.19 73.43 77.58 70.48 67.93
ProcrustesGPT Kron.

√
D + 1 44.80 73.23 73.94 77.53 70.88 68.07

ProcrustesGPT GS
√
D + 1 44.45 73.32 71.19 76.50 70.32 67.16

Table 2: Zero-shot task performance of compressed OPT-13b, Llama2-7b and Llama2-13b. ProcrustesGPT
compresses the weights with Kronecker product. The compression ratio is the same as in Table 1.

regain perplexity, which is shown in the “W” row.
We observe that GS performs consistently worse
than Kronecker products in the Frobenius norm
for OPT models, and produces approximately the
same results in the weighted norm. Our method sur-
passes SliceGPT at a similar level of compression.
The compression ratios in the tables are presented
with respect to the full model size.

Table 3 compares ProcrustesGPT to the methods
that do not compress embedding and model’s head.
SVD-LLM (Wang et al., 2024) applies weighted
low-rank approximation, while DISP-LLM (Gao
et al., 2024b) and SLEB (Song et al., 2024) are
pruning methods. ProcrustesGPT outperforms
other baselines at lower compression rates, but its

performance starts deteriorating at 36% compres-
sion of parameters.

Zero-shot tasks. We evaluate our models
compressed in the weighted norm on five zero-
shot tasks. Our method consistently outperforms
SliceGPT, as shown in Table 2. The difference is
more pronounced for the Llama2 models, where
our method surpasses SliceGPT by an average of
9-10%. We notice that compression with sum of
Kronecker products better maintains model quality
than GS . Table 4 shows that on average Procrustes-
GPT achieves better zero-shot performance than
other baselines.
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Llama2-7b Llama2-13b
Method ppl % ppl % ppl % ppl % ppl % ppl %

Dense 5.47 0 5.47 0 5.47 0 4.88 0 4.88 0 4.88 0
SVD-LLM 7.86 14.44 9.73 25.00 14.39 35.58 6.34 14.64 7.53 25.36 10.08 36.09
DISP-LLM 6.80 14.31 8.52 25.02 10.92 35.60 6.23 14.60 7.90 25.36 10.05 36.13

SLEB 6.95 12.01 10.39 24.03 22.76 36.04 5.85 12.19 7.73 24.37 11.36 36.56
ProcrustesGPT (Kron) 6.43 14.07 8.19 25.09 19.55 36.11 5.68 14.30 6.95 25.48 16.88 36.66
ProcrustesGPT (GS) 6.65 14.08 7.97 25.08 14.20 36.12 5.94 14.30 7.02 25.48 10.85 36.66

Table 3: Perplexity of compressed Llama2 on WikiText2. Embedding and head are not compressed for all methods.
The calibration dataset size is 128 sequences of 2048 tokens. % shows the percentage of parameters compressed.

Method % ARC-c ARC-e HellaS. PIQA WinoG. Average

Dense 0 49.23 77.53 79.36 80.52 72.30 71.79

SVD-LLM 14.64 39.25 65.61 63.92 73.83 68.35 62.19
DISP-LLM 14.60 47.61 70.12 74.77 76.93 69.61 67.81

SLEB 12.19 46.33 72.77 74.11 78.18 69.85 68.25
ProcrustesGPT (Kron) 14.30 45.56 74.16 74.29 77.58 70.24 68.37
ProcrustesGPT (GS) 14.30 45.05 73.40 71.71 76.77 70.56 67.50

SVD-LLM 25.36 32.76 54.34 54.19 68.12 65.98 55.08
DISP-LLM 25.36 40.27 61.83 69.40 73.56 63.30 61.67

SLEB 24.37 38.14 63.47 66.78 76.39 60.70 61.10
ProcrustesGPT (Kron) 25.48 38.48 70.03 66.42 75.03 66.06 63.20
ProcrustesGPT (GS) 25.48 41.04 71.38 66.12 74.71 67.17 64.10

SVD-LLM 36.09 26.96 43.22 43.35 61.53 60.54 47.12
DISP-LLM 36.13 30.72 53.03 60.65 68.72 58.64 54.35

SLEB 36.56 33.62 52.15 58.42 71.27 59.67 55.03
ProcrustesGPT (Kron) 36.66 29.69 52.95 48.56 64.80 59.98 51.20
ProcrustesGPT (GS) 36.66 33.70 61.87 52.58 67.85 62.43 55.69

Table 4: Zero-shot performance of compressed Llama2-13b. Embedding and head are not compressed for all
methods. % shows the percentage of model parameters compressed.

7 Conclusion

This paper presents an approach to LLM compres-
sion with structured matrix factorizations, which
is suitable for compression with various types of
decompositions, including Kronecker products and
GS matrices. Our method maintains performance
in generation and zero-shot tasks, and does not re-
quire recovery fine-tuning. We hope this work will
inspire further research on training-free compres-
sion with structured representations.

8 Limitations

A natural question may arise if the models com-
pressed using ProcrustesGPT can be fine-tuned
with standard methods such as LoRA. The struc-
tured weights may not align well with the low-rank

nature of adapters. As a result, after the fine-tuning
we will need to store the structured representation
of initial weights and the LoRA adapters separately,
which may be inconvenient. Therefore, models
compressed using structured factorizations require
the development of PEFT methods that are better
suited to these structures.
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A Kronecker approximation in weighted
norm

Let A ∈ Rr×m1×n1 , B ∈ Rr×m2×n2 . The problem
of Kronecker approximation in the weighted norm
can be written as

g(A,B) =

∥∥∥∥∥Y −X

r∑

i

(Ai ⊗Bi)

∥∥∥∥∥

2

F

→ min
A,B

.

We can not solve this problem explicitly, so we will
iteratively optimize this expression with respect to
A for the fixed B and with respect to B for the
fixed A. We can rewrite it as

g(A,B) = tr

(
Y TY − 2Y TX

(
r∑

i

Ai ⊗Bi

)
+

+

(
r∑

i

Ai ⊗Bi

)T

XTX




r∑

j

Aj ⊗Bj




 .

Now we take the differential with respect to A

dg = tr

(
2Y TX

(
r∑

i

dAi ⊗Bi

)
+

+2

(
r∑

i

Ai ⊗Bi

)T

XTX




r∑

j

dAj ⊗Bj




 .

To find the optimal A we should equate the gradient
with respect to A to zero. It is complicated to write
the solution using formulas, so we will use tensor
diagrams instead. In tensor diagrams, the circles
denote multidimensional arrays, the connections
between them denote the summation by dimen-
sions. Let us equate the dg to zero and illustrate it
as follows:

tr



(

r∑

i

Ai ⊗Bi

)T

XTX




r∑

j

dAj ⊗Bj




−

− tr

(
Y TX

(
r∑

i

dAi ⊗Bi

))
= 0
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B B

dAA

XTX

B

dA

Y TX

r r
n2

n1

m1 m1

m2 m2

n2

n1

m2

m1

r

− = 0

Now we equate the gradient with respect to A to
zero:

B B

A

XTX

B

Y TX

r r
n2

n1

m1 m1

m2 m2

n2

n1

m2

m1

r

=

We can reshape the tensors in the left and right
parts into matrices. Let us denote the matrix in
the right part by D. The left part is the tensor A
reshaped into matrix of size rm1 × n1 multiplied
by a matrix C:

C A D
n1rm1m1 m1 n1=

Then the solution is

A = (C+D).reshape(r,m1, n1).

The pseudo-code is shown in Algorithm 4.

Algorithm 4 Kronecker appr. in weighted norm

Input B ∈ Rr×m2×n2 , Y ∈ Rm1m2×n1n2 , X ∈
Rm1m2×m1m2 .
Solve ∥Y −X

∑r
i (Ai ⊗Bi)∥2F → minA

Z = XTX.reshape(m1,m2,m1,m2)
C = einsum(’rij,nkj,aibk→ranb’, B,B,Z)
C = C.reshape(rm1, rm1)
T = XTY.reshape(m1,m2, n1, n2)
D = einsum(’rij,aibj→rab’, B, T )
D = D.reshape(rm1, n1)
A = (C+D).reshape(r,m1, n1)
return A

B GSpproximation in weighted norm

Let L be block-diagonal matrix with kl blocks of
size Li ∈ Rbl1×bl2 , R be block-diagonal matrix
with kr blocks of size Ri ∈ Rbr1×br2 . Let us solve
the approximation with GS matrices with fixed
permutations PL, P, PR in the weighted norm:

∥Y ′ −X ′PLLPRPR∥2F → min
L,R

.

Due to the unitary invariance of Frobenius norm
and orthogonality of permutation matrices, we can
rewrite it as

∥Y −XLPR∥2F → min
L,R

,

where X = X ′PL, Y = Y ′P T
R . We can not solve

this problem analytically, so we will optimize itera-
tively with respect to L and R.

To find optimal R for the fixed L we have to
solve the least squares problem for each of the
blocks Ri. Let us divide Y and XLP by columns
into kr blocks Yi ∈ Rkl·bl1×bl2 and (XLP )i ∈
Rkl·bl1×bl2. Then we can find the optimal R as

Ri = (XLP )+i Yi.

To solve the optimization problem with respect to L
for the fixed R, we use built-in iterative algorithm
for least squares problem. However, to avoid poorly
conditioned systems, we first divide X and PR into
kl blocks by columns and rows respectively, and
make QR decomposition of Xi and (PR)i. The
result is shown in Algorithm 5 below.

Algorithm 5 Find optimal L

Input Xi ∈ Rkl·bl1×bl1 , Y ∈
Rkl·bl1×kr·br2 , (PR)i ∈ Rkl×kr·br2 .
Solve ∥Y −∑kl

i XiLi(PR)i∥2F → minL
QXi , RXi = qr(Xi)
Q(PR)Ti

, R(PR)Ti
= qr((PR)Ti )

L = argminL

(
Y −∑kl

i QXiLiQ
T
(PR)Ti

)

Li = R+
Xi
Li(R

T
(PR)Ti

)+

return L

C Proof of Proposition 4.3

Firstly, let us write

∥Xout(WoutQ− Ŵout)+

+Xskip(Q−Qℓ−1Ŵskip)∥2F =

= ∥(XoutWout +Xskip)−
− (XoutŴout +XskipQℓ−1Ŵskip)Q

T ∥2F

.

Note that slicing of the columns of matrices
Ŵskip and Ŵout make matrix XoutŴoutQ

T +

XskipQℓ−1ŴskipQ
T at most of rank d, where

d is the dimension after slicing. If we now
show, that we can choose appropriate matrices
Q, Ŵout, Ŵskip such that they correspond to best
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low-rank approximation of XoutWout +Xskip, we
will show that these matrices are the analytical solu-
tions to our problem. Let P equal to the following
projector:

P =

(
Id 0
0 0

)

Consider following matrices for Ŵout, Ŵskip:

Ŵout = WoutQP ; Ŵskip = QT
ℓ−1QP

Substituting, we get:

∥(XoutWout +Xskip)Q(I − P )∥2F → min
QTQ=I

Solution to which is well-known and revolves
around computing SVD of (XoutWout + Xskip)
(taking principal components). This also corre-
sponds to the best low-rank approximation and
therefore found solution is optimal.

Up to a normalization layer, this corresponds
to the rotations and slices of Wout and QT

ℓ−1Qℓ

layers applied in SliceGPT. Sparse block structure
that arises in inputs after the first layers allows to
also slice Win and QT

ℓ−1Qℓ along other dimension,
making it equivalent to full SliceGPT scheme.

D Choice of sizes for factorizations.

To compress a matrix M of size n×m at approxi-
mately p/q of its parameters with the sum of r Kro-
necker products

∑r
i Ai ⊗Bi, a natural choice is to

set r = p, Ai of size q× 1 and Bi of size n/q×m.
We assume n is divisible by q. Then the number
of parameters in the sum

∑r=p
i Ai ⊗Bi equals

p(q + (n/q)m) = qp + nm(p/q), which is ap-
proximately p/q of initial matrix size. In our case,
we use q = 4 and r = 3, yielding ∼ 25% com-
pression rate for layers. We use q = 5, r = 8 for
∼ 37.5% compression, q = 1, r = 2 for ∼ 50%
compression.

It is important to note, that splitting by q should
be applied on the side that is multiplied by an or-
thogonal matrix, so that it has an effect on approxi-
mation error. For example, if the matrix Win is mul-
tiplied by orthogonal matrix from the left, then de-
composition should be Ai ∈ Rq×1, Bi ∈ Rn/q×m

or Ai ∈ Rn/q×m, Bi ∈ Rq×1. If Wout is multiplied
from the right, then Ai ∈ R1×q, Bi ∈ Rn×m/q or
Ai ∈ Rn×m/q, Bi ∈ R1×q.

When compressing the matrix M ∈
Rkl∗bl1×kr∗br2 with GS decomposition using
L with kl blocks of the size bl1 × bl2 and R with

kr blocks of size br1 × br2, the compression
ratio equals c = kl∗bl1∗bl2+kr∗br1∗br2

kl∗kr∗bl1∗br2 . From the
definition of GS matrices, kl ∗ bl2 = kr ∗ br1,
which means that it is easy to find bl2 and br1 if
c, kl, bl1, kr, br2 are known. To compress square
matrices at c = 3/4, we choose kl, kr = 4, 2. For
rectangular matrices, kl, kr = 4, 8. For embedding
and head kl, kr = 1, 4.
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