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Abstract

Multi-task prompt tuning utilizes multiple high-
resource source tasks to improve performance
on low-source target tasks. Existing approaches
transfer the soft prompt trained by combin-
ing all source tasks or a single “high-similar”
source task one-time-only. However, we find
that the optimal transfer performance often
comes from a combination of source tasks,
which is neither one nor all. Further, we
find that the similarity between source and
target tasks also changes dynamically during
fine-tuning after transfering, making similar-
ity calculation in the initiation stage inade-
quate. To address these issues, we propose a
method called Dynamic Task Vector Grouping
(DTVG), whose core ideas contain (1) mea-
suring the task similarity with task vectors in-
stead of soft prompt, (2) grouping the optimal
source task combination based on two metrics:
target similarity and knowledge consistency;
(3) dynamically updating the combination in
each iteration step. Extensive experiments on
the 26 NLP datasets under different settings
demonstrate that DTVG effectively groups sim-
ilar source tasks while reducing negative trans-
fer, achieving the start-of-art performance.

1 Introduction

Full parameter fine-tuning (FT) of large pre-trained
language models (PLMs) has shown significant
success in addressing various natural language pro-
cessing (NLP) tasks. However, the conventional
fine-tuning paradigm requires substantial memory
and computational resources. Recently, parameter
efficient fine-tuning (PEFT) (Houlsby et al., 2019;
Li and Liang, 2021; Lester et al., 2021; Zaken et al.,
2022; Hu et al., 2022) aims to achieve comparable
results of FT by updating a significantly small set
of the model parameters.
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Figure 1: In the upper part, we use performance on the
RTE validation set to study potential conflicts of source
tasks. We incrementally add source tasks with a random
order and train soft prompt by examples-proportional
mixing (Raffel et al., 2020). In the bottom part, we cal-
culate the cosine similarity between the average pooled
representations of the prompt tokens (Vu et al., 2022).
We initialize the RTE soft prompt using the source task’s
soft prompt with the highest similarity. The legend
marker denotes the source task with the highest similar-
ity, which shifts from QNLI to MNLI during fine-tuning.

Soft prompt tuning (PT) (Lester et al., 2021), as
an effective PEFT method, achieves a trade-off be-
tween effectiveness and efficiency. During training,
a series of learnable soft prompt vectors prepended
to the input are updated while the original PLMs
are frozen. Unlike methods such as LoRA (Hu
et al., 2022) and Adapter (Houlsby et al., 2019), PT
is independent of the model architecture and can
be applied to various models without modification.
Although promising, the existing study (Asai et al.,
2022) demonstrates PT still underperforms com-
pared to FT, particularly in the case of low-resource
tasks. An additional issue with PT is sensitivity to
the initialization and needs longer tuning for con-
verge (Lester et al., 2021).

Recent works (Vu et al., 2022; Asai et al., 2022;
Feng, 2023; Wang et al., 2023) address the above
limitations by transferring soft prompt from high-
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resource source task to low-resource target task.

Specifically, they initialize the soft prompt for
the target task by either (1) learning a common soft
prompt across all source tasks or (2) learning a soft
prompt for each source task and selecting one with
the task similarity. Subsequently, the soft prompt
is tuned exclusively using limited training samples
from the target task. These transfer approaches
effectively maintain the parameters efficiency of
soft prompts and demonstrate superior performance
compared to vanilla prompt tuning.

Despite substantial progress, we challenge the
rationality of some straightforward ideas in exist-
ing approaches. We first check whether existing
methods achieve optimal performance. In the up-
per part of Figure 1, we observe that a subset of
source tasks achieves the best transfer performance,
neither all source tasks nor a source task. Addition-
ally, Vu et al. (2022) demonstrates MNLI, QNLI,
and QQP positively transfer to the RTE dataset,
while we find that their gradual addition does not
yield a consistent monotonic improvement due to
the potential conflicts among source tasks. These
observations revealed that we should find a group
of source tasks for each target task and consider
potential conflicts between source tasks besides the
similarity to target tasks.

Further, we check whether “the most similar
source task” will change in the tuning stage of
the target task. We study a single-task version of
SPoT (Vu et al., 2022), which transfers the soft
prompt from a source task to initiate the target task
via similarity measure between their learned soft
prompt. In the bottom part of Figure 1, we find that
“the most similar source task” of RTE shifts from
QNLI to MNLI over time. Recall that the low-
resource characteristics of the target task hinder
sufficient convergence of soft prompt; therefore,
it is unsurprising that we cannot select the truly
most similar task with an unconverted soft prompt
of the target task. This observation suggests that
dynamically updating the selected source task dur-
ing the target task’s fine-tuning may enhance the
sustainable acquisition of knowledge.

Motivated by these valuable empirical observa-
tions, we propose a method called Dynamic Task
Vector Grouping (DTVG). Specifically, We first
introduce a novel task similarity metric, the dot
product between task prompt vectors (TPV), which
steadily achieves a better transfer performance than
the current metric, the cosine similarity between
soft prompts. Based on this metric, we introduce

a source task grouping method to select the trans-
fer source task group for each target task with two
metrics, including target similarity and knowledge
consistency. Then, a multi-task merging method
is used to weighted sum the task vectors from the
target task and the selected source tasks, synthesiz-
ing the initialization soft prompt for the target task.
During the fine-tuning stage of the target task, we
track the task similarity changes and dynamically
update the source task group, which will effectively
improve transfer performance.
In summary, our major contributions are to:

* We present an effective task similarity metric,
based on the task prompt vectors, to measure
the transfer performance between tasks.

* We propose DTVG, a dynamic task vector
grouping method that assembles and updates a
source task group for each target task through-
out the iterative training process to ensure sus-
tainable acquisition of knowledge.

* We confirm the effectiveness of DTVG on
the 26 datasets based on TS5 and Llama3 un-
der different settings, surpassing the advanced
models and achieving SOTA performance.

2 Background

Soft Prompt Tuning Soft Prompt Tuning
(PT) (Lester et al., 2021) proposes strategically
inserting the learned soft prompt into the input.
Formally, for a task ¢ with the dataset D =
{(z4, yi)}@l, we fine-tuning a pre-trained model
Fg to perform better in the task ¢ with its param-
eter © frozen. Instead, the learnable soft prompt
P € R is introduced, where d is the hidden
state dimension of Fg and r is the soft prompt
length. The soft prompt P and the token embed-
ding matrix E(z;) are spliced as the input of Fg.
Then, the soft prompt P* is learned to boost the
posterior probability of correct output y;:

P* = arg;nax E(z, y)ep [Py Py E(z;)])] (1)

Although the PT method has shown great suc-
cess in various NLP tasks, it still faces the low-
source challenge: Too few training samples prevent
the soft prompts from converging, which can result
in huge performance differences under different
soft prompt initializations.
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Figure 2: An overview of methods for comparison. One For One, initialize a target task by retrieving the task-specific
prompt from one of the most similar source tasks based on task similarity. ALL For One, initialize a target task by
learning appropriately across all source tasks based on prompt or data mix. Our Method: Part For One, dynamic
group a subset of source tasks and merge their task prompt vectors.

Multi-Task Prompt Tuning Multi-Task Prompt
Tuning (Mahabadi et al., 2021; Vu et al., 2022;
Asai et al., 2022; Wang et al., 2023) is proposed
to address the low-source challenge of PT. For-
mally, given a high-resource source task set S =
{s!,s2 ..., 5"}, where n is the number of source
tasks, Multi-Task Prompt Tuning improve the per-
formance of a low-source target task ¢ by transfer
learning from S. Current methods usually con-
tain two stages: (1) Learning the transferable soft
prompts Ppix from S, defined as Ppix = G(S,t)
where G is the learning method; (2) Adopting Ppix
to t and re-tuning Ppix with maximum training
steps Npax on the training set of task ¢.

Multi-task Prompt Tuning does not impose re-
strictions on G to get Ppix and how to adopt Ppix
on ¢, excepting that the transfer ones must be soft
prompts. Therefore, there are two representative
lines of work to be highlighted. One For One: GG
serves as a retriever and selects the learned soft
prompt of the most similar s to initialize for {.
SPoT (Vu et al., 2022) regards the soft prompts
as the task embeddings and measures task simi-
larity via cosine similarity between soft prompts.
Feng (2023) learns G to predict transfer gain by
randomly sampling soft prompt pairs. All For One:
G serves as a blender and learns the task-shared
prompt from source task set S via different mix
strategies. SPoT (Vu et al., 2022) also learns a sin-
gle soft prompt through multi-task learning by mix-
ing data. ATTEMPT (Asai et al., 2022) trains an
attention module and mixes instance-wise prompts
from all source tasks S. MPT (Wang et al., 2023)
extends the multi-task training method of SPoT
by learning task-shared and task-specific modules.
TPT (Wu et al., 2023) propose to retrieve token-
wise soft prompt from the prompt bank.

Task Arithmetic Task Arithmetic (Ilharco et al.,
2023; Zhang et al., 2024; Ortiz-Jimenez et al.,
2024) as a newly emerged cost-effective approach
demonstrates the effectiveness of multi-task train-
ing by operating task vectors derived from dif-
ferent tasks, where task vectors are given as the
relative difference between the initialized parame-
ters and those obtained after fine-tuning, capturing
the changes induced by the adaptation process in
weight space. Our proposed approach is inspired by
Task Arithmetic. Similar to task vectors, the task
prompt vectors (TPV) T' = [v1,...,v,] € R¥X7
are defined as the difference between Pi;; and P,
ie. T = P*— Py, where v; € R?*! represent the
i-th vector in 7'. Concurrent work (Belanec et al.,
2024) uses TPV to enable generalization to new
target tasks without training. In contrast, we intro-
duce TPV to address the issue of potential negative
transfer in multi-task prompt tuning.

3 Method

3.1 Overview

We propose a novel multi-task prompt tuning ap-
proach, Dynamic Task Vector Grouping (DTVG),
which dynamically groups a subset from the source
task set to transfer to the target task. Therefore,
G in our method serves as a grouper, allowing a
specific target task to selectively leverage partially
related source tasks, mitigating the risk of negative
transfer. As shown in Figure 2, DTVG actually
follows the idea of Part For One and distinguishes
itself from existing methods.

DTVG consists of two stages: (I) Task Prompt
Vector Learning to obtain a tuned TPV for each
source and target task and (II) Multi-Task Prompt
Transfer to group source tasks’ TPV and merge it
with the target vector’s TPV. Note that the first stage
only needs to be performed once, while the second
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Figure 3: DTVG is to learn dynamic grouping partially related source tasks, including two stages: I) Task prompt
vector Learning; IT) Multi-task Prompt Transfer. In the first stage, we obtain task prompt vectors via vanilla prompt
tuning. In the second stage, Source Task Grouping and Multi-task Merging are executed at each iteration step.

stage is iterative, and the source task group will be
dynamically updated during the fine-tuning process
of the target task. An algorithm-style process of
DTVG is provided in Appendix F.

3.2 Task Prompt Vector Learning

In the first stage, we obtain the soft prompt by
individually tuning both the source and target task
via the same initialization P;,;¢ and calculate their
task prompt vectors T'. Therefore, we have n + 1
task prompt vectors from S U {¢}.

We propose using the average token-wise task
prompt vectors to compute their dot product, al-
lowing us to predict task similarity. This method
enables a quantitative assessment of task relation-
ships, as illustrated at the top of Figure 3. Specif-
ically, given two task prompt vectors 77 and T»
from s' and s2, we can calculate the similarity be-
tween tasks s! and s2. The task similarity scores
stm between tasks is defined as follows:

T T r

2
Z”j

=1

sim(Ty,Ty) = 2)

=1

where r denotes the length of soft prompt tokens.
To evaluate the effectiveness of this metric, we
conduct transfer experiments on the SuperGLUE
benchmark. As shown in Table 1, TPV demon-
strates consistent positive transfer, whereas SPoT

exhibits negative transfer on WSC and CB, show-
ing the superiority of our metric. Please refer to
Appendix C.1 and I for the experiment details and
visual analysis, respectively.

SuperGLUE
Method | Multi Bool WiC  WSC CB  Avg.
PT 72.7 76.0 626 673 82.1 721
SPoT | 74.9 80.6 65.2 63.5] 78.6) 726
TPV 74.2 81.3 66.1 673- 929 76.4

Table 1: Performance on SuperGLUE benchmark.

3.3 Multi-task Prompt Transfer

In the second stage, we introduce an iterative pro-
cess for multi-task prompt transfer. As shown in
the bottom of Figure 3, for each iteration, Source
Task Grouping and Multi-Task Merging are exe-
cuted sequentially to obtain Ppiy.

Source Task Grouping Source task grouping
aims to group a subset of source tasks S’ C S.
Source tasks in S’ should not only be similar to the
target task but also possess consistency of knowl-
edge. We propose two metrics to characterize the
source task group quantitatively, including Target
Similarity and Knowledge Consistency.

Target Similarity: To measure the transferabil-
ity of multiple source tasks to the target task, we
define a target similarity score TS as the average of
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the similarity between each source and target task
prompt vector pair (73, T;), which is formulated as

TS(S0) = g X simTLT) O

S| 4
steS

Knowledge Consistency: In multi-task transfer
learning scenarios, conflicts among source tasks are
prevalent. For example, in NLP, words crucial for
sentiment (e.g., “good”) may have varying signifi-
cance in topic classification, leading to ambiguity
and reduced performance in the target task. We pro-
pose to quantify the conflicts within a task group
by calculating the average pairwise sim between
tasks. More formally, we defined the Knowledge
Consistency Score (KC):

Ko ﬁ%sim(ﬂ,]’j) if |S] > 2,
0 otherwise
“)
Therefore, the objective for selecting a source
task group can be defined using 7'S and K C:

max (TS(S',t) + AKC(S")) (5)

subjectto, Vs',s' € S, s' £ 57

where A is the hyperparameter to achieve the trade-
off between TS and KC.

However, the process to find the optimal S’ is
equivalent to the Set Cover problem, which is
the NP-Hard. As the number of tasks increases,
the selection from 2!5| subsets becomes infeasi-
ble. Therefore, we use a heuristic algorithm to
find a suboptimal subset, achieving a balance be-
tween efficiency and effectiveness. As shown in
Figure 3, the algorithm consists of two steps: (1)
sim(T}, T;) between each source task s° and tar-
get task ¢ is computed. Then {sim/(T;, T3)}! is
ranked in the descending order, obtaining a rank
list IT = {7w!, w2, ... 7"}, where 7/ is the source
task with j-th highest sim(T;, T3); (2) The source
tasks with sim (7}, T;) are added to the set S’ one
by one in the order in T until the KC(S’) is no
longer increasing. The implementation details are
provided in the Appendix G.

Multi-task Merging Multi-task merging aims to
merge the task prompt vectors from the source task
group and the target task to get a final soft prompt
Pix. Specifically, Py is obtained by the sum of
(1) the rescaled soft prompt task vectors of S’ U {¢}

and (2) a common initialization prompt, which can
be denoted as

Prix = Pim't + oy + 5 asTs (6)
s€S’
~—~— <
Initialization Merged Task Prompt Vector

where o € R! is token level scaling term initialized
to all-ones vector. In practice, we employ rescaled
task prompt vectors to compute the task similarity
score (Equation 2).

Iteration Update In each training step, we se-
quentially execute the above two steps to ensure
the correct source task group S’ selection to com-
pute Pnix with in-batch. In practice, we observe
that in the early stages of training, the grouping of
source tasks exhibits significant fluctuations due
to the insufficient convergence of the target task
prompt vectors. As the iterations progress, the dy-
namic grouping gradually stabilizes and ultimately
maintains consistency (see Section 4.4 for details).

4 Experiments

4.1 Experiment Setup

Datasets We evaluate the model’s natural lan-
guage understanding capabilities using the GLUE
and SuperGLUE benchmarks. In addition, we
also use four question-answering datasets from the
MRQA 2019 benchmark and four datasets from the
“other” benchmark. In the following, we introduce
the source tasks and target tasks separately. Further
details can be found in Appendix B.

Source Tasks: Following Wang et al. (2023),
we set n to 6, and use the same large-scale datasets
as source tasks, including MNLI, QNLI, QQP,
SST2 from GLUE, ReCoRD from SuperGLUE,
and SQuAD from MRQA 2019.

Target Tasks: we use all 8 datasets from GLUE,
5 datasets (excluding ReCoRD) from SuperGLUE,
4 datasets (excluding SQuAD) from MRQA 2019,
and 4 datasets from the “other”” benchmark.

Models We adopt the model setup from (Lester
et al., 2021) for prompt tuning. Our experiments
mainly utilize T5-base with the soft prompt of
length 100, while in ablation studies, we also ex-
plore other scales of TS in Section 4.4.

Baselines We compare our method with several
baseline methods. (1) no transfer learning, which
updates model parameters for the each target task
without source task, including Finetuning (FT),
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Prompt Tuning (PT) (Lester et al., 2021), Bit-
Fit (Zaken et al., 2022), Adapter (Houlsby et al.,
2019), LoRA (Hu et al., 2022), DePT (Shi and
Lipani, 2024), as well as multi-task versions of
FT, Adapter, HyperFomer (Mahabadi et al., 2021),
and HyperDecoder (Ivison and Peters, 2022). Note
that we exclude ACCEPT (Lin et al., 2024) due
to the lack of accessible open-source code, which
prevents an evaluation of its ability to address sensi-
tivity to prompt initialization. (2) transfer learning
+ one for one, where transfer soft prompt from
one source task to each target task, such as SPoT
(Vu et al., 2022) (3) transfer learning + all for one,
where transfer soft prompt from all source tasks to
each target task, including ATTEMPT (Asai et al.,
2022), MPT (Wang et al., 2023), TPT (Wu et al.,
2023) as well as multi-task versions of ATTEMPT,
and MPT. For a fair comparison, we directly quote
the results of the baselines reported in previous
works (Asai et al., 2022; Wu et al., 2023; Wang
et al., 2023; Shi and Lipani, 2024) whenever pos-
sible, and utilize publicly available source code to
ensure consistent experimental settings.

Implementation Details For both the Task
Prompt Vector Learning and Multi-task Prompt
Transfer stage, we train on high-resource source
tasks for 300K steps, following Vu et al. (2022).
For the target tasks, we set Ny .y to 30K. Aligning
with standard prompt tuning methods (Lester et al.,
2021), we use a default learning rate of 0.3 and
select checkpoints with the highest validation set
scores to extract task prompt vectors. In the Multi-
task Prompt Transfer stage, we apply two-speed
learning rates for different modules. We conduct
transfer experiments four times and report the aver-
age results. Please see Appendix C for details.

Parameter Efficiency For both source and target
tasks, we compute the task prompt vector T' €
R™*4, where r is the length of the soft prompt and
d is the model dimension. For each source task,
we introduce a learned scaling term o € R". Our
framework enables knowledge transfer from partial
source tasks to the target task, therefore, the total
number of learned parameters ranges from r + r *
d=rx(d+1)to (n+1)xr+rd =r«(d+n+1),
where n is the number of source tasks. We compare
different methods’ trainable parameters under the
least favorable conditions of DTVG in Table 2.

4.2 Main Results

Full-dataset Transfer Table 2 provides the per-
formance and parameter comparison for each
dataset on the GLUE and SuperGLUE benchmarks
across different baselines. Additionally, we visual-
ize the result on GLUE (see Appendix A). Notably,
our proposed method, DTVG, outperforms others
by achieving the highest average performance on
GLUE and SuperGLUE with a minimal parame-
ter tuning fraction of 0.035%, in contrast to the
fine-tuning. When compared to prompt tuning in
terms of low-resource datasets, DTVG significantly
improves the performance of the target task, such
as CoLA (10.6% vs. 69.1%) and CB (67.9% vs.
97.6%). Simultaneously, our multiple experiments
demonstrate that DTVG is robust for addressing
inappropriate soft prompt initialization leading to
performance degradation. Please see Appendix D
for details on MRQA and “Other” benchmarks.

Few-shot Adaptation We compare our method
with other baselines on BoolQ, CB, and SciTail
in Table 3. On average, our method outperforms
the baselines in low-resource settings with only (k=
4,16,32) shots, indicating that our DTVG is adept at
harnessing knowledge from multiple source tasks
for effective transfer in scenarios with limited train-
ing samples. More details about GLUE and Super-
GLUE are given in Appendix E.

4.3 Ablation Study

Source Task Grouping Strategy We conduct ab-
lation experiments on the SuperGLUE benchmark
to study the impact of two different perspectives for
source task grouping. For a) Target Similarity (TS),
we only merge TPV with sim > 0. For b) Knowl-
edge Consistency (KC), we select the source task
group with the highest K C' among all source task
combinations. As shown in Figure 4, these strate-
gies can improve performance consistently. KC
improves the average performance on SuperGLUE
from 74.8 to 75.1, suggesting that mitigating the
conflict among multiple source tasks is critical for
effective multi-task prompt tuning, even when the
task combinations may not be directly related to the
target tasks. ST improves the average performance
on SuperGLUE from 74.8 to 75.9, indicating that
stm can effectively evaluate and leverage similar
source tasks for transferring.

Multi-task Prompt Transfer Strategy We con-
duct a study to ablate different multi-task prompt
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GLUE SuperGLUE
Method param MNLI QQP QNLI SST2STS-BMRPC RTE CoLA Av Multi Bool WiC WSC CB Av
\ task (393K)(364K)(105K) (67K) (7K) (3.7K) (2.5K)(8.5K) g’(5.1K)(9.4K) (6K) (554) (250) &
no transfer learning
Finetuning 220M | 86.8 91.6 93.0 946 89.7 902 719 61.8 849/ 72.8 81.1 702 59.6 857 73.9
PT: 76.8K | 81.3 89.7 928 90.9 89.5 68.1 547 10.6 722|587 61.7 489 519 679 57.8
BitFit; 280K | 853 90.1 93.0 942 909 86.8 67.6 582 83.3/ 745 79.6 70.0 59.6 78.6 72.5
Adapter; 19M | 86.5 902 932 938 90.7 853 719 64.0 84.5/ 759 825 67.1 673 857 75.7
LoRA4 38M | 863 89.0 932 943 909 90.1 755 633 853|726 813 683 673 929 76.5
DePT.4 76.8k | 85.0 904 932 942 90.8 90.7 79.1 638 859|743 793 68.7 673 929 76.5
Finetuningy 28M | 85.7 91.1 920 925 88.8 90.2 754 549 83.8| 744 81.1 70.0 71.2 857 76.1
Adapters] 1.8M | 863 90.5 932 930 899 90.2 70.3 61.5 84.4|72.6 823 66.5 673 89.3 75.6
HyperFomer; 638K | 85.7 90.0 93.0 94.0 89.7 87.2 754 63.7 84.8/ 729 825 69.0 67.3 857 754
HyperDecoder] 1.8M | 86.0 90.5 934 940 90.5 87.7 71.7 559 83.7/ 704 788 67.1 61.5 82.1 72.0
transfer learning + one for one
SPoT, 76.8K [ 854 90.1 93.0 934 900 79.7 69.8 57.1 823]74.0 772 67.0 50.0 464 62.9
transfer learning + all for one
ATTEMPT; 232K | 843 903 930 932 89.7 857 734 574 834|744 788 66.8 53.8 78.6 70.5
MPT3 77.6K | 859 90.3 93.1 93.8 904 89.1 794 624 856|748 79.6 69.0 67.3 79.8 74.1
TPT, 539K | 855 90.1 932 947 89.8 89.7 823 59.8 85.6/ 744 80.1 69.8 673 946 77.2
ATTEMPT} 96K | 83.8 90.0 93.1 93.7 90.8 86.1 799 643 852 744 783 66.5 69.2 82.1 74.1
MPT3 105K | 843 90.0 93.0 933 904 89.2 827 63.5 858 748 79.2 702 673 89.3 76.1
transfer learning + part for one
DTVG (ours)  77.5K [86.00.2 90.30.1 93.10.0 93.20.091.00.2 90.40.2 86.30.6 69.11.0 87.4[74.50.7 81.40.1 71.10.569.93.697.63.4 78.9

Table 2: Results on GLUE and SuperGLUE benchmark. “paramtask* denotes the number of learnable parameters
for each task on the GLUE. * denotes multi-task learning on target tasks. ; sourced from Asai et al. (2022), »
sourced from Wu et al. (2023), 5 sourced from Wang et al. (2023) and 4 sourced from Shi and Lipani (2024). We
differentiate high-resource and low-resource tasks using gray and blue, respectively, to highlight our contribution.

Method
FT PT HF ATP MPT

4 1505 616 480 61.8 622
BoolQ | 16 | 56.5 619 502 60.0 63.3
321584 617 583 653 689

4 | 577 535 607 821 73.6
CB 16 | 77.0 635 763 785 78.6
32| 80.0 678 814 857 821

4 179.6 577 820 802 80.2
SciTail | 16 | 80.0 60.8 86.5 79.5 87.3
321819 602 858 80.2 863

Task | k DePT | Our

62754 | 60.6; 5
66944 | 72.314
67254 | 73.5,,

75.05,1 86.9[_7
78.643 | 82.129
82.153 | 84.57

78.125 | 78.31 1
78.514 | 82.129
85.431 | 85.3,5

Table 3: Few-shot adaptation on BoolQ, CB, and Sc-
iTail datasets, where FT, HF, ATP denote Finetuning,
HyperFomer, and ATTEMPT, respectively.

transfer strategies, including 1) only target: This
strategy focuses solely on learning the target task
prompt and its associated scaling term for the task
prompt vectors. 2) fix group: This strategy fixes
the initial source task group, thus eliminating the
effect of dynamic grouping, which relies on the
specific grouping of source tasks. Figure 5 shows
that using a fixed group of source tasks results in a
performance drop (77.4 vs. 75.2), suggesting that
the choice of the source task group is important.
This emphasizes the need for our approach, namely
DTVG’s ability to efficiently group source tasks by
dynamic iteration, thereby improving performance.

Source Task Grouping Strategy

-w/o TS&KC 74.8
-w/o TS 75.1
-w/o KC 9
DTVG 77.4
74 75 77 78

76
Avg. SuperGLUE

Figure 4: Ablation study for the source task grouping.
Multi-task Transfer Strategy

only target 74.8
fix group \J_L\‘
DTVG 774
74 75 77 78

76
Avg. SuperGLUE

Figure 5: Ablation study for multi-task prompt transfer.

4.4 Additional Analysis

We extend our experiments to comprehensively
evaluate the performance of DTVG, including
model scaling, natural language generation, gen-
eralization to other LLMs, and dynamic grouping
during training. However, for some experiments
without a standard evaluation protocol, we analyze
DTVG only against some fundamental baselines.

Model Scaling Figure 6 illustrates the results on
three SuperGLUE datasets with different scales
of the TS model. We observe that as the model
size increases, performance across different tasks
improves. This indicates that our method indeed
benefits from a larger model capacity. Please refer
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Metris
Task Method BLEU R-1 R2 RL
B2E PT 0.274 62.1 363 47.0
DTVG 0.331 63.6 375 479
CommonGen PT 0.056 333 99 276
DTVG 0.067 36.6 11.0 29.1
PT 0.293 644 39.6 523
WebNLG DTVG 0.363 663 414 534

Task
Method | prp coLA  CB WSC
LLama-3.2-1B
PT 748 592 60.7 635
SPoT | 576 67.5 643 67.3
DTVG | 84.1 634 821 673
LLama-3.2-3B
PT 604 672 643 673
SPoT | 63.3 71.7 60.7 67.3
DTVG | 89.2 73.1 893 69.2
LLama-3-8B
PT 83.5 692 571 673
SPoT 849 703 60.7 673
DTVG | 849 726 863 714

Table 4: Performance on NLG tasks. R-1, R-2, and R-L
denote Rouge-1, Rouge-2, and Rouge-L, respectively.

to Appendix C.4 for experiment details.

Natural Language Generation As shown in Ta-
ble 4, we observe that DTVG consistently outper-
forms PT on three natural language generation
tasks (namely, E2E (Dusek et al., 2019), Com-
monGen (Lin et al., 2020), and WebNLG (Gar-
dent et al., 2017)), suggesting DTVG works not
only for NLU but also for NLG. Interestingly, al-
though we transfer TPV from NLU tasks to NLG
tasks, DTVG’s performance on NLG tasks does
not degrade, which aligns with the same obser-
vation (Wang et al., 2023). We suspect that this
phenomenon might be related to T5’s text-to-text
framework. Please see Appendix C.5 for details.

Generalization to Other LLMs We experimen-
tally analyze the performance of DTVG on the
latest decoder-based models using Llama-3.2-1B,
Llama-3.2-3B and Llama-3-8B (Dubey et al.,
2024). As shown in Table 5, DTVG outperforms
vanilla prompt tuning across various target tasks.
When compared with SPoT, DTVG demonstrates
consistent positive transfer across various LLMs,
whereas SPoT exhibits negative transfer, such as
on RTE with Llama-3.2-1B (74.8% vs. 57.6%).
These results suggest that DTVG’s generalizability
to other types of LLMs. Moreover, we observe
that DTVG performs better on Llama-3.2-3B than
Llama-3.2-1B, indicating that it benefits from more
powerful LLMs. Please see Appendix C.6 for ex-
periment details.

Table 5: Results on Llama-3.2-1B, Llama-3.2-3B and
Llama-3-8B

Dynamic Grouping Figure 7 illustrates the varia-
tions of dynamic grouping for RTE during the train-
ing process. Compared to prompt tuning, DTVG
achieves better performance on RTE.

From the task grouping perspective, we observe
the source task combination shifts from [topl:
MNLI, top2: SST2] to [topl: MNLI, top2: QNLI]
over time. This result suggests that a) Target Simi-
larity: two NLI source tasks become more aligned
to the target task RTE (NLI); and b) Knowledge
Consistency: conflicts exist between MNLI and
SST2 (replaced by QNLI) are reduced.

From an iterative training perspective, we ob-
serve that source task groups fluctuate frequently
during the early stages of training. As training pro-
gresses, the task group converges, resulting in a
stable selection of tasks in the final stage. This sup-
ports our hypothesis that insufficient convergence is
attributed to the low-resource characteristics of the
target tasks. Additionally, we report the grouping
results of MRPC, NQ, and SciTail in Appendix H.

5 Conclusion

In this paper, we present DTVG, a novel approach
for addressing potential negative transfer in multi-
task prompt tuning based on task prompt vectors.
Compared to vanilla transfer of the soft prompt
from all source tasks, we dynamically group a sub-
set of source tasks and merge their task prompt vec-
tors to avoid an unrelated source task inducing per-
formance degradation of the target task. Extensive
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Figure 7: Validation performance on RTE with source
task grouping. The source tasks are arranged in each
patch legend from left to right, ordered by their similar-

ity to the target task, from highest to lowest.

experiments demonstrate that DTVG effectively
groups related source tasks to further optimize the
performance of the target task.
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Appendix

A Performance and Parameter
Comparison

We visualize the average score (y-axis) and pa-
rameter (x-axis) on the GLUE benchmark across
various baselines in Figure 8. We observe DTVG
surpassing other baselines and achieving SOTA
performance with minimal parameters.

87.5 O
85.0 ¥ Adapter
. B BitFit
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Figure 8: Performance & parameter comparison.

B Dataset Details

We use 26 datasets in total from 5 benchmarks.
We use GLUE and SuperGLUE benchmarks to
test the model’s natural language understanding.
MNLI (Williams et al., 2018), QNLI (Demszky
et al., 2018), QQP (Wang, 2018), SST2 (Socher
et al., 2013), RTE (Giampiccolo et al., 2007),
CoLA (Warstadt, 2019), STS-B (Cer et al., 2017),
MRPC (Dolan and Brockett, 2005) are derived
from GLUE. MultiRC (Khashabi et al., 2018),
BoolQ (Clark et al., 2019), WiC (Pilehvar and
Camacho-Collados, 2019), WSC (Levesque et al.,
2012), and CB (De Marneffe et al.,, 2019),
ReCoRD (Zhang et al., 2018) are from Super-
GLUE. We use four question-answering datasets
from the MRQA 2019 benchmarks, including Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019),
HotpotQA (HQ) (Yang et al., 2018), NewsQA
(News) (Trischler et al., 2017), and SearchQA
(SQA) (Dunn et al., 2017), SQuAD (Rajpurkar,
2016). WinoGrande (WGQG) (Sakaguchi et al.,
2021), YelpPolarity (Yelp) (Zhang et al., 2015),
SciTail (Khot et al., 2018) and PAWS-Wiki
(PAWS) (Zhang et al., 2019) are from the ‘other*
benchmark to test model’ generalizability across
different domains. We also use CommonGen (Lin
et al.,, 2020), E2E (Dusek et al., 2019), and
WebNLG (Gardent et al., 2017) sourced from the
GEM (Gehrmann et al., 2021) benchmark to test

the model’s performance on natural language gen-
eration. We download all datasets from the hug-
gingface dataset'. Table 6 lists more details about
each dataset.

C Implementation Details

We use PyTorch?, huggingface transformers? to im-
plement our method. We validate the effectiveness
of DTVG based on the open-source repository .
All of the experiments are conducted with a single
GPU with 32 GB of memory. Following Asai et al.
(2022), we use the original T5 checkpoint. We set
the batch size for T5-base as 32 for most datasets.
We set the batch size to 16 and the gradient ac-
cumulation step to 2 for the MRQA benchmark
with a long context. Due to the different input
lengths of various datasets, we set the maximum
token length of 256 for most datasets that have a
context of fewer than 200 tokens. We set the maxi-
mum token length of 348 for MultiRC and 512 for
MRQA datasets. We limit the maximum training
data number of YelpPolarity to 100k. We main-
tain the same hyperparameter settings (Lester et al.,
2021) to reinitialize and retrain all tasks, aiming to
reconstruct the corresponding soft prompts and task
prompt vectors. Similar to (Mahabadi et al., 2021),
for datasets lacking publicly available test sets, we
use the validation set as the test set or partition it
to create separate test and validation sets.

C.1 Comparison of Task Prompt Vectors and
Soft prompt

We used the reconstructed soft prompts with the
same initialization to compare SPoT (Vu et al,,
2022) and TPV. Specifically, we initialize the tar-
get task prompt with the soft prompt that obtained
the highest metric score from six source tasks
(namely, MNLI, QNLI, QQP, SST-2, ReCoRD, and
SQuAD). Note that the difference between the im-
plementations of the two methods SPoT and TPV
is only in the task similarity metric. SPoT uses the
traditional cosine similarity of soft prompts, while
TPV uses Eqn.2 to compute task similarity.

C.2 Full-dataset Transfer

We set warmup steps to be 500, weight decay to be
1%1075, and use Adam (Kingma and Ba, 2015) for
optimization with a linear learning rate scheduler.

1https: //github.com/huggingface/datasets
2ht’cps: //pytorch.org/

3ht’cps: //github.com/huggingface/transformers
*https://github.com/AkariAsai/ATTEMPT

26816


https://github.com/huggingface/datasets
https://pytorch.org/
https://github.com/huggingface/transformers
https://github.com/AkariAsai/ATTEMPT

Dataset | Source Target | Benchmark Task Type Domain Metric

MNLI v v" |GLUE Natural Language Inference Various Accuracy

QQP v v GLUE Paraphrase Detection Social QA Accuracy & F1

QNLI v v" |GLUE (QA) Natural Language Inference Wikipedia Accuracy

SST2 v v" |GLUE Sentiment Analysis Movie Reviews Accuracy

STS-B X v" |GLUE Sentence Similarity Various Pearson & Spearman corr.
MRPC X v" |GLUE Paraphrase Detection News Accuracy & F1

RTE X v" |GLUE Natural Language Inference News & Wikipedia Accuracy

CoLA X v"  |GLUE Acceptability Various Matthews corr.
ReCoRD v X SuperGLUE  Question Answering (QA)  News Fl & EM

MultiRC X v" | SuperGLUE Question Answering (QA)  Various Fl1 & EM

BoolQ X v SuperGLUE Question Answering (QA)  Wikipedia Accuracy

WiC X v' | SuperGLUE Word Sense Disambiguation Lexical databases Accuracy

WSC X v' | SuperGLUE Common Sense Reasoning  Fiction books Accuracy

CB X v" | SuperGLUE Natural Language Inference Various Accuracy

SQuAD v X MRQA 2019 Question Answering (QA)  Wikipedia F1 & EM

NQ X v MRQA 2019 Question Answering (QA)  Wikipedia F1 & EM

HotpotQA X v" |MRQA 2019 Question Answering (QA)  Wikipedia F1 & EM

SearchQA X v MRQA 2019 Question Answering (QA)  Search snippets Fl1 & EM

NewsQA X v" |MRQA 2019 Question Answering (QA) News F1 & EM
WinoGrande X v ‘Other* Common Sense Reasoning ~ WikiHow Accuracy
YelpPolarity X v ‘Other* Sentiment Analysis Yelp reviews Accuracy

SciTail X v ‘Other* Natural Language Inference Science exams Accuracy

PAWS X v ‘Other* Paraphrase Detection Wikipedia Accuracy

WebNLG X v GEM Data to Text (NLG) Various Automated Evaluation
E2E X v GEM Data to Text (NLG) Restaurant Automated Evaluation
CommonGen X v GEM Data to Text (NLG) Commonsense Automated Evaluation

Table 6: Details about 26 datasets from 5 Benchmarks in total. GLUE (QA) denotes the QNLI derived from the
Question Answering Dataset (SQuAD). Lexical databases contain WordNet, VerbNet, and Wiktionary, Search
snippets denote question answering from the search engine. Automated Evaluation includes BLEU, Rouge-1,
Rouge-2, and Rouge-L. Following Shi and Lipani (2024), we use the metric marked with an underline as the primary

evaluation metric.

C.3 Few-shot Adaptation

In few-shot adaptation experiments, followed
by (Mahabadi et al., 2021), we run experiments
three times with different random seeds and take
the mean of the performance. In each trial, we train
1k steps on the target task for both task prompt vec-
tor learning and multi-task prompt transfer stage,
which we found to be able to achieve full conver-
gence. We evaluate every 50 steps on the original
validation set. For the rest, we report on the orig-
inal test sets based on the best checkpoint on the
validation set.

C.4 Model Scale

For model scaling experiments, we set the batch
sizes are 100 and 16 for T5-small and T5-large,
respectively.

C.5 Other LLMs

We use Llama-3.2-1B, Llama-3.2-3B and Llama-3-
8B to test DTVG’s generalizability on other types
of LLMs. In our experiment, we use the same 6
source tasks as our main experiments setting on the

T5-base and select RTE, CoL A, CB, and WSC as
target tasks. We set the length of the soft prompt to
100 for both models and set the batch size to 16, 4
and 2 for Llama-3.2-1B, Llama-3.2-3B and Llama-
3-8B, respectively. Compared to encoder-decoder-
based models, we observe that decoder-based au-
toregressive models require a smaller learning rate.
Therefore, we set the learning rate of the soft
prompt and its corresponding scaling term to 0.001
for Llama-3.2-1B and Llama-3.2-3B, and to 0.0001
for Llama-3-8B.

C.6 Natural Language Generation

We select E2E, CommonGen, and WebNLG
sourced from the GEM benchmark to evaluate
DTVG’s performance on natural language genera-
tion (NLG) tasks. We use T5-base as the backbone
and reuse the task prompt vectors sourced from
6 natural language understanding (NLU) source
tasks. We set the maximum 128 token length for
both the input and output. We use the target as a
simple reference to compute metrics for both PT
and DTVG and report the best result on the valida-
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tion set in Table 4.

C.7 Two Speed Learning Rate

For the full-dataset transfer setting, we search the
learning rate within the set {3e-1, 4e-1, Se-1} for
the target task prompt and corresponding scaling
term. For the scaling term of the source prompt
task vectors, we search the learning rate within the
set {4e-1, 6e-1, 8e-1, 1}. For few-shot adaptation
and others, we set the learning rate of 0.3 for both
the target task prompt and corresponding scaling
term, and 0.4 for the scaling term of the source task
prompt vectors.

C.8 Prompt Initialization

We initialized the soft prompt by randomly sam-
pling the top 5000 vocabulary words for all tasks.
In both full-dataset transfer and few-shot adaptation
experiments, we utilize soft prompt tasks vectors
from source tasks by full-dataset prompt tuning. In
few-shot adaptation setting, we exclude the corre-
sponding task prompt vectors when adapt to source
tasks in GLUE.

D MRQA and ‘Other‘ Benchmark

As shown in Table 7, DTVG realizes significant
improvements over the vanilla prompt tuning with
a3.7%, 14.2% increase on MRQA and ‘Other* in
terms of relative average performance. Compared
to other baselines, DTVG also achieves compara-
ble or better performance on MRQA and ‘other*
benchmarks.

E Few-shot adaptation On GLUE and
SuperGLUE benchmark

We compare our method with no transfer base-
line PT, one for one baseline DePT, and all for
one baseline MPT, and Table 8 shows the evalua-
tion results on GLUE and SuperGLUE benchmarks.
Our method can substantially improve the few-shot
adaptation results in the most of settings. Specif-
ically, compared to PT, our method on average
improves the results across only (k= 4,16,32) shots.
Meanwhile, our method also surpasses MPT and
DePT, in terms of performance.

F Algorithm Details about DTVG

We give all the implementation details about DTVG
for multi-task prompt tuning on Algorithm 1.
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Figure 9: Validation Performance MRPC, SciTail, and
NQ with source task grouping.

G Details about Source Task Grouping

Implementation details about Source Task Group-
ing for addressing optimization objective 5 are pre-
sented in Algorithm 2.

H Source Task Grouping

Figure 9 demonstrates that DTVG consistently out-
performs vanilla prompt tuning in terms of perfor-
mance across the MRQA, SciTail, and NQ datasets.
Meanwhile, DTVG achieves dynamic grouping a
appropriate task subset for the different target task.
This indicates that DTVG is capable of effectively
group a related source task combination tailored
to different target tasks, thereby reduce negative
transfer.

I Task similarity

TPV represents the change in parameters after fine-
tuning from its initial parameters on a specific task
and reflects the specific optimization direction of
a task in the weight space. When we fix a unified
initialization for all tasks, effectively constraining
them to the same weight space, it means that when
two TPVs are closer, their optimization directions
are more aligned. As a result, when transferring
between tasks, there will be fewer conflicts.

We conduct a case study using 5 source tasks and
6 target tasks with the same initialization to analyze
the effectiveness of TPV in capturing the relation-
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| MRQA | Other

param | NQ HP SQA News WG  Yelp SciTail PAWS
\ task |(100k) (72K) (117K) (74K) (40K) (100k) (27K) (49K)

Method Avg. Avg.

Finetuning; | 220M | 75.1 775 81.1 652 747| 61.9 96.7 958 941 §7.1
Adaptersy IOM | 742 776 814 656 747|592 969 945 943 86.2
BitFit; 280K | 70.7 755 777 641 72.0| 572 947 947 920 84.7
PT, 768K | 679 729 757 61.1 694| 49.6 951 879 558 721
LoRAj3 38M | 724 623 725 569 66.0| 582 971 947 940 86.0
SPoT: 768K | 682 748 753 582 69.1| 504 954 912 91.1 82.0
ATTEMPT; | 232K | 704 752 773 628 714| 57.6 967 93.1 92.1 849
MPT, 77.6k |72.001 75.801 77.201 63.701 72.2|56.509 96.400 95.501 93.50.1 85.5
DePTs 76.8k |73.201 76.803 77.602 64.401 73.0(59.002 96.80.1 95.602 93.791 86.3
DTVG (ours) 77.5k 73.10_1 76.70_0 77.80_3 64.60_1 73.1 58.00_0 96.60_1 97.0()_1 93.70_0 86.3

Table 7: Performance on MRQA2019 and ‘Other‘ benchmarks. “param \ task* denotes the number of learnable

parameters for each task. ; sourced from (Asai et al., 2022), » sourced from (Wang et al., 2023) and 3 sourced from
(Shi and Lipani, 2024).

GLUE SuperGLUE
Method | k-shot | MNLI QQP QNLI SST2 STS-B MRPC RTE CoLA Avg. | Muli Bool WiC WSC CB Avg.
PT 40.1 63.2 40.4 53.0 88.8 68.1 56.3 27.4 54.7 61.8 61.6 51.2 60.4 53.5 577
MPT 4 59.4 82.0 86.2 56.5 89.1 68.1 62.6 34.8 67.3 62.2 62.2 52.9 67.3 73.6  63.6
DePT 44.011 77467 85844 59331 84.la; 73528 63528 29323 646 | 62313 62754 57511 67909 75.0s; 65.1
Our 49317 87.507 80.205 81.819 87905 68.1oo 72707 22245 68.7 | 61492 60.6;5 59417 45219 86.9,7 62.7
PT 41.5 62.3 874 50.9 87.8 68.1 547 28.5 56.7 60.3 61.9 489 442 63.5 55.8
MPT 16 61.6 84.7 90.6 63.2 89.1 70.1 64.8 32.1 69.5 64.5 63.3 49.8 67.3 78.6 647
DePT 61.85 80313 91.205 77.663 87.117 7813 71910 27.117 719 | 60.608 66944 59.607 57727 T8.643 647
Our 58.806 81912 89.811 84611 88404 86904 76.810 31.3,3 748 | 6143, 72314 60.704 67300 82.1n9 68.8
PT 37.0 62.3 56.7 50.9 87.5 68.1 54.7 232 55.1 59.2 61.7 52.6 67.3 67.8 61.7
MPT 3 63.6 88.5 91.0 75.9 89.7 74.5 59.7 30.8 71.7 63.3 68.9 53.9 67.3 82.1 67.1
DePT 63335  80.lo7 91305 80.4s7 89201 8l4sz 727,09 28.6,1 734 | 60.127 67234 58007 63.136 82.1,3 664
Our 61.20; 85308 91204 88314 83247 83147 T4la7 29315 745 | 66361 73511 60210 67300 845, 704

Table 8: Few-shot adaptation on GLUE and SuperGLUE benchmark

Algorithm 1: DTVG

Input: source tasks set S = {s',s2, ..., 5"}, target task t, initialization soft prompt parameters
Pipit, maximum training steps Nyax
Output: Trained multi-task soft prompt parameters

Stage 1: Task prompt vector Learning ;

Initialize P;,;; for both sources and target task;

Boost the posterior probability and obtain their task prompt vectors;

Stage 2: Multi-task Prompt Transfer ;

for each iterative k < 1 to Ny ax do
Source Task Grouping: Group a subset of relevant source tasks S’ from S ;
Multi-Task Merging: Merge task prompt vectors from S’ U {t} to get Ppix ;
Boost the posterior probability on target task ¢ with Py

*
mix

® NS N R W N =

return P*

mix

N

26819



Algorithm 2: Source Task Grouping

Input: source tasks set S = {s',s% ..., s"}, target task ¢

Output: selected task group S’

Step 1: Rank Similarity to Target ;

Compute Similarity Ranking list IT;

Step 2: Maximize Knowledge Consistency ;
Initialize an empty source task group S’ < (;
for each index 7' from similarity rank list II do

N R W N -

=)

Let s™ be the task corresponding to index 7¢;

7 Calculate the contribution of s™ to &' : A(S,s™) « KC(S'U{s™}) — KC(S');

*®

if sim(t,s™ ) > 0 and A(S',s™) > 0 then
L Add s™ t0S": S+ S'U{s™};

-

10 return S’

—

0.20 0.22 0.25

WG HQ NQ MRPC PAWS

Figure 10: Task similarity of dot product result via TPV.
We visualize the task similarity between 5 source tasks
and 6 target tasks. We apply min-max normalization to
reflect the relative relation among tasks.

ships between different tasks. Figure 10 shows the
cluster map by computing pairwise task similarity
score based on TPV (Eqn. 2). We observe that
tasks perceived as similar are clustered together.
Specifically, in the source tasks partition, SQUAD
and ReCoRD are grouped in the QA cluster. QNLI
and QQP belong to QA datasets. This clustering
pattern is also observed in the target tasks partition.
NQ and HQ are in the QA cluster, MRPC PAWS
are Paraphrase Detection, and WSC and WG are
Common Sense Reasoning. Furthermore, all target
tasks show a consistently high relative task simi-
larity with MNLI, a widely used intermediate task
for fine-tuning PLMs (Phang et al., 2018). This
highlights the TPV’s ability to capture less obvi-
ous positive transfer. More details can be found in
Figure 11.

J Computation and Time Costs

Dynamically calculating the task combinations dur-
ing each parameter update does indeed introduce
additional time and computation costs during train-
ing. However, this computation does not involve
gradients, so it ultimately does not lead to a sig-
nificant increase in time and computation burden.
We visualize the result and training speed on RTE
in Table 9. We observe that DTVG demonstrates
a 16.5% improvement in performance while incur-
ring only a 8.7% decrease in training speed com-
pared to prompt tuning.

26820



WG_seod=(22}
ColA_seed=(52)
ws (42}

=

Lseed=(22}
QNLIsoed={32)

POLOY SRR
s
SILLLLS, CELLLLL £, £, Sy ELLLLELE Feeees SLEIILIS, FILSTEeees
P 555 I RERCERS SRR CPT EEP WOPS FTEY e PEL TS N

Figure 11: Task similarity visualizations of task prompt vectors. We conduct four experiments with different seeds in
{22, 32,42, 52}. We apply Min-Max normalization to ensure the relative relationships in the results are maintained.

Method | Test Acc on RTE Traning samples per second
PT 74.1 64.2
DTVG 86.3 58.6

Table 9: Test result and training speed on RTE. We use T5-base as backbone
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