MMRefine: Unveiling the Obstacles to Robust Refinement
in Multimodal Large Language Models

Gio Paik* Geewook Kim Jinbae Im *
Theta One, Inc. NAVER Cloud Al NAVER Cloud Al
giopaik@thetaone.co KAIST Al jinbae.im@navercorp.com

gwkim.rsrch@gmail.com

Abstract

This paper introduces MMRefine, a Multi-
Modal Refinement benchmark designed to eval-
uate the error refinement capabilities of Multi-
modal Large Language Models (MLLMs). As
the emphasis shifts toward enhancing reasoning
during inference, MMRefine provides a frame-
work that evaluates MLLMs’ abilities to detect
and correct errors across six distinct scenarios
beyond just comparing final accuracy before
and after refinement. Furthermore, the bench-
mark analyzes the refinement performance by
categorizing errors into six error types. Exper-
iments with various open and closed MLLMs
reveal bottlenecks and factors impeding refine-
ment performance, highlighting areas for im-
provement in effective reasoning enhancement.
Our code and dataset are publicly available at
https://github.com/naver-ai/MMRefine.

1 Introduction

Recent advances have endowed MLLMs with re-
markable capabilities, enabling them to tackle com-
plex challenges such as mathematical reasoning
and multimodal understanding (Grattafiori et al.,
2024; Liu et al., 2024; Chen et al., 2025).

Instead of concentrating solely on scaling model
parameters during training, current research aims
to strengthen inference-time reasoning. Techniques
such as Self-Refinement, where models iteratively
improve their outputs (Madaan et al., 2023; Li et al.,
2024a; Kumar et al., 2025; Huang et al., 2024b;
Zhang et al., 2024), and engaging multiple models
or agents in debate to achieve consensus (Liang
et al., 2024; Talebirad and Nadiri, 2023; Chen et al.,
2024) have gained traction.

These methodologies heavily rely on the ability
of MLLMs to evaluate and refine their responses.
If such capability is not sufficiently secured, refine-
ment might unintentionally impair performance,
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Figure 1: Motivation. Error refinement fails for a variety
of scenarios and error types. Systematic evaluation is
vital for providing accurate feedback and enhancing
performance.

causing incorrect corrections and unnecessarily pro-
longed response times (Huang et al., 2024a). There-
fore, it is essential to investigate whether MLLMs
can accurately identify and correct errors in their
reasoning processes.

However, previous studies primarily compare
the accuracy of the final answer before and after
applying refinement (Huang et al., 2024a; Li et al.,
2024a) without sufficient analysis of MLLMs’ re-
finement capabilities. Although Yan et al. (2024)
analyze specific abilities such as error localization
and classification, their scope is limited to error
detection capability.

In this paper, we propose a new benchmark,
MultiModal Refinement (MMRefine), to evaluate
whether MLLMs can detect errors in their initial so-
lutions and improve them. Unlike previous studies
that compare accuracy before and after refinement,
MMRefine assesses refinement outcomes beyond
mere final accuracy by categorizing them into six
scenarios that can occur during the refinement pro-
cess: False Error Detection and Verification Suc-
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Figure 2: Evaluation Protocol. We define six scenarios
to evaluate MLLM refinement capabilities.

cess for correct solutions, and Refinement Failure,
Error Detection Success, Error Correction Success,
and Refinement Success for incorrect solutions, as
shown in Figure 1 and 2. Our approach enables the
identification of refinement bottlenecks and offers
a nuanced understanding of MLLMs’ refinement
capabilities.

Through extensive experiments, we validate that
MMRefine is effective for evaluating and analyzing
the refinement capability of MLLMs. We evaluate
17 MLLMs’ refinement capability and examine
which stages in the refinement process become bot-
tlenecks for them. By comparing these scores with
the actual self-reflection results on other bench-
marks, we demonstrate the potential of the MMRe-
fine as a reliable benchmark for refinement ability.
Furthermore, we categorize the errors in MMRe-
fine into six types and provide an analysis of the
refinement performance for each error type. The
analysis shows that MLLMs of various sizes and
architectures exhibit varying strengths and weak-
nesses in correcting different types of errors.

Our study provides two main contributions. First,
we introduce MMRefine, a MultiModal Refinement
benchmark designed to systematically evaluate the
refinement capabilities of MLLMs across the entire
refinement process. Second, through comprehen-
sive experiments, we evaluate the performance of
each refinement process in MLLMs and analyze
the error types to which they are vulnerable.

2 MMRefine

2.1 Overview of MMRefine

We propose MMRefine, a novel benchmark that is
meticulously designed to evaluate the refinement
capability of MLLMs. To effectively evaluate the
models’ ability to refine their responses, we fo-
cus on mathematical problems that are sufficiently
challenging to require refinement, often leading to
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Figure 3: Illustration of the Refinement Process. The
model identifies an error in the initial solution and
corrects it, then proceeds to derive a revised solution
from the point of correction.

longer reasoning paths, and allow for a clear and
logical determination of correctness. Given an ini-
tial solution to a problem, we prompt the model
to generate an improved solution as shown in Fig-
ure 3. Unlike previous studies (Huang et al., 2024a)
that solely compared performance before and after
refinement, we conduct a more granular evaluation
by categorizing the refinement outcomes into six
scenarios as depicted in Figure 2.

More specifically, we instruct MLLMs to review
the solution step-by-step, identify and correct any
detected errors, and regenerate the solution from
the corrected point. Then, we categorize the refine-
ment outcome into one of six scenarios by employ-
ing GPT-40 as a judge (Zheng et al., 2023) and
considering the reference feedback. To ensure the
reliability of LLM-based evaluations, we perform
human verification and OPENAI 01 verification as
described in Section 3.4. If the model incorrectly
identifies an error in a correct solution, it is classi-
fied as False Error Detection (FD); otherwise, it
is categorized as Verification Success (VS). If the
model fails to detect an error in an incorrect solu-
tion, it is classified as Refinement Failure (RF);
otherwise, it is categorized as Error Detection Suc-
cess (ED). Note that since errors propagate to sub-
sequent steps, we focus on the first error. Among
the ED cases, if the error is accurately corrected,
it is classified as Error Correction Success (EC);
furthermore, if the subsequent solution is generated
flawlessly, it is categorized as Refinement Success
(RS). For details on the refinement and evaluation
process, please refer to Appendix A.
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Refinement  Error Detection Error Correction Refinement False Error Verification RefScore mRecall
Failure (RF) Success (ED) Success (EC) Success (RS) | Detection (FD) Success (VS)
Closed-Source MLLMs
GPT-40 (OpenAl et al., 2024a) 15.57 84.43 43.15 29.27 6.74 93.26 22.53 88.84
GEMINI-1.5-PRO (Google, 2024) 3.75 96.25 64.54 45.22 22.10 77.90 23.12 87.08
CLAUDE-3.5-SONNET (Anthropic, 2024) 27.95 72.05 32.65 18.95 6.74 93.26 12.21 82.65
Open-Source MLLMs
LLAVA-ONEVISION-0.5B (Li et al., 2025) 36.40 63.60 2.06 2.06 75.66 24.34 -73.59 43.97
INTERNVL2.5-1B (Chen et al., 2025) 41.09 5891 3.75 1.88 19.85 80.15 -17.97 69.53
QWEN2-VL-2B (Wang et al., 2024b) 51.59 48.41 3.19 2.44 19.10 80.90 -16.66 64.65
INTERNVL2.5-4B (Chen et al., 2025) 45.22 54.78 6.00 4.13 0.75 99.25 3.38 77.02
LLAVA-NEXT-7B (Liu et al., 2024) 42.40 57.60 5.44 4.13 4.49 95.51 -0.37 76.55
LLAVA-ONEVISION-7B (Li et al., 2025) 42.59 5741 5.44 4.50 1.87 98.13 2.63 77.77
QWEN2-VL-7B (Wang et al., 2024b) 19.70 80.30 22.51 21.39 3221 67.79 -10.82 74.05
INTERNVL2.5-8B (Chen et al., 2025) 25.14 74.86 11.44 5.82 10.49 89.51 -4.67 82.19
LLAMA-3.2-VISION-11B (Grattafiori et al., 2024) 22.14 77.86 16.14 10.51 32.96 67.04 -22.45 7245
QWEN2-VL-72B (Wang et al., 2024b) 20.26 79.74 22.89 13.70 20.60 79.40 -6.90 79.57
LLAVA-NEXT-72B (Liu et al., 2024) 22.14 77.86 17.64 8.44 21.35 78.65 -12.91 78.26
LLAVA-ONEVISION-72B (Li et al., 2025) 31.14 68.86 21.76 11.07 4.87 95.13 6.20 81.99
INTERNVL2.5-78B (Chen et al., 2025) 15.57 84.43 32.65 20.26 17.98 82.02 2.29 83.23
LLAMA-3.2-VISION-90B (Grattafiori et al., 2024) 16.89 83.11 28.33 16.51 17.23 82.77 -0.72 82.94

Table 1: MMRefine Benchmark Results. The table shows performance metrics for closed-source and open-source
MLLMs, with top scores highlighted in blue (closed-source) and green (open-source). Lower values are better

for RF and FD, while higher values are better otherwise.

Inference Time (s) RefScore Refinement

CoT Refinement Efficiency
GPT-40 11.22 7.77 22.5 0.33
GEMINI-1.5-PRO 7.67 7.78 23.1 0.23
CLAUDE-3.5-SONNET 6.06 4.82 12.2 0.15
LLAMA-3.2-VISION-11B | 35.64 28.76 -22.5 -

Table 2: MMRefine Refinement Efficiency. We calcu-
late refinement efficiency by dividing RefScore by the
percentage of refinement inference time relative to the
initial CoT inference time.

2.2 Evaluation Metrics

To analyze the bottleneck stages during the refine-
ment process, we calculate the proportions for each
result scenario. Since the ratio of incorrect solu-
tions to correct solutions differs, we separately
measure the ratios of FD and VS among the correct
solutions and the ratios of RF, ED, EC, and RS
among the incorrect solutions.

For straightforward comparison and evaluation
of refinement capabilities, we introduce RefScore,
a metric concentrating on the overall refinement
performance of MLLMs, and mRecall, a metric
emphasizing error detection performance. The Ref-
Score is defined as:

RefScore = RS — FD

where RS and FD represent the proportions of
corrected and uncorrected solutions, respectively.
Meanwhile, mRecall is defined as:

mRecall = (ED + VS)/2.

This measures the model’s ability to both detect
actual errors and verify correct solutions accurately.

2.3 Dataset Construction

We construct MMRefine by carefully curating both
text-only and visual math problems. We sample
100 text-only problems from MathOdyssey (Fang
et al., 2024) and 100 visual problems from MathVi-
sion (Wang et al., 2024a) covering various subjects
and levels of difficulty as described in Appendix B.

To provide a variety of initial solutions, we gen-
erate total 800 initial solutions using four MLLM:s:
GPT-40 (OpenAl et al., 2024a), GEMINI-1.5-
PRrO (Google, 2024; Team et al., 2024), CLAUDE-
3.5-SONNET (Anthropic, 2024), and LLAMA-3.2-
VISION-11B (Grattafiori et al., 2024). Note that
MMRefine evaluates refinement processes under
realistic conditions. Unlike previous studies that
generated initial solutions by adding errors to cor-
rect solutions (Nath et al., 2025; Li et al., 2024b)
or imposing constraints such as limiting the chain-
of-thought steps on LLMs (Wu et al., 2024) to eval-
uate refinement capabilities, we employ solutions
generated without any constraints.

For reliable evaluation, reference feedbacks are
generated by OPENAI 01 (OpenAl et al., 2024b)
using the original human-annotated solutions, and
we validate them through the revision process. We
test whether three MLLMs (GPT-40, GEMINI-1.5-
PRrRO, and CLAUDE-3.5-SONNET) can revise incor-
rect initial solutions when reference feedbacks are
provided. We retain only the feedback where refine-
ment success is confirmed across all models and
ensure validity by either regenerating or manually
correcting the flawed feedback.

To conduct a detailed analysis of MLLMs’ refine-
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MMRefine MMRefinerext.onty MATH-500 MMRefineyisya MathVista
RefScore mRecall | RefScore mRecall | CoT Self-Reflection(A) | RefScore mRecall | CoT  Self-Reflection(A)
GPT-40 22.5 88.8 33.8 93.8 73.4 75.2 (+1.8) 12.9 84.5 60.5 61.2 (+0.7)
GEMINI-1.5-PRO 23.1 87.1 45.1 92.5 79.8 80.6 (+0.8) -8.8 74.5 71.6 70.6 (-1.0)
CLAUDE-3.5-SONNET 12.2 82.7 21.3 88.3 61.2 62.2 (+1.0) 39 77.8 63.0 63.2 (+0.2)
LLAMA-3.2-VISION-11B -22.5 72.5 -16.8 80.7 374 37.4 (0.0) -13.7 73.6 48.4 47.3 (-1.1)

Table 3: Comparison of MMRefine Scores and the Self-Reflection Results in MATH-500 and MathVista. To
conduct an in-depth analysis of the results in text-only and visual math problems, we report the results for the two
subsets of MMRefine: MMRefinetext.only consisting of MathOdyssey problems and MMRefiney;zya consisting of

MathVision problems. Refer to Appendix E for details.

Problem Logical Calculation Equation Visual Spatial
Understanding Reasoning Perception Reasoning
Closed-Source MLLMs
GPT-40 (OpenAl et al., 2024a) 36.7 29.4 32.8 34.7 26.3 11.5
GEMINI-1.5-PRO (Google, 2024) 36.7 48.6 67.2 61.2 35.0 23.1
CLAUDE-3.5-SONNET (Anthropic, 2024) 25.0 22.0 18.0 28.6 13.8 0.0
Open-Source MLLMs
LLAVA-ONEVISION-0.5B (Li et al., 2025) 33 0.6 49 0.0 2.5 3.8
INTERNVL2.5-1B (Chen et al., 2025) 1.7 1.7 1.6 0.0 1.9 7.7
QWEN2-VL-2B (Wang et al., 2024b) 0.0 2.8 33 0.0 2.5 7.7
INTERNVL2.5-4B (Chen et al., 2025) 33 4.0 6.6 6.1 3.1 3.8
LLAVA-NEXT-7B (Liu et al., 2024) 5.0 1.7 33 2.0 3.8 26.9
LLAVA-ONEVISION-7B (Li et al., 2025) 33 2.8 4.9 4.1 4.4 19.2
QWEN2-VL-7B (Wang et al., 2024b) 11.7 19.8 26.2 10.2 26.3 34.6
INTERNVL2.5-8B (Chen et al., 2025) 5.0 4.5 8.2 8.2 6.3 0.0
LLAMA-3.2-VISION-11B (Grattafiori et al., 2024) 6.7 15.8 18.0 16.3 2.5 3.8
QWEN2-VL-72B (Wang et al., 2024b) 8.3 11.9 21.3 12.2 15.6 11.5
LLAVA-NEXT-72B (Liu et al., 2024) 8.3 73 9.8 12.2 8.1 7.7
LLAVA-ONEVISION-72B (Li et al., 2025) 15.0 11.9 14.8 8.2 8.8 7.7
INTERNVL2.5-78B (Chen et al., 2025) 16.7 20.9 26.2 16.3 21.3 11.5
Llama-3.2-Vision-90B (Grattafiori et al., 2024) 15.0 16.4 19.7 18.4 15.6 15.4

Table 4: Comparison of RefScore by First Error Type. Maximum and minimum values are highlighted.

ment capabilities based on error types, we manu-
ally categorize the first errors in the initial solutions
into six types as depicted in Appendix C. Detailed
explanations of six error types are detailed in Ap-
pendix D.

3 Experiments

3.1 Overall Performance

We evaluate 17 MLLMs, including 3 closed-source
models and various open-source models from 5
MLLM families of differing sizes, as shown in Ta-
ble 1. In terms of mRecall, closed-source models
demonstrate superior performance compared to all
open-source models below 11B. Only a few large-
scale open-source models, namely INTERNVL2.5-
78B and LLAMA-3.2-VISION-90B manage to sur-
pass CLAUDE-3.5-SONNET. Additionally, closed-
source models correct errors in over 32% of initial
solutions, while most open-source models correct
less than 20%. For RS, which reflects perfect re-
sponse improvement, only two open-source mod-
els, INTERNVL2.5-78B and QWEN2-VL-7B, ex-
ceed the performance of the lowest closed-source

records. Despite this, their RefScores remain lower
than closed-source models due to high FD. These
findings suggest that the current error correction
proficiency of most open-source models remains
inadequate for effective refinement, even in larger
models exceeding 70B parameters. However, no-
table exceptions including QWEN2-VL-7B, which
achieves a higher RS score than CLAUDE-3.5-
SONNET, and INTERNVL2.5-8B, which records
a high mRecall score of 82.19, indicate refinement
potentials even in mid-scale models.

To ascertain which MLLMs offer reasonable
refinement performance relative to the increased
computational cost caused by refinement, we also
measure the refinement efficiency, as shown in Ta-
ble 2. Adding the refinement step increases infer-
ence time by 60-100% compared to the initial CoT
inference. Notably, refinement efficiency differs
significantly between models. Although GEMINI-
1.5-PRO achieves a higher RefScore compared to
GPT-40, the refinement efficiency of GPT-40 is
substantially higher. In practice, adopting refine-
ment necessitates balancing the increase in infer-
ence time with the anticipated performance gain.
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3.2 Correlation with Self-Reflection

We also analyze the correlation between MMRe-
fine scores and score changes after self-reflection
in other math benchmarks: MATH-500 (Hendrycks
et al., 2021) and MathVista (Lu et al., 2024), as
shown in Table 3. The results show that RefScore
and mRecall are correlated with the models’ refine-
ment capability. With the exception of GEMINI-
1.5-PRrO, RefScores in text-only and visual math
problems are directly correlated with the score
changes in MATH-500 and MathVista (correlation
coefficient 0.82). GEMINI-1.5-PRoO, particularly
for visual problems, exhibits a relatively low mRe-
call, which appears to have led to a decrease in
scores after self-reflection in MathVista. From the
results, we demonstrate that the MMRefine scores
are valuable indicators of the refinement capability.

3.3 Error Type Analysis

To understand what types of errors impede effective
refinement, we analyze the RefScore by six distinct
error types, as detailed in Table 4. While different
MLLM:s exhibit varying strengths and weaknesses
in refining specific error types, our findings indi-
cate that larger models with higher capacities tend
to perform significantly better at correcting four
text-related errors than two image-related ones. In
contrast, models smaller than 7B often demonstrate
superior handling of image-related errors. For in-
stance, LLAVA-NEXT-7B and QWEN2-VL-7B
perform better than even closed-source models in
correcting spatial reasoning errors. While this dis-
crepancy may be partially attributed to differences
in LLM and vision encoder sizes, it could also be in-
fluenced by the curriculum through which MLLMs
acquire their capabilities.

We also compare the correlation between RefS-
cores for each error type. As shown in Figure 4, the
performance on most error types is highly corre-
lated with that on other error types, whereas spatial
reasoning error type shows low correlations over-
all. This observation suggests that there may be
alternative approaches to enhancing refinement per-
formance for specific error types, such as spatial
reasoning errors, beyond merely scaling up the re-
finement capability of MLLMs.

3.4 LLM-based Evaluation

The nature of solving math problems allows for
diverse approaches and infinitely varied errors and
correction methods within the reasoning process.

Correlation Between RefScore by Error Types
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Figure 4: Correlation Between Refscore by Error
Types. We calculate the correlation coefficients of Ref-
Score for each error type across 17 models.

Because the human evaluation of such complex rea-
soning is not only highly demanding but can even
be inaccurate, automated methods such as LLM-as-
a-Judge (Zheng et al., 2023) have been proposed
to evaluate MLLMs’ reasoning processes. In MM-
Refine, we use GPT-40 as a judge. To ensure the
reliability of it, we compare GPT-40’s judgments
with those from human evaluations and OPENAI
01. GPT-40 achieves 72% agreement with human
judgments and 73% agreement with the OPENAI
01 judgments. While the alignments are not perfect,
the practical advantage of LL.M-based evaluation
becomes clear when considering its efficiency and
scalability. Whereas a human evaluation conducted
by an expert with university-level mathematical
knowledge takes over 8 hours, GPT-40 provides
reliable judgments in much shorter time and effort.

4 Conclusion

This paper introduces MMRefine, which evaluates
the refinement capabilities of MLLMs through an
analysis of their outcomes across six distinct sce-
narios and six error types. Our comprehensive as-
sessment of 17 MLLMs reveals that larger models
tend to refine textual errors better, whereas smaller
models are more effective with visual errors. For
spatial reasoning errors, only specific models ex-
hibit a certain level of refinement capability. These
insights into intrinsic refinement capabilities can
enhance MLLMs’ reasoning abilities and provide
guidance for addressing their weaknesses.
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Limitations

In this paper, we generate evaluation data by solv-
ing problems collected from two math benchmark
datasets using four closed-source and open-source
MLLMs. While this approach allows for consis-
tent evaluation of MLLM refinement capability,
the resulting data inherently lacks the diversity of
real-world use case scenarios and the breadth of ini-
tial solutions common in practice, such as solutions
from other models, human-authored responses, and
non-mathematical reasoning processes. Further-
more, although various correct answers may exist
when solving math problems, we adopt a single ref-
erence solution and conduct rigorous evaluations
to facilitate LLM-based assessment. This bias can
lead the model to be robust only in a few math-
ematical reasoning methods and overlook other
important issues (e.g., fact verification, diverse and
original problem-solving approaches). Although
we inevitably conduct evaluations based on a lim-
ited reference solution to enhance the credibility of
LLM-as-judge assessment, we aim to explore more
flexible methods for evaluating and verifying the
reasoning validity of MLLMs in future work.

Ethical Considerations

We acknowledge that, due to practical considera-
tions, the experimental results detailed in this paper
are derived from single-run assessments. However,
to uphold the reliability of our evaluation frame-
work, we dedicate considerable effort to refine the
prompts for the LLM-based judges carefully. Addi-
tionally, for the selected model, most prominently
GEMINI-1.5-PRO, we execute evaluations across
three iterations and observe that the standard devia-
tion of the resulting RefScore remains comfortably
below 1, thus suggesting a degree of score stability.
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A Refinement & Evaluation Protocol
Details

In this section, we delve into the specifics of how
refinement outcomes are generated and evaluated
using the MMRefine benchmark. Initially, we pro-
vide the model with a math problem and an initial
solution and instruct it to review the solution step-
by-step using the prompt in Figure 5. If an error
is identified during the review, the model stops re-
viewing and performs refinement starting from that
step. At the end of refinement, the model provides
the following outputs: the correctness of the ini-
tial solution, the explanation for this determination,
and the final answer.

When the initial solution refined by the model
is indeed correct, we determine whether the refine-
ment result is Verification Success (VS) or False
Error Detection (FD) by parsing the correctness
from the model’s response, as shown in Figure 6.
Conversely, if the initial solution is incorrect, we
evaluate the model’s refinement outcome by com-
paring it with the reference feedback through the
prompt in Figure 7. Specifically, the model’s suc-
cess begins with Error Detection (ED), which is
a prerequisite for subsequent scenarios, assessed
based on the “Error Detection” rubric of the prompt.
Following successful error detection, the model’s
Error Correction (EC) capability is evaluated using
the “Error Correction” rubric. Finally, Refinement
Success (RS), determined based on the “Effective-
ness and Correctness of the Feedback” rubric, sig-
nifies that the model not only detects and corrects
the error(s) but also derives a correct solution to the
correct answer, encompassing both ED and EC.

B Datasets Details

We sample 200 mathematical questions from the
MathOdyssey (Fang et al., 2024) and MathVi-
sion (Wang et al., 2024a) dataset as described
in Section 2.3. The MathOdyssey dataset features
mathematical questions from a wide range of sub-
jects, encompassing difficulty levels from High
School to University and Olympiad. Conversely,
the MathVision dataset offers visual math problems
across various domains, categorized by difficulty
levels 1 through 5. We curate 100 problems from
each of these two datasets to construct our bench-
mark, as summarized in Table 5.

MathOdyssey dataset is distributed under the
CC BY-SA 4.0 license, which permits its use as
a test set. The license covers the dataset itself but

Subject ‘ # of Questions
Algebra 39
Precalculus 12
Geometry 11
Combinatorics 10
Linear Algebra And Abstract Algebra 7
Calculus And Analysis 6
Probability 5
MathOdyssey Differential Equations 4
Statistics 4
Number Theory 1
Calculus 1
Level # of Problems
High School Math 35
High School Competition 39
College Math 26
Subject | # of Questions
Metric Geometry 48
Solid Geometry 13
Combinatorial Geometry 7
Algebra 6
Transformation Geometry 6
Descriptive Geometry 6
. Combinatorics 5
MathVision Graph Theory 3
Logic 3
Arithmetic 2
Counting 1
Level # of Problems
Level 2 25
Level 3 30
Level 4 29
Level 5 16

Table 5: MMRefine Data Statistics. MMRefine con-
sists of problems that cover a wide range of subjects and
levels of difficulty.

not questions in the dataset. The MathVista dataset
is available under the MIT License. MMRefine,
derived from two benchmarks, is released under
the CC BY-SA 4.0 license. This license covers the
elements we create or label, while the copyright of
the original questions remains with their respective
authors. Similar to MathOdyssey, MMRefine is
also restricted for testing purposes only, and its use
as training data for models is prohibited.

C Human Annotations Details

As detailed in Section 2.3, we manually annotate
the first error type in each initial solution. Annota-
tors are tasked with labeling each initial solution,
referencing the math problem, the model’s gener-
ated solution, and the problem’s original solution
to determine the presence of errors and, if errors
are found, to categorize the first error by its type.
The annotation is conducted by 14 annotators, with
12 holding a bachelor’s degree and 2 holding a
master’s degree.
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Source of Initial Solution

GPT-40 GEMINI-1.5-PRrRO CLAUDE-3.5- LLAMA-3.2-
SONNET VISION
GPT-40 20.97 14.82 16.90 33.41
GEMINI-1.5-PRO 18.25 11.86 21.79 38.06
CLAUDE-3.5-SONNET 19.65 7.06 3.69 18.49
LLAMA-3.2-VISION-11B -15.83 -24.51 -30.01 -19.50

Table 6: Performance Comparison of MLLMs Across Different Models Generating Initial Solutions. In each
row, the highest RefScore is highlighted in blue , the second highest in green , and the third highest in pink .

D Detailed Explanation of Error Types

To enable a nuanced analysis of MLLMs’ refine-
ment capabilities across various situations, particu-
larly concerning the nature of errors, we implement
a categorization scheme encompassing six distinct
error types. Problem understanding error occurs
when the model misinterprets the instructions or
constraints explicitly stated in the problem descrip-
tion. Logical reasoning error denotes instances
where the solution exhibits a flaw in the logical
flow of argumentation, leading to an invalid conclu-
sion. Calculation error refers to inaccuracies aris-
ing from numerical computation mistakes within
the mathematical derivation. Equation error en-
compasses a range of mistakes related to algebraic
manipulation, including, but not limited to, incor-
rect equation expansion or invalid variable substi-
tution. Visual perception error is identified when
the model fails to correctly interpret or recognize
essential information conveyed through the prob-
lem’s accompanying image. Lastly, spatial rea-
soning error is characterized by errors stemming
from flawed spatial reasoning, such as incorrect
assessments of geometric relationships or misin-
terpretations of spatial limitations. The error type
distribution of MMRefine is presented in Figure 8
and Figure 9.

E Experimental Details for Section 3.2

To explore the correlation of MMRefine with ex-
isting benchmarks, we conduct self-reflection ex-
periments on MATH (Hendrycks et al., 2021) and
MathVista (Lu et al., 2024), prominent benchmarks
within the Large Language Model research com-
munity. For MATH, we perform evaluations using
the 500 test subset, as used in (Lightman et al.,
2024). For MathVista, evaluations are conducted
on the testmini set. We begin by evaluating the
model’s baseline performance using basic Chain-
of-Thought (CoT) prompting (Wei et al., 2022).

Subsequently, we prompt the model to refine its ini-
tial response through self-reflection, utilizing the
prompt detailed in Figure 10.

F RefScore Comparison by Solution
Source

We conduct experiments to investigate how refine-
ment efficacy varies depending on the model that
provides the initial solution. As shown in Table 6,
all models achieve their best RefScore from initial
solutions originating from LLAMA-3.2-VISION
or GPT-40. Interestingly, most models tend to
successfully refine initial solutions generated by
LLAMA-3.2-VISION. A plausible interpretation
for this trend is that LLAMA-3.2-VISION tends
to generate responses with errors skewed towards
easier problem instances, thereby facilitating more
effective refinement, as shown in Figure 11.

G Comparison with Process Reward
Models

We evaluate whether RefScore correlates with Pro-
cess Reward Models (PRMs), which are used to
assess MLLMs’ reasoning processes and select bet-
ter ones. As shown in Table 8, we calculate the
correlation between RefScore and the directional
changes in rewards of VISUALPRM-8B (Wang
et al., 2025) before and after refinement. Our ex-
perimental results show a moderate relationship
between assessing improvements from refinements
using PRM rewards and the RefScore. This finding
can shed light on new directions for future research
to analyze and enhance the performance of reward
models in selecting better responses, particularly
from the refinement perspective.

We also examine whether PRMs could also im-
prove the refinement process, as shown in Table 7.
After applying the best-of-N selection with the
VISUALPRM-8B, we observe a trade-off where
Error Detection (ED) decreases while Verification
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| RF()) ED(1) EC(1) RS(M | VS(1) FD() | RefScore mRecall
GPT-40 1557 8443 4315 2927 | 9326 6.74 22.53 88.84
+VISUALPRM-8B (N=4) | 20.83 79.17 40.53 2233 | 96.63  3.37 18.96 87.90
GEMINI-1.5-PRO 375 9625 6454 4522 | 7790 22,10 | 23.12 87.08
+VISUALPRM-8B (N=4) | 7.88 9212 5891 39.59 | 8240 17.60 | 21.98 87.26
CLAUDE-3.5-SONNET 2795 7205 3265 1895 | 9326 6.74 12.21 82.65
+VISUALPRM-8B (N=4) | 31.52 6848 33.58 1876 | 9551 4.49 14.27 81.99
LLAMA-3.2-VISION-11B | 22.14 77.86 16.14 1051 | 67.04 3296 | -22.45 72.45
+VISUALPRM-8B (N=4) | 2552 7448 2195 13.32 | 80.15 19.85 -6.53 77.32

Table 7: MMRefine Performance Before and After Applying Best-of-N Selection with the VisualPRM. Improved

values are highlighted in bold.

‘ RefScore Reward Change

Threshold | RF (})

ED (1) | VS (1) FD () | mRecall

GPT-40 22.5 0.14
GEMINI-1.5-PrRO 23.1 -0.12
CLAUDE-3.5-SONNET 12.2 0.11
LLAMA-3.2-VISION-11B -22.5 -0.10

Correlation Coefficient: 0.4292

Table 8: Correlation Between RefScore and Visual-
PRM. We measure the correlation between RefScore
and the directional changes in VisualPRM rewards be-
fore and after refinement (41 for increase, —1 for de-
crease, 0 for no change).

Success (VS) increases. This results in performance
improvements for models with low VS but can lead
to a decrease in performance for those with high
VS due to reduced ED. These findings highlight
the potential of PRMs to assist with the refinement
of MLLMs that lack inherent error detection and
correction abilities.

Furthermore, we conduct an experiment to mea-
sure the MMRefine performance of the PRM itself.
Since the PRM only outputs a reward score for each
step, we evaluate its error detection ability using
the method described in the VISUALPRM paper,
as shown in Table 9. The threshold ablation shows
optimal mRecall (51.98) around a threshold of 0.6.
Consistent with the findings in Table 7, the results
indicate that the PRM exhibits high Verification
Success (VS), suggesting strong robustness against
false error detections but low Error Detection (ED).

H Qualitative Examples

Figure 12 and 13 illustrate the outcomes of the
models’ refinement attempts on the MMRefine
benchmark. In Figure 12, CLAUDE-3.5-SONNET
attempts to refine the initial solution from GPT-40
but fails to identify any errors, incorrectly judging
it as a correct solution, which results in a Refine-

0.1 71.11 2889 | 61.42 3858 45.16
0.2 7599 24.02 | 70.04 29.96 47.03
0.3 78.05 2195 | 76.78 23.22 49.37
0.4 81.99 18.01 | 81.65 1835 49.83
0.5 84.43  15.57 | 86.14 13.86 50.86
0.6 86.68 13.32 | 90.64 9.36 51.98
0.7 91.37 8.63 94.38 5.62 51.51
0.8 9587 4.13 98.50 1.50 51.31
0.9 99.62  0.38 99.63  0.37 50.00

Table 9: Error Detection Performance of VisualPRM.
We determine that a step is incorrect when the probabil-

ity of “incorrect” exceeds that of “correct” by a certain
threshold.

ment Failure (RF). On the other hand, Figure 13
shows GEMINI-1.5-PRO trying to find and cor-
rect an error in the initial solution generated by
CLAUDE-3.5-SONNET; however, it does not suc-
cessfully rectify the error. Despite the final answer
being A, which aligns with the ground truth, this
failure leads MMRefine to classify this instance as
an Error Detection Success (ED).
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You are a mathematical expert with extensive knowledge across various mathematical fields.
Your task is to meticulously evaluate and, if necessary, correct a given mathematical question and its
proposed solution.

Follow these steps:
1. Carefully read the provided question and solution.

2. Conduct a step-by-step review of the solution, addressing the following for each step:

- Verify the mathematical correctness and logical flow.

- Identify any errors including calculation errors, misunderstanding of the problem, or reasoning
error.

- If an error is found, immediately stop the review process and proceed to step 3.

- If no error is found, continue to the next step.

3. If an error is found:

- Provide a brief explanation of the error.

- Correct the solution starting from the erroneous step.
- Complete the rest of the solution correctly.

4. If no errors are found in the entire solution, provide a brief confirmation of its correct-
ness.

Output your analysis in the following format:
Review and Correction (if applicable):

Step 1: [Brief assessment of step 1]

Step 2: [Brief assessment of step 2]

Step X: [Brief assessment of step X]

Error found in step X: [Brief explanation of the error]
Corrected solution from step X:

Step X: [Corrected step]

Step X+1: [Next correct step]

[Final step]

Overall Assessment:

Correctness: [Correct / Incorrect]

Explanation: [Concise explanation of the assessment]
Final Answer: [Correct final answer]

Question: {question}
Solution: {initial_solution}

Figure 5: Prompt to Perform Refinement
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Given the model’s response, output 1 if ‘Correctness’ is ‘correct’, otherwise output 0. Respond with
only the number.

Model’s Response: {response}

Output:

Figure 6: Prompt to Evaluate Samples with Correct Initial Solutions

You are an expert evaluator assessing the quality of feedback provided on an initial solution to a
problem. Your task is to determine if the feedback is effective in guiding the initial solution towards
a correct answer. You will be provided with three components:

1. Initial Solution: The initial attempt at solving the problem.
2. Feedback: Specific feedback provided in response to the initial solution.
3. Reference Feedback: A verified, high-quality feedback to the initial solution.

Your evaluation should consider the following aspects:

- Error Detection: Does the feedback correctly identify the errors or shortcomings in the
initial solution?

- Error Correction: Does the feedback effectively address the problems in the initial solution?

- Effectiveness and Correctness of the Feedback: Does the feedback guide the initial solution
towards the correct answer efficiently? Does it reach the same answer and logic as the reference
feedback in terms of its core principles?

Output your assessment in the following format:
Error Detection: [0/1]

Error Correction: [0/1]

Effectiveness and Correctness of the Feedback: [0/1]
No additional feedback or comment is required.
Initial Solution: {initial_solution}

Feedback: {feedback}

Reference Feedback: {reference_feedback}

Output:

Figure 7: Prompt to Evaluate Samples with Incorrect Initial Solutions
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Figure 8: Error Type Distribution of Initial Solutions by Model
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| —
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Figure 9: Problem Source, Subject, and Error Type Distribution in MMRefine

Review your previous reasoning about the question, then finally answer the question.

Question: {question}
Your Previous Solution: {previous_solution}

Figure 10: Prompt to Perform Self-Reflection
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1.7%
9%

Easy " Medium " Hard [ Very Hard

Figure 11: Difficulty Distribution of Problems for Which Initial Solutions Are Incorrect by Model. Problem
difficulty is determined by the number of MLLMs that correctly solve it. Specifically, if three out of the four models
(GPT-40, GEMINI-1.5-PRO, CLAUDE-3.5-SONNET, and LLAMA-3.2-VISION) solve a problem correctly, the
difficulty is categorized as ‘Easy’. If two models solve it, the difficulty is ‘Medium’ and so on.
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{QUESTION)

The two diagrams show a side view and a plan view of a
tower made with light and dark coloured blocks. In the
tower, only dark coloured blocks are placed on top of
dark coloured blocks and only light coloured blocks are
placed on top of light coloured blocks. How many blocks
in the tower are light coloured?

Answer: 20

. J

[(INITIAL SOLUTION) (by GPT-40)
To determine the number of light—colored blocks in the tower, let's analyze the diagrams step—by—step:
1. Plan View Analysis:
— The plan view (right diagram) shows a top—down view of the tower.
— Identify the pattern: light and dark blocks alternate.
— The central position is light—colored, and blocks alternate outward from there,
2. Side View Analysis:
— The side view (left diagram) provides a perspective on the layer arrangement and height.
— Count the layers from bottom to top, observing the alternating pattern.
3. Layer—by—Layer Analysis:
— From the plan view, we see a diamond shape pattern, alternating colors.
— Bottom Layer: Count the number of light—colored blocks.
— Alternating rows start and end with light—colored blocks.
— Middle Layers: Follow the alternating pattern, ensuring consistency with "light on light" and "dark on dark"
placement.
— Top Layer: Usually the smallest number of blocks, following the pattern.
4. Count Each Layer:

- Bottom Layer: 9 blocks (5 light, 4 dark). — Next Layer: 7 blocks (4 light, 3 dark).
— Next Layer: 5 blocks (3 light, 2 dark). — Next Layer: 3 blocks (2 light, 1 dark).
— Top Layer: 1 block (1 light). (Error in Step 4)

5. Summing Light—Colored Blocks:
— Add the light—colored blocks from each layer.
-(G+4+3+2+1=15),

\Therefore, there are 15 light—colored blocks in the tower.

J\_

{Refinement) (by Claude 3.5 Sonnet)
I'll review the solution step—by—step:
Review and Correction:
Step 1: Correct analysis of the plan view.
Step 2: Correct analysis of the side view.
Step 3: Correct approach to layer—by—layer analysis.
Step 4: Correct count of blocks in each layer. (Error Detection Failed)
Step 5: Correct summation of light—colored blocks.
Overall Assessment:
Correctness: Correct
Explanation: The solution correctly analyzes both the plan view and side view of the tower. It accurately counts
the number of light—colored blocks in each layer and sums them up correctly.
Final Answer: 15 light—colored blocks
The solution is methodical and accurate. It correctly interprets the alternating pattern of light and dark blocks, both
horizontally and vertically. The count of light—colored blocks in each layer (5, 4, 3, 2, 1) is accurate, and their sum
(15) is correct. The explanation also adheres to the rule that light—colored blocks are only placed on top of light—
colored blocks, which is crucial for the correct solution.

\_ J

Figure 12: Refinement Failure Example. Model (CLAUDE 3.5 SONNET) fails to detect an error in step 4 of
initial solution.
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{QUESTION)
It takes 9 litres of paint to cover the surface of the cube on E
the left, b

How much paint would it take to cover the surface of the
shape on the right?

A. 9 litres, B, 8 litres, C. 6 litres, D. 4 litres, E. 2 litres ‘ Il
(Answer: A)
\ J
4 )
{INITIAL SOLUTION) (by Claude 3.5 Sonnet)
Let's approach this systematically:
1) First, let's consider the cube on the left:

— It's a 3x3x3 cube

— Its surface area consists of 6 faces, each with 9 small squares

— Total surface area = 6 * 9 = 54 small squares
2) Now, let's look at the shape on the right:

— It's made up of 3x3x3 = 27 small cubes, but some are removed

— We need to count the exposed faces
3) Counting exposed faces on the right shape:

— Top: 9 squares — Bottom: 9 squares — Front: 7 squares

— Back: 7 squares — Left: 7 squares — Right: 7 squares

—Total: 9+ 9+ 7+ 7+ 7+ 7= 46 squares
4) Comparing the two:

— Left cube: 54 squares need 9 litres ~ — Right shape: 46 squares
5) Calculating the paint needed:

— If 54 squares need 9 litres, then 1 square needs 9/54 = 1/6 litre

— 46 squares will need: 46 * (1/6) = 46/6 = 7.67 litres
6) Rounding to the nearest option:Wn — 7.67 litres is closest to 8 litres
Therefore, the answer is B: 8 litres.

J

[<Reﬁnement> (by Gemini 1.5 Pro)

Review and Correction (if applicable):

Step 1: Correct. The left cube is 3x3x3 and has a surface area of 54 small squares.

Step 2: Correct. The right shape is derived from a 3x3x3 cube with some cubes removed.

Step 3: Incorrect. The count of exposed faces on the right shape is inaccurate.

(Error Detection Success)

Error found in step 3: The solution incorrectly counts only the outer faces. The inner faces of the
“carved out" section also need to be painted.

Corrected solution from step 3:
Step 3: Counting exposed faces on the right shape:
— Top: 9 squares — Bottom: 9 squares — Front: 7 squares
— Back: 7 squares — Left: 7 squares — Right: 7 squares
— Inner surfaces (top): 2 squares — Inner surfaces (left): 2 squares — Inner surfaces (back): 2 squares
—Total: 9+9+7+7+7+7+2+2+2=52squares
(Error correction failed due to visual perception error)

Step 4: Comparing the two:
— Left cube: 54 squares need 9 litres — Right shape: 52 squares
Step 5: Calculating the paint needed:
— If 54 squares need 9 litres, then 1 square needs 9/54 = 1/6 litre
— 52 squares will need: 52 * (1/6) = 52/6 = 26/3 = 8.67 litres (approximately)
Step 6: Rounding to the nearest option:
— 8.67 litres is closest to 9 litres,
Overall Assessment:
Correctness: Incorrect
Explanation: The original solution failed to account for the inner surfaces created by the removal of
the smaller cubes within the larger cube. This resulted in an underestimation of the total surface area to
be painted and, consequently, an incorrect calculation of the required paint.
Final Answer: 9 litres (A)
\ (Refinement failed, despite a correct answer, because of errors in the solution process.) /

Figure 13: Error Detection Success Example. Model (GEMINI-1.5-PRO) manages to detect the initial
error but fails to correct it due to a visual perception error in the refinement process.
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