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Existing function-calling benchmarks focus on
single-turn interactions. However, they over-
look the complexity of real-world scenarios. To
quantify how existing benchmarks address prac-
tical applications, we introduce DICE-SCORE,
a metric that evaluates the dispersion of tool-
related information such as function name and
parameter values throughout the dialogue. An-
alyzing existing benchmarks through DICE-
SCORE reveals notably low scores, highlight-
ing the need for more realistic scenarios. To
address this gap, we present DICE-BENCH, a
framework that constructs practical function-
calling datasets by synthesizing conversations
through a tool graph that maintains dependen-
cies across rounds and a multi-agent system
with distinct personas to enhance dialogue natu-
ralness. The final dataset comprises 1,607 high-
DICE-SCORE instances. Our experiments on
19 LLMs with DICE-BENCH show that signif-
icant advances are still required before such
models can be deployed effectively in real-
world settings. Our code1, and data2 are all
publicly available.

1 Introduction

Function-calling refers to the ability of LLMs to
execute predefined external functions (or APIs)
through generating structured calls from natural
language input (Qin et al., 2024; Park et al., 2023;
Gong et al., 2024). While early virtual assistants
(VAs) relied on rigid rule-based systems, LLM-
integrated VAs now combine reasoning with ex-
ternal data retrieval (Weizenbaum, 1966). As in-
teractions grow more complex, there is a growing
need for VAs to support multi-party and multi-turn
dialogues (Guan et al., 2023; Vu et al., 2024).

†Corresponding author.
1https://github.com/snuhcc/

Function-Calling-Benchmark.git
2https://huggingface.co/OfficerChul

When exactly are we planning to ?pick it up

I believe we were aiming for .mid-November

Mid-November works. Shall we say around the ?15th

The  sounds perfect. 

Are we set on  as our starting point?

15th
San Francisco

San Francisco seems like a convenient spot.

We can make a more informed decision about our plans.

Let's proceed with . 

AI, please handle the details for us.

finding a rental car

find_car (“ ”, “ ”)11-15 San Francisco

AI: I've found a Toyota Camry available for 

rental on November 15th in San Francisco.

Single Round - Four Party Dialogue

Figure 1: Illustration of a Single-Round, Four-Party
Dialogue in DICE-BENCH. LLMs must identify
function-related information from multi-party dialogue.
Relevant values in the dialogue are color-coded to match
their function call components.

Despite advancements, most function-calling
benchmarks assume all API parameters are present
in a single user utterance, overlooking real-world
group chat scenarios (Chen et al., 2024; Zhuang
et al., 2023; Basu et al., 2024). For example, when
people in a group chat decide where to go and
which flight to take, a VA must be able to track
multiple turns of dialogue to book a hotel and
flight ticket. Such complexities remain largely un-
addressed by existing benchmarks.

We therefore present DICE-BENCH (Dialogue-
based Interactive Calling Evaluation Benchmark),
a framework designed to evaluate function-calling
performance in realistic multi-party, multi-round
dialogues. In our paper, round is defined as a com-
plete dialogue cycle consisting of multiple user
utterances and system responses, and dependency
as the condition where the current round’s context
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Benchmark # Instances Tool Dialogue DICE-SCORE
# Tools Dependency Multi-party Multi-round

APIBench (Patil et al., 2023) 17002 1645 ✗ ✗ ✗ 0.7895
ToolAlpaca (Tang et al., 2023) 3938 400 ✗ ✗ ✗ 0.5660
ToolLLM (Qin et al., 2023) 12657 16464 ✓ ✗ ✗ 0.5989
ToolBench (Xu et al., 2023) 2746 8 ✓ ✗ ✗ 0.7225
API-Bank (Li et al., 2023) 2202 2211 ✗ ✗ ✗ 1.6318
MetaTool (Huang et al., 2024) 21127 199 ✗ ✗ ✗ 0.5437
TaskBench (Shen et al., 2024) 17331 103 ✓ ✗ ✗ 0.6415
RoTBench (Ye et al., 2024b) 945 568 ✗ ✗ ✗ 0.5651

DICE-BENCH (ours) 1607 124 ✓ ✓ ✓ 3.6444

Table 1: Baseline Comparison. We compare various function-calling benchmark datasets with DICE-BENCH,
demonstrating that DICE-BENCH is the only benchmark to encompass both multi-party and multi-round dialogues.
We also report DICE-SCORE for every dataset, showing that DICE-BENCH handles more realistic tasks.

depends on either the previous round’s tool-call out-
put or the content (See Appendix C for illustration
of multi-round and dependency).

In real-world group chats, key details often
emerge across multiple turns, requiring accurate
tracking for coherent interactions. To address this,
we generate diverse dialogues using a multi-agent
system, where each agent has a distinct persona.
Then, we refine the dataset through automated, rule-
based, and human criteria-based filtering. After
rigorous validation, our benchmark includes 1, 607
instances covering both single-round and multi-
round dialogues.

Existing benchmarks do not assess function-
calling in multi-round, multi-party dialogues,
which makes accurate execution challenging due
to the tool-related information being dispersed
across turns. To quantify this complexity, we
propose DICE-SCORE (Dialogue Information
Coverage Evaluation Score), which measures how
fragmented tool-related details are within the in-
put context. A higher DICE-SCORE indicates
greater dispersion, requiring LLMs to integrate
scattered information across turns. Experiments
on various LLMs show a significant performance
drop as DICE-SCORE increases, underscoring the
need for improved dialogue-tracking and context-
integration strategies.

Our contributions are as follows.

• To the best of our knowledge, DICE-
BENCH is the first multi-round, multi-party
benchmark for function-calling, grounded in
realistic group chat data and validated through
both rule-based and human evaluations.

• We introduce the DICE-SCORE, a novel met-
ric that captures the complexity of multi-party
conversation in the real world by assessing the

difficulty of retrieving scattered function call
information.

• We conducted a thorough evaluation on di-
verse closed-source and open-source LLMs,
analyzing their performance and error cases to
provide valuable insights into their limitations
in handling fragmented multi-round dialogue
contexts.

2 Related Work

2.1 Function-Calling Benchmark

Recent benchmarks have been developed to evalu-
ate function-calling performance in LLMs (Wang
et al., 2024b; Kim et al., 2024). Most focus
on single-command scenarios (Patil et al., 2023;
Huang et al., 2024; Qu et al., 2024), while some
extend to multi-turn interactions with a single user,
increasing task complexity (Li et al., 2023; Wang
et al., 2024b; Tang et al., 2023). However, these
approaches overlook the challenges of multi-party
dialogues, where tool-related information is dis-
tributed across multiple speakers.

Moreover, many existing benchmarks lack rigor-
ous human validation of both tools and instances,
leading to datasets that may not reflect real-world
conditions (Erdogan et al., 2024; Qin et al., 2023;
Shen et al., 2024). To address these gaps, we intro-
duce DICE-BENCH, a benchmark that captures
multi-turn, multi-party interactions with compre-
hensive human validation. Additionally, we pro-
pose DICE-SCORE, a metric designed to quantify
the dispersion of tool-related information across
dialogue contexts, ensuring alignment with real-
world complexities.
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Figure 2: DICE-BENCH data-generation pipeline. (1) In the Tool Graph Construction phase, we build a tool
graph from tool collections. (2) In the Scenario Configuration step, we sample tool chains and configure dialogue
types, personas, and the target number of rounds. (3) In the Dialogue Simulation phase, we iteratively generate
parameter values for each tool and simulate corresponding multi-party dialogues across N rounds.

2.2 Interactive System and Dialogue

The integration of LLMs into VAs has enhanced
their ability to process complex tasks through nat-
ural language understanding and reasoning (Sez-
gin, 2024). Function-calling further improves this
capability by enabling VAs to infer intent before
execution, unlike rule-based systems that follow
direct commands (Zhang et al., 2025; Guan et al.,
2023; Campagna et al., 2019). As user interactions
grow more complex, studies emphasize the need
for VAs to handle multi-turn and multi-party dia-
logues (Abdelaziz et al., 2024; Schick et al., 2023;
Khurana et al., 2024).

Multi-party conversations introduce additional
challenges, as they involve diverse dialogue struc-
tures shaped by participants’ goals and strate-
gies (Richards and Wessel, 2025; Yeomans et al.,
2022; Biber et al., 2011; Reece et al., 2023). Aca-
demic research categorizes conversations into six
types, Persuasion, Inquiry, Discovery, Negotia-
tion, Information-Seeking, Deliberation, and Eris-
tic, each affecting communication complexity dif-
ferently (Walton, 2010; Walton and Krabbe, 1995).
While function-calling has advanced Human-VA
interaction, current benchmarks do not adequately
assess multi-party, context-rich dialogues (Inoue
et al., 2025; Farn and Shin, 2023). To address
this, we introduce DICE-BENCH, a benchmark de-
signed to evaluate LLMs in real-world multi-party
interactions.

3 DICE-BENCH

In this section, we introduce DICE-BENCH, a
benchmark designed to evaluate the function-
calling capabilities of LLMs in multi-round, multi-
party dialogues. Unlike previous approaches that
concentrate on one-on-one Human-LLM interac-
tions, DICE-BENCH presents dialogue-based in-
puts in which multiple speakers provide scattered
pieces of information over several turns. As shown
in Figure 2, we also explicitly model inter-round de-
pendencies using Tool Graph. This approach builds
upon the concept introduced in TaskBench (Shen
et al., 2024).

3.1 Data Construction

The data construction phase consists of three main
steps: Tool Graph Construction, Scenario Config-
uration, and Dialogue Generation. Each step un-
dergoes human review and follows clearly defined
criteria to ensure the dialogue data is both realistic
and consistent.

Tool Graph Construction. Our objective is to
build dialogue data that mirrors realistic, everyday
scenarios where function-calling is needed, such
as checking the weather, booking a restaurant, or
scheduling events. To achieve this goal, we use
the set of tools proposed in the TaskBench (Shen
et al., 2024) and ToolEyes (Ye et al., 2024a). We
then validate these tools through a combination
of manual checks by the authors and LLM-based
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validation. The two key criteria we used for the
filtering are as follows: whether the function calls
and parameters realistically reflect daily-life use
cases, and whether the collected tools accurately
match the intended functions and parameters. After
filtering, we construct a Tool Graph to guarantee
dependencies between tools.

Formally, we represent our Tool Graph G as a
directed graph G = (V, E) where each node v ∈ V
corresponds to a tool function. A directed edge
(vi, vj) ∈ E signifies that tool vj depends on the
tool vi, either because vi contains required output
or parameters for vj , or because the information
produced by vi is contextually dependent on the
execution of vj . Therefore, the structure G serves as
the backbone for multi-round dialogue simulation
in a realistic workflow.

Our Tool Graph consists of 124 nodes and 270
edges, yielding a density of 0.0177 and an average
out-degree of 2.18. The low density and average
out-degree suggest that this graph exhibits a rela-
tively sparse structure, preventing a single function
from dominating or becoming overly dependent.
This characteristic can offer diverse pathways for
automated multi-turn dialogue generation.

Scenario Configuration. We integrate various
elements to simulate multi-agent, multi-round dia-
logues in a natural, human-like manner, ensuring
each conversation reflects real-world complexity.
We begin by sampling tool chains from the Tool
Graph, extracting paths ranging from a single node
to four nodes, where each node represents a tool
per round. For sampling, we employ Depth-First
Search (DFS) to enumerate all possible paths, then
randomly select the chain. For example, when
sampling tools for a two-round dialogue, the sam-
pled tool chain appears as follows: “[get_weather,
book_hotel],” meaning the get_weather function
will be used in the first round and the book_hotel
function follows.

Next, we assign a dialogue type based on Wal-
ton and Krabbe (1995), condensing the seven pri-
mary categories into three: persuasion-deliberation-
and-negotiation, inquiry-and-information-seeking,
and eristic. Although the original reference iden-
tifies seven primary types, we merge those that
share some similarities. We then vary the num-
ber of participants from two to four, spanning a
broad complexity range that captures key aspects
of real-world multi-party interactions. Lastly, to
implement real-world human interactions with dis-

Round Initial Stage1 Stage2 Stage3 Final

1 450 4 7 14 425
2 450 5 9 18 418
3 450 8 17 26 399
4 450 13 11 61 365

Total 1800 30 44 119 1607

Table 2: Filtering Statistics per Round. Initial col-
umn shows the number of instances before filtering.
Stage1–3 show removal counts at each validation step,
and Final column shows remaining instances.

tinct personalities, we generate distinct personas
for each agent using GPT-4o by leveraging tool
information. These configurations cover a broad
spectrum of complexity.

Dialogue Generation. After preparing essential
components, we generate multi-round dialogues in
three key steps. First, we perform Parameter Gen-
eration by prompting an LLM to suggest appro-
priate parameter values for each tool in the chain.
If the current round is not the first round, then we
include the conversation history and any previously
generated virtual tool-call output to the prompt,
ensuring contextual continuity.

Next, we carry out Dialogue Simulation using
a multi-agent system. Each agent has a distinct
persona, and an orchestrator dynamically regulates
turn-taking based on the evolving conversation flow.
This setup emulates real-world multi-party conver-
sations. Finally, at the end of each round, we store
the dialogue along with any generated virtual out-
puts, which serve as a context for the next round’s
parameter generation. We repeat this process N
times, where N is the length of the chain. Us-
ing this approach, we produced a total of 1,800
(450× 4) dialogues across four rounds.

3.2 Validation Pipeline

We employ a three-stage filtering process to convert
the raw dialogues into high-quality data. After the
first automated stage, each subsequent filtering step
involves human validation to ensure that the final
dataset meets our criteria for realism, coherence,
and functional correctness.

Stage 1: Automatic Evaluation. In the initial
stage, we use G-Eval (Liu et al., 2023) with GPT-4o
to evaluate each dialogue according to six criteria:
Coherence, Consistency, Fluency, Human-likeness,
Persona Consistency, and Relevance. Each crite-
rion is rated on a 5-point Likert scale. Although
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model-based evaluation may introduce certain bi-
ases, Liu et al. (2023) have shown a high Spearman
correlation between automated scores and human
judgments. We then prompt GPT-4o to classify
each dialogue into one of the three designated dia-
logue types. We remove it if a dialogue’s average
G-Eval score falls below 4.0 and is assigned an
incorrect type.

Stage 2: Rule-Based Filtering. Following the
automatic evaluation, we discard dialogues that
violate explicit rules. First, any conversation con-
taining GPT-generated refusals (e.g., “I’m sorry,
but. . . ”) is removed. Second, we check if at least
one user turns explicitly or implicitly addresses an
“AI” or “Assistant”. In ambiguous cases, authors
revisit each dialogue to confirm whether indirect
requests, such as rhetorical questions to AI, are
being made.

Stage 3: Criteria-Based Filtering. In the final
stage, all authors evaluate each remaining dialogue
across three dimensions: Conversation Quality,
Functional Integration, and Real-World Applica-
bility. Detailed guidelines are provided in the Ap-
pendix P. These dimensions encompass 15 sub-
criteria in total, with seven dedicated to conversa-
tion quality, five to function integration, and three
to overall realism. We remove the instance if a
dialogue scores below 10 out of 15.

These three filtering stages produce a curated
dataset that maintains coherence and accurately
represents challenging function call scenarios. In
Table 2, we describe the number of data points
that were eliminated at each filtering stage and
the number that eventually remained in the final
dataset.

3.3 Task Setup and Benchmark Structure

In this section, we explain how our benchmark
is structured, and describe our overall task setup.
Specifically, we illustrate how multi-round, multi-
party dialogues challenge LLMs to aggregate scat-
tered information and perform accurate function
calls.

3.3.1 Benchmark Structure

Our dataset comprises four rounds, ranging from
Round 1 to Round 4. Each round progressively in-
creases in complexity by expanding the contextual
scope and requiring the model to handle diverse
personas and manage rapid context shifts, from

Index 1 2 3 4
Round 425 418 399 365
Party - 569 519 519

Dialogue Type 545 549 513 -

Table 3: Data Statistics of DICE-BENCH. For the
Dialogue Type row, indices 1-3 correspond to “Eris-
tic”, “Persuasion, Deliberation and Negotiation”, and
“Inquiry and Information Seeking”, respectively.

two participants up to four participants. We also in-
clude three distinct dialogue styles to mirror varied
real-world scenarios.

We generate 50 dialogues per round for each of
the three-party configurations and three dialogue
types, yielding 450 dialogues(450 = 50 ∗ 3 ∗ 3)
per round. With 4 rounds, this results in a total of
1, 800 dialogues(1800 = 450 ∗ 4) overall. After
193 dialogues are removed through the validation
pipeline, we obtain 1, 607 final instances. Refer to
Table 3 for detailed data statistics for each configu-
ration.

3.3.2 Task Setup
In DICE-Bench, our aim is to evaluate how well
LLMs can perform function-calling under realis-
tic multi-party dialogue conditions. Therefore, we
need to inference LLMs on our synthesized dia-
logue datasets. The input consists of a multi-round
multi-party dialogue, and collected tool documents
from Tool Graph Construction phase. The three
types of input are fed to the target LLMs as a hard
prompt. We define the task as identifying the ex-
act function name and parameter values based on
the given user instruction and dialogue. Thus, the
benchmark tests the model’s ability to (i) identify
the appropriate function among available tools, and
(ii) extract or synthesize the correct parameter val-
ues within the given conversation. This setup more
closely aligns with real-world Human-VA interac-
tions, where relevant context is often distributed
throughout extended dialogues rather than being
neatly encapsulated in a single instruction.

3.4 DICE-SCORE

We propose DICE-SCORE to quantify how difficult
the given input is for function-calling across exist-
ing benchmark datasets as they do not fully reflect
practical situations. However, the lack of a metric
to measure this aspect is hindering the progress
towards more challenging tasks. Although some
studies have discussed the notion of information
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SCORE and Model Performance. Lower DICE-
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complex scenarios.

coverage by quantifying how much of the input
context is necessary for answering queries, none
have proposed a metric that explicitly captures how
dispersed or fragmented these details are within
a dialogue for function-calling tasks. Specifically,
according to Goldman et al. (2024), "scope" is de-
fined as "how much required data can be found",
but does not formalize a direct metric. Also, the
existing long-context coverage method Lee et al.
(2024) measures how dense the information is dis-
tributed throughout the long context, rather than
quantifying its sparseness across multiple utter-
ances.

To address this gap, we introduce DICE-
SCORE (Dialogue Information Coverage
Evaluation Score), a metric that assesses how
challenging it is to perform a function call within
a given context by estimating the distribution
of tool-related knowledge. We designed DICE-
SCORE to yield higher scores when there is a large
amount of function-related information to identify,
but also when this information is distributed
sparsely and non-repetitively. This, in turn, makes
it more difficult for LLMs to locate the necessary
information. Formally, we define the DICE metric
as follows:

DICE(S, T ) =
min

(
|S̸=0|, T

)
·
√
|S| · T

∑
i∈S ln(1 + α× Si)

. (1)

Notation. Let the dialogue consist of n utter-
ances, and define S = (S1, . . . , Sn) as a vector
where each Si indicates the number of function-
related items mentioned in the i-th utterance. Re-
moving all zero entries from S yields the subse-
quence S̸=0; therefore |S̸=0| equals the number of
utterances that mention at least one such item. T de-
notes the total number of distinct function-related
items that must be identified across the entire dia-
logue. For example, if the ground truth function-
call is book_hotel(V ienna,Austria, 07 − 27),
then T = 4, comprising one for the book_hotel
and three for its arguments: V ienna,Austria,
and 07 − 27. α is a positive constant to control
a penalty for repeated mentions of the same items.
We set α = e2, which ensures in the boundary case
T = |S̸=0| = 1 that the DICE-SCORE remains
strictly increasing.

Key Properties. To obtain Si in practice, we em-
ploy a custom prompt to GPT-4o-mini (details in
Appendix D). We highlight four key properties
of DICE-SCORE:

1. Coverage vs. Dispersal:
The term min(|S̸=0|, T ) rewards spreading
items across dialogue turns, aligning with
studies on information dispersion in corpus
linguistics and multi-turn dialogue systems
(Manning and Schütze, 1999; Jurafsky and
Martin, 2019).

2. Discouraging Redundancy:
The logarithmic penalty

∑
i∈S ln(1+α×Si)

downweights repeated mentions, similar to
TF-IDF weighting in information retrieval
(Salton and Buckley, 1988).

3. Scale Adjustment:
The factor

√
|S| × T normalizes the score

with respect to dialogue length and item count,
analogous to cosine normalization in docu-
ment similarity (Manning and Schütze, 1999).

4. Balanced Realism: Repeating the same items
in every utterance increases the denominator,
lowering DICE-SCORE, while mentioning
items too sparsely keeps the numerator small.
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Thus, a high DICE-SCORE indicates that
items are well-distributed across the conver-
sation. Moreover, when the utterance count
t and item repetition remain fixed (i.e., T is
proportional to Si for Si ≥ 1), we show (Ap-
pendix A) that there exists α with e2 ≤ α
such that the DICE-SCORE strictly increases
with the number of distinct tools.

Alignment with Human Evaluation. The pro-
posed metric, DICE-SCORE, was developed to
quantify task difficulty across a dataset of 1,607
samples and was validated through human evalu-
ation using a statistically grounded subset of 311
samples. This subset size was determined based
on a 95% confidence level, a 5% margin of error,
and a conservative estimate of maximum variability
(p = 0.5). The calculation incorporated a Finite
Population Correction (FPC) to account for the
dataset’s finite size.

Samples were proportionally drawn from four
rounds of data, 425, 418, 399, and 365 samples in
Rounds 1 to 4, resulting in evaluation subsets of
82, 81, 77, and 71 samples, respectively. Human
participants completed function-calling tasks for
each round in the sample, achieving accuracies of
80.5%, 69.1%, 51.9%, and 49.3%. Corresponding
values of DICE-SCORE, which reflect increasing
task difficulty, were 1.42, 3.25, 4.55, and 5.36. This
statistics are summarized in Table 4.

To assess the alignment between human perfor-
mance and the proposed difficulty metric, we com-
puted the Pearson correlation coefficient. The anal-
ysis revealed a strong negative correlation (r ≈
−0.984), indicating that higher DICE-SCORE val-
ues were associated with lower human accuracy.
This trend is consistent across rounds, from 80.5%
accuracy at DICE = 1.42 (Round 1) to 49.3%
at DICE = 5.36 (Round 4). A t-test confirmed
the statistical significance of this correlation, yield-
ing a t-value of approximately −8.38 (p < 0.01, 2
degrees of freedom).

These results demonstrate that DICE-SCORE ef-
fectively captures the difficulty of input dataset,
with both human evaluation and statistical anal-
ysis supporting its validity. Please refer to Ap-
pendix B for calculation details. Moreover, in
Appendix A, we show how DICE-SCORE per-
forms as expected when tool-related items increase,
as long as dispersal and repetition remain bal-
anced. A higher DICE-SCORE means crucial in-
formation is spread over multiple turns. Lastly,

Round N Acc (%) DICE-SCORE

1 82 80.5 1.42
2 81 69.1 3.25
3 77 51.9 4.55
4 71 49.3 5.36

Table 4: Human Evaluation Results by Round.
Accuracy denotes the proportion of correctly an-
swered DICE-BENCH samples by human participants.
N refers to the sample size per round.

in Figure 4, we illustrate how DICE-SCORE cor-
relates with the model performance, and Table 1
compares DICE-SCORE across various function-
calling benchmarks.

4 Experiments

4.1 Model Selection

We evaluated a total of 19 LLMs that support at
least 8k context window size in DICE-BENCH,
both closed-source and open-source LLMs. The
closed-source cohort includes GPT-4o and GPT-
4o-mini (OpenAI et al., 2024), along with Gem-
ini 2 Flash and Gemini 2 Flash Lite (Team
et al., 2020). Meanwhile, our open-source lineup
spans a wide range of general-purpose mod-
els, including LLaMA3 (Touvron et al., 2023),
Qwen2.5 (Qwen et al., 2025), Mistral (Jiang et al.,
2023), EXAONE (Research et al., 2024), Phi4 (Ab-
din et al., 2024), GLM4-Chat (GLM et al., 2024).
In addition, we evaluate tool-specific models that
have been fine-tuned on tool datasets, including
Hammer2.1 (Wang et al., 2024a), ToolAce (Liu
et al., 2024), CALM (Acikgoz et al., 2025),
NexusRaven-V2 (team, 2023), Granite (Abdelaziz
et al., 2024).

4.2 Evaluation Metrics

Since our benchmark aims to evaluate LLM tool-
calling performance under multi-round and multi-
party input scenarios, we divided the assessment
into four-round and three-party configurations. To
measure performance, we adopt the Exact Match
(EM) metric, which evaluates whether the LLM
selects the exact function along with its correspond-
ing parameters. The final score is obtained by aver-
aging the EM across the configuration dataset.
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Category Model
Round Party

R1 R2 R3 R4 Avg(R) P2 P3 P4 Avg(P)

Closed-Source

GPT-4o 74.1176 61.0048 61.6541 59.1781 63.9887 61.2045 62.2997 62.4396 61.9813
GPT-4o-mini 66.8235 57.9545 57.8947 56.7123 59.8463 57.5280 58.5337 59.3800 58.4806

Gemini 2 Flash 74.4706 59.4498 59.3985 58.7329 63.0129 59.6989 61.1779 61.6747 60.8505
Gemini 2 Flash Lite 70.9412 56.8182 57.3517 56.6781 60.4473 58.3333 58.5737 58.4944 58.4671

Open-Source
(7B – 9B)

Qwen2.5-7B 53.0588 40.1316 37.9282 36.7123 41.9577 39.0056 40.3045 39.5330 39.6144
Mistral-7B 50.3529 38.8158 35.2130 33.3219 39.4259 36.7997 37.2997 36.6747 36.9247

Hammer-2.1-7B 31.2941 22.1292 19.4653 17.8425 22.6828 20.7633 20.4728 20.8937 20.7099
EXAONE-3.5-7.8B 1.8824 0.3589 0.2089 0.3767 0.7067 0.4902 0.5609 0.4026 0.4846

LLaMA3.1-8B 26.3529 19.6172 15.3718 15.0685 19.1026 16.4566 17.5080 18.2367 17.4004
CALM-8B 2.8235 4.0072 3.5505 2.3973 3.1946 2.8361 3.6058 3.0193 3.1537

ToolAce-8B 2.4706 0.6579 0.3342 0.5137 0.9941 0.7003 0.8013 0.6039 0.7018
GLM4-9B-Chat 58.2353 47.5478 47.2431 46.0274 49.7634 47.6190 47.2756 49.3156 48.0701

Open-Source
(13B – 20B)

NexusRaven-V2-13B 34.2353 24.1627 20.7602 20.7192 24.9693 23.0742 22.6763 23.0274 22.9260
Qwen2.5-14B 58.3529 48.8636 49.1646 47.2945 50.9189 50.0700 48.9183 49.1143 49.3675

Phi4-15B 71.2941 57.0574 58.0201 56.4384 60.7025 57.4580 58.6538 60.0644 58.7254
Granite-20B 58.7059 31.6986 24.8120 19.2808 33.6243 27.8711 28.5657 27.2544 27.8971

Open-Source
(32B – 70B)

Qwen2.5-32B 67.7647 56.7584 57.2264 55.9247 59.4185 57.5280 57.4920 58.3736 57.7979
LLaMA3.3-70B 69.7647 56.3397 55.8480 54.6233 59.1439 55.9524 56.7708 58.4541 57.0591

CALM-70B 41.2941 36.3636 40.2256 38.7671 39.1626 38.1653 38.9423 39.9356 39.0144

Table 5: Main Experiment Results of DICE-BENCH. Reported scores are EM (Exact Match) scores. For each
block, the single highest (green) and lowest (red) values are highlighted within that block only. See Section 4 for
more details.

4.3 Experimental Findings

4.3.1 Results

Table 5 shows the overall performance of the LLMs
evaluated on DICE-BENCH. When considering
both open-source and closed-source models to-
gether, GPT-4o ranked first in 4 out of 5 rounds
and across all 4 party configurations. Within the
open-source category, Phi4-15B achieved the high-
est scores in all scenarios except for one configura-
tion, leading in 8 out of 9 cases. Notably, despite
its relatively modest size of 15B parameters, Phi4-
15B’s performance is comparable to that of the
closed-source models. Among the 7B–9B mod-
els, GLM-9B attained the highest overall score of
48.9162 across all metrics, while in the 32B–70B
category, the Qwen 32B model secured top scores
in 7 out of 9 settings. We attribute this to the fact
that Qwen 2.5’s 128k-token context window helps
maintain resilience in extended dialogue scenarios.

4.3.2 Analysis

DICE-SCORE Validity. DICE-SCORE is de-
signed to quantify how dispersed the critical infor-
mation is in multi-round dialogues, thereby indi-
cating the difficulty of function-calling tasks. Our
experiments provide strong evidence for its validity.
As demonstrated in Table 5, model performance
steadily declines as the number of rounds increases,
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Figure 4: EM Performance Scores vs DICE-
SCORE. DICE-SCORE has been inverted to highlight
its correlation with LLMs performance. The "DICE"
in the legend represents the DICE-SCORE, and the
purple-shaded region indicates ±1 standard deviation
of DICE-SCORE.

suggesting that the task becomes more challeng-
ing when essential information is spread out. In
parallel, Table 3 shows that DICE-SCORE rises
with each additional round. In DICE-SCORE, a
higher value indicates that the crucial details are
more sparsely distributed across the dialogue, di-
rectly correlating with the increased difficulty of
retrieving that information. This inverse relation-
ship, where an increase in DICE-SCORE corre-
sponds with a drop in performance, supports the
effectiveness of our metric in capturing task com-
plexity. In essence, the consistent alignment be-
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tween higher DICE-SCORE values and reduced
model performance confirms the validity of DICE-
SCORE as a reliable measure of the challenges
inherent in function-calling tasks.

Uncovering True Performance Factors Fig-
ure 7 reveals that as the number of rounds increases,
model performance declines sharply, especially
when moving from Round 1 to Round 2. While
this decrease might be partially attributed to the ac-
cumulation of dialogue, introducing long-context
challenges, other factors could also be contributing.

To dissect the causes of increased task difficulty
in longer dialogues, we employ the DICE-SCORE.
By incorporating a logarithmic transformation in
its numerator, the DICE-SCORE prevents task dif-
ficulty from being overly influenced by merely
longer utterances, allowing us to isolate other fac-
tors.

As shown in Table 3, the DICE score consis-
tently increases with each additional round, indi-
cating that the challenge is not simply due to the
long-context problem in LLMs, but rather stems
from the fact that the essential information for
function-calling becomes limited and sporadically
distributed as the dialogue lengthens. This suggests
that the primary difficulty in function-calling lies
in retrieving crucial, dispersed information from
dialogues with multiple utterances.

5 Conclusion

We introduce DICE-BENCH, a benchmark for eval-
uating tool-calling in realistic multi-round, multi-
party dialogues. By constructing and validating
1,607 dialogue instances, we demonstrate that cur-
rent models struggle when critical information
is scattered across multiple rounds and speakers.
DICE-SCORE quantifies this dispersion and corre-
lates with significantly lower model performance
at higher scores. We intend for this dataset to
encourage further research on integrating context
across complex multi-party, multi-turn interactions,
paving the way for more effective and realistic AI-
powered virtual assistants.

Limitations

One notable limitation of our study is related to the
inference on dialogue data, particularly by round 4,
where extended conversation lengths pose signif-
icant challenges. Many of the tool-based models
we intended to evaluate have a token limit of ap-

proximately 4k tokens, preventing comprehensive
testing of several promising models.

Additionally, among models supporting an 8k
token context, we encountered instances where
the generated outputs failed to comply with the
required JSON format. This format mismatch re-
sulted in incorrect evaluations, even though the
underlying content was semantically accurate. Fu-
ture research could benefit from developing evalu-
ation strategies that assess content accuracy inde-
pendently of strict format adherence.

Thirdly, while we employed an orchestrator
within a multi-agent system using GPT-4o (OpenAI
et al., 2024) to manage speaker order, the model
struggled to dynamically allocate speaking turns ef-
fectively. Instead, it defaulted to repetitive pattern-
based ordering.

Lastly, despite its detailed focus on everyday-
life scenarios, DICE-BENCH has limited coverage
of specialized domains and advanced tools. Con-
sequently, its applicability remains restricted in
professional contexts such as legal, financial, or
medical domains, indicating a need for broader
domain-specific expansions.
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A Proof of Bound on α for DICE Score

To ensure that the DICE-SCORE behaves as expected under the condition that tool-related items increase
while maintaining a balance in dispersal and repetition, we establish a bound on α. Specifically, we prove
that for α ≥ e2, the following inequality holds for all c ≥ 1:

ln(1 + αc) >
2αc

1 + αc
. (2)

A.1 Derivative Analysis
Define the function:

f(c) = ln(1 + αc)− 2αc

1 + αc
. (3)

To show that f(c) > 0 for c ≥ 1, we differentiate:

f ′(c) =
α

1 + αc
− 2α(1 + αc)− 2α2c

(1 + αc)2

=
α(1 + αc)2 − 2α(1 + αc) + 2α2c

(1 + αc)2

=
α(1 + αc)2 − 2α(1 + αc) + 2α2c

(1 + αc)2
.

Rearrange the numerator:

α(1 + αc)2 − 2α(1 + αc) + 2α2c

= α
(
(1 + αc)2 − 2(1 + αc) + 2αc

)

= α
(
1 + 2αc+ α2c2 − 2− 2αc+ 2αc

)

= α
(
1 + α2c2 − 1

)
= α3c2.

Since α > 0 and c ≥ 1, it follows that α3c2 > 0, ensuring f ′(c) > 0 for all c ≥ 1. This means that f(c)
is increasing.

A.2 Base Case Verification
For c = 1,

f(1) = ln(1 + α)− 2α

1 + α
.

Substituting α = e2,

f(1) = ln(1 + e2)− 2e2

1 + e2
.

Using the property ln(1 + x) > 2x
1+x for x ≥ e2, we confirm that f(1) > 0. Since f(c) is increasing and

f(1) > 0, we conclude that f(c) > 0 for all c ≥ 1.

A.3 Conclusion
By choosing α ≥ e2, we guarantee that ln(1 + αc) > 2αc

1+αc for all c ≥ 1. This ensures the desired
behavior of the DICE metric when item repetition and dialogue length remain proportionally balanced.
This bound was used in our calculations for DICE scores in Section 3.4.
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B Alignment with Human Evaluation Calculation

B.1 Sample Size Justification
The initial sample size n0 was computed using the standard formula for estimating a population proportion
with a specified confidence level and margin of error:

n0 =
Z2p(1− p)

E2
(4)

where Z = 1.96 (for 95% confidence), p = 0.5 (maximum variability), and E = 0.05 (margin of error).
Substituting the values:

n0 =
1.962 · 0.25

0.052
=

0.9604

0.0025
≈ 384 (5)

Since the dataset is finite (N = 1607), we applied the finite population correction (FPC):

n =
n0

1 + n0−1
N

=
384

1 + 383
1607

≈ 311 (6)

B.2 Correlation Analysis
We analyzed the relationship between human accuracies and the corresponding values of DICE-
SCORE across four rounds, as summarized below:

Round Accuracy (xi) DICE-SCORE (yi)

1 0.805 1.42
2 0.691 3.25
3 0.519 4.55
4 0.493 5.36

Mean values:
x̄ ≈ 0.627, ȳ ≈ 3.645

Pearson correlation coefficient:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
≈ −0.749

0.761
≈ −0.984 (7)

To test statistical significance, we applied a t-test for correlation:

t =
r
√
n− 2√
1− r2

, n = 4 (8)

t ≈ −0.984 ·
√
2√

1− 0.968
=

−1.391

0.166
≈ −8.38 (9)

With 2 degrees of freedom, this result is statistically significant (p < 0.01), confirming a strong negative
correlation between human accuracy and task difficulty as measured by DICE-SCORE.
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C Multi-round Dialogue Example

Round 1 / 2 - Four Party Dialogue

I understand we're looking to  for our upcoming 
trip. When exactly are we planning to pick it up?

rent a car

I believe we were aiming for .mid-November

Mid-November works. Shall we say around the ?15th

The  sounds perfect. Now, about where we should pick up 
the , are we set on  as our starting point?

15th
car San Francisco

San Francisco seems like a convenient spot.

Once we know what's available, we can make a 
more informed decision about our plans.

Let's proceed with  for our specific 
date and location. AI, please handle the details for us.

finding a rental car

find_car(“ ”, “ ”)11-15 San Francisco

AI: I've found a Toyota Camry available for 
rental on November 15th in San Francisco.

A  will suit our needs perfectly. Do we want 
to pick it up in the morning to make the most of our day?
Toyota Camry

Picking it up early is a smart move. Shall we aim 
for around  to give us a good head start?9:00 AM

9:00 AM sounds great! Are you happy with a 
central spot in downtown ?San Francisco

A downtown pickup location should work well for us.

Are we set on the ?Toyota Camry

The  seems like a practical 
choice for comfort and efficiency.

 Toyota Camry

AI, please assist in getting everything ?booked for us

AI: Your Toyota Camry is booked for pickup in San Francisco 
on 11-15 at 09:00. Your reservation ID is ABC123456.

book_car(“ ”, “ ”, “ ”, “ ”)           Toyota Camry San Francisco 11-15 09:00

Round 2 / 2 - Four Party Dialogue

Figure 5: Multi-round Dialogue Example. User utterances and instructions are shown; highlights mark function-
call arguments.
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D DICE-SCORE: Prompt to obtain Si

You are given:
### A set of items
<items_set>

### An utterance:
<utterance_text>

Now, respond to the instruction.
### Instruction:
Determine how many items from the set appear to be semantically referenced in the utterance.
Only respond with an integer (0 if none match).
Answer:

E Persona Generation Prompt

Your task is to generate concise, unique and responsible personas for agents participating in a multi-
agent conversation system, based on the provided function list: {function_dumps_per_dialogue}.

**Guidelines**:
- Ensure each persona has a clear and distinct role, personality traits, and communication style
while adhering to ethical standards.
- Avoid reinforcing stereotypes, biases, or offensive traits.
- Tailor the personas to contribute effectively to the conversation’s goals and maintain balance.
- Use concise yet descriptive language.
- Avoid repetitive characteristics across different personas to ensure diversity and fairness.
- Incorporate elements from the provided domain description when generating conversation:
{domain_desc}.
- Ensure all personas align with ethical communication practices.
- Generate personas in two sentences.

**Examples**:
1. A thoughtful and resourceful problem-solver ...
2. A detail-oriented and practical thinker ...
3. A spontaneous and energetic planner ...

**Response format**:
- agent_a Persona: [Description ...]
- agent_b Persona: [Description ...]
- ...

Generate {agent_num} personas for the agents in the conversation.
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F Parameter Value Generation Prompt

Below are list of five examples of parameter values for the given function. You only need to
generate one example:
# first example
{first_example}
# second example
{second_example}

Example output format:
The output format must strictly be in JSON and follow this structure:
[{
"function": "<function_name>",
"parameters": {
"<parameter_name_1>": "<value_1>",
"<parameter_name_2>": "<value_2>",
. . . }
},
{
"function": "<function2_name>",
"parameters": {
"<parameter_name_1>": "<value_1>",
"<parameter_name_2>": "<value_2>",
. . . }
} ]
Any text outside of this JSON format (such as explanations or additional context) should not be
included.
The following functions are the functions for which you need to generate parameter values:
{functions}

Please generate diverse and creative parameter values for the given function(s), strictly adhering to
the JSON format shown above, without adding any additional context or explanation.
Also, make sure to increase the coherence between the parameter values being generated.
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G Virtual Output Generation Prompt

Simulate the hypothetical output of the following function call:

Function: {function_to_call}
Parameters: {parameter_values}

You are a voice assistant responding naturally with the final result of this function call. You need
to return both the short and concise return value of the function call, and the natural language
response of the function call.
Important:
- Do not mention that this is a simulation or hypothetical.
- Return only a single, direct response in a natural language as if the function actually executed
successfully.
- Keep it concise and natural, like a single short paragraph.

The format of the output should be the following:
{
"<returned_value1>": "<short and concise return value of the function call>"
"<returned_value2>": "<short and concise return value of the function call>"
...
"returned_nl": "<natural language response of the function call given the return values>"
}

H Multi-Agent System : Basic Prompt

You are a cooperative AI assistant participating in a multi-agent system. You collaborate with other
user agents and an orchestrator to generate a purposeful, contextually relevant conversation.
Your primary goals:

1. Conversational Quality:

• Keep the conversation logically coherent and natural across all turns.
• Incorporate parameter values smoothly into the context.
• Avoid any GPT error messages or refusals.
• Maintain a consistent style/tone matching the dialogue’s domain and each agent’s per-

sona.

2. Functional Integration:

• Call the AI Assistant every round with a clear, logically valid reason.
• Use the previous round’s return value correctly in the next round.
• Ensure function name and parameters are inferable from context.
• Align the AI’s responses with the user’s intent.

3. Real-World Applicability:

• Function names and parameters should map to plausible real-world APIs.
• The conversation content and function calls should feel authentic and realistically moti-

vated.

4. Strict Adherence to Domain Definition:

• Must strictly adhere to the domain dialogue domain definition.

Follow these points to keep the dialogue purposeful, natural, and consistent throughout all rounds.
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I Multi-Agent System : Agent Prompt

Persona:
As a user agent in the "{domain}" domain:

• Future dialogues must be designed to strictly adhere to the domain definitions provided below.

• {domain_definition}

• Stay consistent with your persona (tone, style, reasoning).

• Use only one short sentence per turn.

• Avoid directly mentioning function names in your response.

• Do not attempt to call or request any AI function. Engage in discussion and gather
enough context first.

• Do not generate [NEXT: ...] in your response.

J Multi-Agent System : Orchestrator Prompt

Orchestrator Role:
You are the orchestrator managing a multi-agent conversation.

1. In each response, you must output exactly one of the following (and nothing else):

• {agents}
• "[NEXT: END]"

2. Use the format: [NEXT: agent_a]

• No extra text or explanation beyond this bracketed command.

3. Select which agent speaks next based on:

• The conversation’s context,
• The domain’s requirements,
• Varying the speaking order to avoid immediate repetition.

4. The conversation must have at least {max_msg} turns (excluding your own orchestrator
messages) before you can choose "[NEXT: END]".

5. If an agent tries to call a function too early (before at least 8 turns), ignore it and continue
letting them discuss. Only once there’s sufficient context, at least {max_msg}+ turns have
been reached, and you think conversation is repetitive, you may finalize with "[NEXT: END]".
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K Dialgue Type: Persuasion Deliberation and Negotiation

This dialogue type focuses on resolving conflicts of interest or reconciling differing viewpoints
to reach a mutually acceptable agreement. Participants engage in reason-based proposals and
trade-offs, aiming for practical, mutually beneficial outcomes.
Primary Goals:

• Convince or compromise with others using logic and evidence.

• Resolve conflicts by making offers and concessions.

• Secure a final agreement that addresses conflicting interests.

Typical Moves:

• Proposing clear offers with conditions (“If you accept X, I’ll agree to Y”).

• Negotiating with counteroffers (“That won’t work, but I can propose Z instead”).

• Emphasizing shared goals and summarizing priorities.

Style:

• Collaborative but strategic, with a focus on practical outcomes and logical proposals.

• Avoids personal attacks and highlights benefits or trade-offs for each side.

Key Indicators:

• Iterative offer–counteroffer patterns with explicit conditions.

• Efforts to resolve differing interests and achieve practical outcomes.

• Dialogue often concludes with an agreement or resolved conflict.
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L Dialogue Type: Inquiry and Information Seeking

This dialogue type revolves around exploring unknowns and filling knowledge gaps. Participants
aim to learn, clarify, or confirm information through structured exchanges that emphasize knowl-
edge exchange and fact verification.
Primary Goals:

• Obtain accurate information or validate existing knowledge.

• Clarify unclear concepts or explore new evidence.

Typical Moves:

• Asking specific, focused questions (“Where does this data come from?” “What does this term
mean?”).

• Requesting sources, elaborations, or examples.

• Testing the reliability and validity of the information provided.

Style:

• Inquisitive and neutral, with logical follow-ups to maintain clarity.

• Participants may withhold judgments or opinions unless necessary.

Key Indicators:

• Frequent question–answer patterns focusing on facts and sources.

• Absence of offers or trade-offs, focusing entirely on learning and understanding.

• Ends when knowledge is clarified or confirmed, not when agreements are reached.
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M Dialogue Type: Eristic

An Eristic dialogue arises from antagonism or hostility, focusing on winning an argument
or dominating an opponent. Participants aim to attack, undermine, or outmaneuver each
other’s positions rather than seeking truth or consensus. Emotional appeals, personal attacks, and
point-scoring are common.
Primary Goals:

• Achieve victory in a debate; maintain or bolster personal prestige; sometimes simply vent or
amuse oneself by defeating the opposition.

Typical Moves:

• Accusing, insulting, or belittling the other side.

• Using sarcasm, ridicule, or straw-man arguments.

• Shifting the topic or using fallacies to maintain an advantage.

• Exaggerating flaws in the opponent’s logic to sway onlookers.

Secondary Goals:

• Gain experience in debate, gain social status, or entertain an audience.

Style:

• Confrontational, emotionally charged, often less structured or cooperative. Participants rarely
make concessions or aim for compromise.

Key Indicators:

• Heightened emotional language (“That’s absurd,” “You clearly have no idea. . . ”).

• Frequent interruptions or dismissive retorts.

• Focus on personal victory over mutual understanding.
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N Tool Graph Visualization
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Figure 6: Tool Graph of DICE-BENCH. The graph comprises 124 nodes and 270 edges representing the
dependencies among tool functions.
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O EM score plots for Party, Round, and Dialogue Type.
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Figure 7: EM Scores (Log Scale, Linear Scale, and Average Bar Chart) are presented horizontally for each
category, Round, Party, and Dialogue Type, which are arranged vertically.

26845



P Human Validation Guidelines for Criteria-Based Filtering
Table A: Criteria-Based Filtering Guidelines

Conversational Quality

(1) The conversation is logically coherent across all rounds.
(2) Parameter values are used naturally and meaningfully within the conversation.
(3) No error messages appear (e.g., “I’m sorry but I cannot fulfill ...”).
(4) Style and tone remain consistent with the dialogue’s purpose.
(5) The conversation demonstrates characteristics of its designated category.
(6) Conversation flows naturally throughout all interaction rounds.
(7) Each agent reflects its defined persona.

Functional Integration

(1) The AI Assistant is invoked in every interaction round.
(2) The return value from the previous round is used appropriately in the next.
(3) Justifications for each function call are logically valid.
(4) Function name and parameters can be accurately inferred from context.
(5) The AI’s response aligns appropriately with the user’s intended goal.

Real-World Applicability

(1) Function names and parameters match real-world API specifications.
(2) The conversation is realistic and likely to occur in real-world scenarios.
(3) Function inference is realistic and likely to occur in real-world contexts.

26846


