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Abstract

Large language models (LLMs) have demon-
strated strong performance across various tasks,
leveraging their exceptional in-context learn-
ing ability with only a few examples. Accord-
ingly, the selection of optimal in-context ex-
amples has been actively studied in the field
of machine translation. However, these stud-
ies presuppose the presence of a demonstra-
tion pool with human-annotated pairs, making
them less applicable to low-resource languages
where such an assumption is challenging to
meet. To overcome this limitation, this paper
explores the research direction of in-context
example generation for machine translation.
Specifically, we propose Demonstration Aug-
mentation for Translation (DAT), a simple yet
effective approach that generates example pairs
without relying on any external resources. This
method builds upon two prior criteria, rele-
vance and diversity, which have been high-
lighted in previous work as key factors for
in-context example selection. Through experi-
ments and analysis on low-resource languages
where human-annotated pairs are scarce, we
show that DAT achieves superior translation
quality compared to the baselines. Further-
more, we investigate the potential of progres-
sively accumulating generated pairs during test
time to build and reuse a demonstration pool.
Our implementation is publicly available at
https://github.com/aiclaudev/DAT.

1 Introduction

The recent emergence of large language models
(LLMs) (Touvron et al., 2023a,b; OpenAI, 2023)
and in-context learning (ICL) (Brown et al., 2020)
has shifted the traditional paradigm of building
task-specific models trained on large amounts of
human-annotated data, which is costly to collect.
The strength of ICL lies in its versatility, where
they achieve outstanding performance across vari-
ous tasks with just a few task-specific demonstra-
tions (Yao et al., 2022; Wei et al., 2023). This re-

(b) In-context learning for low-resource langugage
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Figure 1: Motivation. (a) Previous works on LLM-
based in-context learning for translation have primarily
focused on selecting in-context examples from paired
dataset in high-resource languages. (b) However, in the
absence of a paired dataset for low-resource languages,
how can in-context learning be applied?

duces the training cost on large datasets and allows
rapid adaptation to new domains or problems with-
out extensive fine-tuning. Solving various tasks
with a single LLM provides immense value to users
seeking assistance in diverse contexts.

LLMs have also played an increasingly promi-
nent role in the field of machine translation (MT)
due to their exceptional linguistic and reasoning
capabilities (Moslem et al., 2022, 2023; Vilar et al.,
2023; Jiao et al., 2023; Koneru et al., 2024; Xu
et al., 2024). Notably, ICL has demonstrated high
multilingual translation quality using only a few
source-target pairs, driving advancements in re-
trieving optimal examples. Agrawal et al. (2023)
proposed R-BM25, which initially selects the top
bm25 candidates and reranks them using an n-gram
recall strategy. Kumar et al. (2023) introduced
a neural network trained to select pairs based on
the multiple features, including semantic similarity
and sentence length. These works have demon-
strated outstanding performance in high-resource
languages, retrieving pairs based on the scores be-
tween the given user query and source sentences in
the demonstration pool, as shown in Figure 1 (a).
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However, these works on in-context example se-
lection for MT may face challenges in low-resource
languages. This stems from the fact that previous
approaches rely on a critical assumption—namely,
the availability of a large pool of human-annotated
pairs—which may not hold for low-resource lan-
guages. For low-resource languages, obtaining a
paired corpus for use as demonstrations is challeng-
ing due to the limited availability of public datasets
and human annotators. This, in turn, poses a bar-
rier that prevents low-resource languages from fully
benefiting from the use of in-context examples, as
illustrated in Figure 1 (b). Recently, El Mekki
and Abdul-Mageed (2025) investigated leverag-
ing LLMs to generate synthetic parallel data as
a way to address this obstacle. However, this ap-
proach requires access to the vocabularies of both
the source and target languages, as well as unla-
beled sentences in the target language.

In this paper, we explore a research direction
that aims to enable in-context learning for MT
without the use of any external resources, instead
drawing solely on the capabilities of the LLM it-
self. In pursuit of this goal, we introduce a simple
yet effective method, Demonstration Augmenta-
tion for Translation (DAT), which utilizes the gen-
erative and linguistic capabilities of LLMs. This
approach builds upon the intuitive prior criteria of
relevance and diversity, which are inspired by previ-
ous works analyzing desirable in-context examples
for MT (Cheng et al., 2022; Sia and Duh, 2023;
Bouthors et al., 2024). To ensure these two criteria,
we also utilize maximal marginal relevance (Car-
bonell and Goldstein, 1998).

Our experiment focuses on translating from En-
glish into low-resource languages—specifically
Nepali, Khmer, Pashto, Zulu, and Swahili—for
which the lack of extensive annotated datasets
presents a realistic constraint. The results demon-
strate the practicability of our easily applicable
method in generating pairs that serve as in-context
examples, providing valuable clues for user query
translation. One more noteworthy point is that
we observe a counterintuitive case where utilizing
high-quality fixed pairs results in a severe perfor-
mance degradation compared to the zero-shot ap-
proach. We investigate this phenomenon with a
focus on the relevance between the source side of
the pairs and the user queries. Lastly, we explore an
extended method that incrementally accumulates
the generated pairs and repurposes them through
retrieval method such as R-BM25.

In summary, our contributions are as follows:

• To the best of our knowledge, this is the first
work to explore in-context example generation
specialized for MT without relying on any
external resources, such as vocabularies or
monolingual corpora.

• Experimentes show that DAT boosts the trans-
lation quality compared to other baselines,
demonstrating its practicality for low-resource
languages with scarce human-labeled pairs.

• Additional experiments demonstrate that high-
quality fixed pairs in low-resource languages
can act as noise and highlight DAT’s potential
for demonstration pool construction.

2 Related Work

2.1 In-context Learning

In-context learning (ICL) paradigm, originally pro-
posed by Brown et al. (2020), enables LLMs (Tou-
vron et al., 2023a,b; OpenAI, 2023; Dubey et al.,
2024) to learn new tasks without any parameter
updates by providing task-relevant input-output
exemplars known as demonstrations (Liu et al.,
2022). This paradigm facilitates incorporating hu-
man knowledge through task-specific examples
into LLMs. It is often more effective than fine-
tuning, allowing models to adapt to new cases
with reduced data requirements (Mosbach et al.,
2023). Previous works have introduced various
strategies for constructing ICL prompts, highlight-
ing that adjusting how demonstrations are com-
posed can lead to more efficient solutions across
various tasks (Zhao et al., 2021; Rubin et al., 2022;
Hao et al., 2022; Cheng et al., 2023). Moreover,
recent studies analyzing the factors influencing ICL
performance have further supported its effective-
ness (Min et al., 2022; Shin et al., 2022; Chan et al.,
2022; Liu et al., 2022). Leveraging ICL, the abil-
ity of a single LLM to solve diverse tasks offers
significant value in real-world applications.

2.2 Machine Translation using LLMs

Neural machine translation (NMT) models (NLLB
Team et al., 2022) are trained with large amounts
of high-quality parallel data, which is resource-
intensive and costly. Consequently, numerous stud-
ies have been conducted on leveraging LLMs for
machine translation, motivated by the data effi-
ciency benefits offered by ICL. Extensive research
has shown that leveraging zero-shot and few-shot
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learning techniques achieves translation abilities
that match or exceed the performance of tradi-
tional NMT models with just a minimal number of
demonstrations (Lin et al., 2022; Chowdhery et al.,
2023; Vilar et al., 2023; Zhang et al., 2023; Rau-
nak et al., 2023a; Jiao et al., 2023). Recognizing
the importance of effective demonstrations, fur-
ther studies have focused on optimizing in-context
example selection to improve the translation perfor-
mance of LLMs through ICL, resulting in notable
advancements in selection techniques (Agrawal
et al., 2023; Kumar et al., 2023; Ji et al., 2024;
Zebaze et al., 2025). However, these works rely on
a large pool of human-annotated demonstrations,
which can be impractical in real-world scenarios,
especially for translation involving low-resource
languages. To address this limitation, recently,
El Mekki and Abdul-Mageed (2025) investigated
leveraging LLMs to build a synthetic demonstra-
tion pool, but the approach requires access to lexi-
cal resources for both source and target languages,
along with unlabeled data in the target language. In
our method, we leverage only the linguistic capabil-
ities of LLMs to generate in-context examples that
enhance machine translation performance, marking
the first attempt in the field.

2.3 Demonstration Augmentation

Demonstrations play a crucial role in ICL, as they
significantly impact model performance by pro-
viding task-relevant examples that aid in solving
new cases (Zhang et al., 2022; Lu et al., 2022;
Liu et al., 2022; Bouthors et al., 2024). Research
has moved beyond selecting high-quality exam-
ples, with growing interest in methods allowing
LLMs to generate informative demonstrations au-
tonomously (Kim et al., 2022; Lyu et al., 2023;
Chen et al., 2023; Su et al., 2024). Li et al. (2024)
confirmed that LLMs can achieve performance
comparable to human-curated demonstrations by
employing a self-reflective prompting strategy, il-
lustrating that models can independently create ex-
amples that inform decision-making without the
need for external, human-generated input. Our
work builds on these advancements by exploring
how leveraging the reasoning abilities of LLMs
to generate source sentences and their translations
produced by LLMs enhances translation perfor-
mance. Especially, rather than using general ap-
proaches, we focus heavily on designing a more
specific strategy for MT, eliminating reliance on
human intervention or external data.

3 Method

Overview. We aims to generate pairs for in-
context learning in the absence of human-annotated
pairs. At test time, when a user provides a query
q, LLM generates source-target pairs tailored to q
and uses them as in-context examples. The overall
flow of this method is shown in Figure 2.

3.1 Source-side of Pair Generation
To create source sentences X = {x1, x2, · · · , xm}
that provide valuable cues for translating q, we
draw on previous research that explores the op-
timal in-context examples for MT (Cheng et al.,
2022; Sia and Duh, 2023). These studies generally
propose the following two priors:

• Relevance refers to the similarity between q
and xi ∈ X , which can include metrics such
as n-gram overlap, edit distance, embedding
similarity, and bm25 score.

• Diversity means the distinction between the
retrieved examples, based on the intuition that
if they are too similar to each other, they will
provide redundant clues when translating q.

Generating X can be easily achieved by zero-shot
prompting the LLM (source generator) with q and
an instruction that incorporates the two priors. The
simple instruction is illustrated in Figure 2 and the
detailed prompt used for generating source sen-
tences is presented in Figure 5.

3.2 Filtering using MMR
To ensure that the generated sentences satisfy the
two prior conditions, we apply filtering and use
only k examples. Relevance can be considered by
a recall-based n-gram score Rn between q and xi:

Rn(q, xi) =

∑
ng∈fn(q)∩fn(xi)

Count(·)
∑

ng∈fn(q)Count(·) (1)

α(q, xi) =
1

4

4∑

n=1

Rn(q, xi), (2)

where ng means n-gram and fn(·) refers to the
functions that convert a sentence into n-grams.
Moreover, to promote diversity, we select exam-
ples using following equation inspired by Maximal
Marginal Relevance (MMR) (Carbonell and Gold-
stein, 1998) and Cheng et al. (2022).

argmax
xi∈X\X∗

[α(q, xi)−
λ

|X∗|
∑

xj∈X∗
α(xj , xi)], (3)
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1. He is not alone in his skepticism about the possibility of curing diabetes …

2. Similar experts share his skepticism regarding the possibility of curing diabetes …

Source-side of Pair Generation

Filtering Process

1. Similar experts share his skepticism …

2. He, like some of his colleagues …

k. Like some of his peers, he doubts ...

Target-side of Pair Generation

English

User Query

Like some other experts, he is skeptical about whether diabetes can be cured …

1. Ongoti abafanayo babelana ngok …

2. Yena, njengabanye osebenza nabo … 

k. Njengabanye kontanga yakhe unok …

Given a sentence, generate {m} diverse and relevant sentences.
Like some other experts, he is skeptical about whether diabetes can be cured … 

K-shot Translation

Njengezinye izazi, unokungabaza ngokuthi isifo sikashukela singalashwa …

Translate the given English sentence into Zulu.

Similar experts share his skepticism regarding the possibility of … 

Ongoti abafanayo babelana ngokungabaza kwakhe mayelana nokwenzeka …

Like some of his peers, he doubts the potential for a diabetes cure …

Njengabanye kontanga yakhe, unokungabaza mayelana namathuba okwelashwa …

Like some other experts, he is skeptical about whether diabetes can be cured …

m. Like many other experts, he still questions whether a cure is truly achievable for …

Like some other experts, he is skeptical about whether diabetes can be cured …

Relevant 

1. Similar experts share his skepticism regarding the possibility of …

2. He, like some of his colleagues, questions the feasibility of …

k. Like some of his peers, he doubts the potential for a diabetes cure …

…
Diverse

…

… …

…

Zulu

Figure 2: An overview of our proposed method. (1) Upon receiving a translation request for the user’s query,
the LLM generates m source-side sentences that satisfy both relevance and diversity constraints. (2) A relevant
sentence that minimizes redundancy with previously chosen source sentences is iteratively selected and appended to
the candidate pool. This process is iterated k times. (3) The LLM then translates each selected sentence, forming
source-target pairs. (4) The final translation is produced through a few-shot learning framework, utilizing the
generated pairs as in-context exemplars. A detailed explanation of our method is provided in Section 3.

where X∗ is a set of already selected sentences and
λ is a hyperparameter. MMR filtering process is
detailed in Algorithm 1.

Algorithm 1 Filtering using MMR

1: Input: q, X={xi}mi=1, k (<m), λ

2: Output: Selected Sources X ∗={x∗
i }ki=1

3: procedure FILTERING(q, X , k, λ)
4: X ∗ ← ∅
5: while |X ∗| < k do
6: for x ∈ X \X ∗ do
7: Relevance←α(q, x)

8: Diversity← −1
|X∗|

∑
xj∈X∗ α(xj , x)

9: end for
10: x∗ ← argmax

x∈X\X∗
(Relevance + λDiversity)

11: X ∗ ← X∗ ∪ {x∗}
12: end while
13: return X ∗

14: end procedure

3.3 Target-side of Pair Generation
After filtering, we need to generate translations for
each x∗ ∈ X ∗. We have two options for translating
the k source sentences: either using the LLM with
zero-shot prompting or relying on the NMT model.
LLM has acquired general knowledge across vari-
ous domains through training on a vast pretraining
dataset (Koneru et al., 2024) and excels at preserv-

ing semantic information (Hendy et al., 2023). For
simplicity, we utilize LLM as our target generator.

3.4 Query Translation

By generating automatically without relying on any
human-curated data, we now obtain k source-target
pairs: D∗ = {(x∗i , LLM(x∗i )}ki=1. Since these
are tailored to the user query, they provide suffi-
cient clues when translating the query. The query
translator, an LLM, utilizes these demonstrations
to perform in-context learning.

ŷ = LLM(I,D∗, q), (4)

where ŷ is translated from q and I refers to the
instruction (e.g., Translate a given <source
language> sentence to <target language>
sentence). Figure 6 shows the detailed prompt.

4 Experimental Setup

4.1 Datasets and Languages

We benchmark the Flores dataset (Goyal et al.,
2022), focusing on English and five low-resource
languages: Nepali, Khmer, Pashto, Zulu, and
Swahili. To evaluate performance, we conduct ex-
periments on the devtest split, assessing the effec-
tiveness of our approach in these language settings.
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4.2 Evaluation Metrics

We utilize COMET1 (Rei et al., 2022a), one of
the most commonly used evaluation metrics. We
also leverage reference-free COMET2 (Rei et al.,
2022b) to evaluate the quality of the in-context
example in Table 2. For a more rigorous eval-
uation, we use afriCOMET3 and reference-free
afriCOMET4 (Wang et al., 2024) for Zulu and
Swahili, as afriCOMET is specialized for African
languages. These metrics are designed to predict
human judgments of translation quality.

4.3 Prompting Setup

Our proposed method is performed solely through
zero-shot prompting, without relying on any pairs
or examples. In our experiments, the number of
in-context examples in few-shot prompting is fixed
at 4. A source generator in our method initially
generates 10 (m) sentences based on the user query
with zero-shot prompting. Then filtering process re-
mains 4 (k) sentences while considering relevance
and diversity. The prompt template used in the
whole experiments is provided in Figure 5 and 6.

5 Results and Analyses

5.1 Results on Low Resource Languages

Experimental Configuration Table 1 reports the
COMET scores for translations from English into
five low-resource languages. In real-world scenar-
ios, these languages typically lack human-curated
parallel corpora, which limits the feasibility of ap-
proaches such as in-context example selection and
few-shot learning explored in previous work. As a
workaround, one approach involves manually an-
notating a limited set of translation pairs and inte-
grating them as fixed references during translation,
which can serve as anchors and potentially enhance
translation quality. This approach can also be ap-
plied to DAT, where these pairs are used during
the target sentence generation process rather than
when translating the test data.

No Fixed Pairs Setting Since this setting does
not rely on human-annotated pairs, we investi-
gate whether in-context examples, generated purely
from the LLM’s intrinsic capabilities, can serve as
a catalyst for boosting translation quality beyond

1Unbabel/wmt22-COMET-da
2Unbabel/wmt22-cometkiwi-da
3masakhane/africomet-stl
4masakhane/africomet-qe-stl
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Figure 3: This figure illustrates English-to-Khmer trans-
lation results using fixed, high-quality human-aligned
pairs. Each run is tested on 100 unique samples, with
distinct fixed pair sets used across runs.

a zero-shot baseline. Our findings indicate that
DAT has improved translation quality in most low-
resource languages compared to zero-shot transla-
tion. Notably, for the Nepali, Llama-3.1-8B and
70B achieved performance gains of 2.8 and 1.3
points, respectively. This result shows that LLMs,
relying solely on their inherent abilities without ex-
ternal information, enhance translation quality by
using self-generated in-context examples. Conse-
quently, it underscores their potential for generating
low-resource language pairs.

Fixed Pairs Setting A fixed pair set, while metic-
ulously curated by humans to ensure high qual-
ity, may not always align with user queries requir-
ing translation. Nevertheless, it can still facilitate
performance improvement by offering linguistic
cues related to language-specific grammar, syntac-
tic structures, and other idiosyncratic features. This
is exemplified by Llama-3.1-8B, which achieved a
3.8-point higher COMET score in few-shot method
for the Nepali compared to the zero-shot method.
Furthermore, DAT, which integrates a fixed human-
curated data into the target sentence translation pro-
cess, exhibits superior translation adequacy com-
pared to the few-shot method across the majority
of languages. This suggests that DAT enhances
translation performance by dynamically generating
semantically and syntactically aligned sentences
while leveraging human-validated data to build
high-fidelity translation pairs, resulting in greater
adequacy and fluency.

The Backfire of Fixed Human Pair In this ex-
periment, we observed a counterintuitive result:
when translating from English to Khmer using
Llama-3.1-70B, the few-shot approach led to a sig-
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Fixed Pairs Model Method Nepali Khmer Pashto Zulu Swahili

✘
Llama-3.1-8B Zero-shot 72.1 62.0 53.9 23.3* 60.6

DAT 74.9* 64.4* 54.6 22.3 61.8*

Llama-3.1-70B Zero-shot 79.8 72.7 67.5 37.8 72.9
DAT 81.1* 72.4 68.3* 38.3 73.4*

✔
Llama-3.1-8B Few-shot 75.9 65.0 57.9 24.7* 61.3

DAT 76.4 66.0 57.3 23.3 62.3*

Llama-3.1-70B Few-shot 80.6 51.1 65.7 38.9 71.6
DAT 81.5* 52.9* 68.5* 39.2 72.7*

Table 1: The experimental results present COMET scores for translating English into five low-resource languages.
Performance that surpasses the compared method is bolded for clarity, and * indicates statistically significant
improvement at p=0.05, using the compare-mt library (Neubig et al., 2019). The "Fixed Pair" column specifies
whether a fixed set of human-annotated pairs is utilized during the translation process. For a more detailed
explanation of this setting, please refer to the experimental configuration in Section 5.1.

Nepali Khmer SwahiliMethod Relev.↑ Uni.↓ Qual.↑ COMET↑ Relev.↑ Uni.↓ Qual.↑ COMET↑ Relev.↑ Uni.↓ Qual.↑ COMET↑
Llama-3.1-70B

Retrieval (src) 7.5 5.3 80.7 80.5 7.5 5.3 65.1 61.4 7.5 5.3 66.5 72.2
Fixed set (pair) 3.9 2.8 89.4 80.6 3.9 2.8 85.6 51.1 3.9 2.8 77.2 71.6

DAT 25.9 24.1 82.5 81.1 25.9 24.1 65.3 72.4 25.9 24.1 68.9 73.4

Table 2: This experiment presents the results of translating English into other low resource languages. Relevance
(Relev.) measures the average n-gram overlap score between the user’s query and the source side of an in-context
example, while Uniformity (Uni.) evaluates the same averaged score among the source sides of different in-context
examples. Quality (Qual.) is measured using reference-free COMET to evaluate the quality of a single pair. As a
final point, COMET represents the score achieved when translating the user query with the given pairs. The best
score in each column is highlighted in bold.

Method Off-target Rate # of Output Tokens

Zero-shot 0.0 241.7
Fixed Pairs 0.0 439.3

DAT 0.0 231.8

Table 3: These results present the off-target rate, indi-
cating whether the output was translated into the correct
language when translating from English to Khmer, along
with the number of tokens in the generated sentences.
We used Google Translate to identify the language.

nificant drop in translation quality—specifically, a
21.6-point decrease in COMET score compared to
the zero-shot baseline. To assess the robustness
of this finding, we ran 10 experiments using vari-
ous fixed example pairs (Figure 3) and consistently
found that few-shot translation underperformed rel-
ative to the zero-shot setting. As shown in Table 3,
our analysis indicates that while the translations
remained in the correct target language, incorpo-
rating fixed examples often resulted in abnormally
long outputs. In some cases, the model repeat-
edly generated the same strings across different

data points. However, our proposed method avoids
these issues, which in turn leads to better transla-
tion performance. In Table 1, DAT without fixed
pairs outperforms the few-shot approach in trans-
lation quality for all languages except Zulu. This
raises a research question about whether it is better
to use high-quality but fixed pairs that lack rele-
vance to user queries, or moderate-quality pairs
that more closely align to them. A thorough analy-
sis of the underlying reasons is left for future work.

5.2 Quality of In-context Example

Experimental Configuration Previous studies
have argued that in-context examples that are both
similar to the user query and diverse from one
another improve translation performance. In Ta-
ble 2, we explore how the relevance of in-context
examples to the user query, the uniformity among
them—negatively correlated with diversity—and
the intrinsic quality of example pairs affect trans-
lation performance. To investigate this, we con-
sider the following methods: Retrieval, Fixed set,
and DAT. Retrieval selects source sentences from a
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monolingual pool using R-BM25 scores (Agrawal
et al., 2023) and constructs pairs via an LLM, lever-
aging the accessibility of monolingual data. Fixed
set relies on a predefined set of human-curated
pairs, discussed in Table 1, as in-context examples.
Meanwhile, DAT, our proposed method, generates
pairs without relying on human-curated data, en-
abling a more autonomous approach.

Source-side of Pair Relevance and Uniformity
exhibit the highest values in DAT and the low-
est in the Fixed set. This disparity arises from
the fact that both DAT and Retrieval dynamically
generate or procure source sentences based on the
user query, whereas the Fixed set operates indepen-
dently of such adaptation. Meanwhile, Relevance
and Uniformity appear to be interdependent, with
an increase in Relevance generally leading to an
increase in Uniformity. Though finding an appro-
priate balance between the two is important, Rel-
evance is generally considered the higher-priority
measure, as in-context examples that are diverse
but unrelated to the user query are unlikely to be
beneficial for translation. This is also supported by
the DAT with the highest Relevance achieving a
higher COMET score than other baselines.

Source-Target Pair While Relevance and Uni-
formity—focusing only on the source side of in-
context examples—are important metrics, the over-
all quality of the pair itself is also a crucial factor.
We evaluate this quality using the reference-free
COMET score, reported in the Quality column. De-
spite the undeniable superiority of human-curated
pairs in the Fixed set in terms of quality, our exper-
imental results demonstrate that they yield lower
translation performance compared to other base-
lines. This phenomenon can be attributed to their
insufficient Relevance, which hinders their direct
contribution to user query translation. This finding
suggests that, rather than employing high-quality
pairs that fail to ensure relevance to the user query,
a more effective approach would be to generate or
retrieve sentences with guaranteed relevance and
then artificially construct their corresponding target
sentences for use as in-context examples.

5.3 Ablation Study on MMR Filtering
Our method applies a filtering process to select
only k sentences with high relevance and diversity
from the initially generated m sentences. Then, we
perform translation on the remaining k sentences
to generate synthetic pairs by utilizing the LLM.

Method m k Khmer Pashto Swahili

No Filtering4 4 4 63.8 54.2 61.9
No Filtering10 10 10 63.4 53.6 61.7

DAT 10 4 64.4 54.6 62.3

Table 4: This result illustrates the impact of m and k.
m denotes the number of source sentences generated
initially, whereas k signifies the final number of demon-
strations after filtering process. This means that when m
and k are the same, the filtering process is not applied.
The best performances are in bold.

To verify the validity of process, we analyze the
COMET scores when translating English into three
low-resource languages in Table 4. It is noteworthy
that No Filtering10 showed inferior performance
compared to No Filtering4, despite using more in-
context examples. This means that the additional 6
demonstrations acted as noise, degrading the trans-
lation quality. Furthermore, the results demonstrate
that our approach—generating m source sentences
with m > k and then applying filtering—achieves
superior performance compared to other methods.
This validates the effectiveness of the filtering pro-
cess and implies that using a small number of care-
fully selected demonstrations, which are filtered to
better assist the user query, can lead to performance
gains than utilizing 10 unfiltered demonstrations.

5.4 Accumulation Setting

Experimental Configuration In previous exper-
iments, DAT demonstrated superior performance
compared to baseline methods. However, gener-
ating in-context examples for every test input can
be computationally expensive. To address this, we
explore a more cost-efficient approach in this ex-
periment. Specifically, we incrementally construct
a demonstration pool by accumulating pairs gener-
ated for a subset of test inputs. Subsequently, we
select in-context examples for translation based on
their R-BM25 scores, thereby enhancing efficiency.

We partition the 1,012 test samples from the
Flores dataset into two subsets of 500 and 512
instances. The first subset of 500 samples is desig-
nated as seed data, which we use to generate and
accumulate pairs, thereby constructing the demon-
stration pool. Performance is then evaluated exclu-
sively on the remaining 512 samples. Additionally,
to investigate the impact of increasing seed data on
performance, we progressively increase the number
of seed data and assess the resulting improvements.
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Figure 4: This experiment evaluates the accumulation setting when translating English into Zulu and Swahili using
Llama-3.1-70B. The x-axis represents the number of test inputs used to construct the demonstration pool, while
performance is assessed on a fixed set of 512 test samples, independent of the x value. To quantify variability, we
further divide the test data into five distinct subsets and report the standard deviation.

Test Data Reference Method In-context Example Hypothesis

Prides are made
up of one to
three related

adult males, along with
as many as thirty
females and cubs.

Makundi ya simba
yanatengenezwa na

waume kati ya

mmoja na watatu
wazima wanaohusiana,

pamoja na wengi wa kike

kama thelathini na mashibli.

Zero-shot

Vichwa vimeundwa na
wanaume wazima

1 hadi 3 wenye uhusiano,

pamoja na wanawake

hadi 30 na watoto.

DAT

A pride of lions
can consist of

up to thirty females
and cubs, accompanied by
one to three adult males.

Kundi la simba linaweza
kuwa na hadi wanawake

thelathini na watoto,
wanaoambatana na wanaume
wazima wawili hadi watatu .

Kundi la simba huundwa
na wanaume wazima

wawili hadi watatu wenye

uhusiano, pamoja na wanawake

hadi thelathini na watoto.

Table 5: This table shows a surface-level analysis when translating English to Swahili. Gray indicates cases where
both Zero-shot and DAT produced the correct terms. Blue represents cases where only DAT generated the correct
terms, demonstrating that DAT benefited from the self-generated in-context examples.

Result Figure 4 compares the COMET score of
DAT, which performs few-shot learning by gen-
erating pairs for all test input, and DAT (Accu-
mulation), which leverages a demonstration pool
consisting of progressively accumulated pairs af-
ter a certain point. In both Zulu and Swahili, an
increasing number of seed inputs exhibits a gen-
eral trend of performance improvement. However,
when employing a demonstration pool constructed
from up to 500 data points, this approach does not
fully reach the performance level of the method
that generates pairs dynamically for each test in-
stance. Nevertheless, we hypothesize that as more
seed input is incorporated, a larger and more di-
verse demonstration pool can be constructed, ulti-
mately enabling high-quality translations without
the need for on-the-fly pair generation. Future re-
search should explore optimal strategies for con-
structing and expanding such a pool, ensuring ro-
bust performance even in low-resource scenarios.

5.5 Surface-level Analysis

Table 5 illustrates the impact of in-context exam-
ples generated via DAT on translation outcomes,
offering empirical evidence of their effectiveness.
In this example, DAT successfully produces precise
lexical choices that the Zero-shot approach fails to
achieve. This is due to the alignment of generated
in-context examples with the user query, which of-
fers crucial contextual cues for precise translation.

6 Discussions

Hybrid Approach We employed an LLM to
generate the target-side of in-context examples.
While a model fine-tuned for a specific language
pair—such as a traditional neural machine transla-
tion system—could produce higher-fidelity pairs,
our focus is on improving translation quality purely
through the inherent capabilities of the LLM. We
therefore leave the exploration of such approaches
as a promising direction for future work.
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Reuse as a Training Dataset In Section 5.4, we
explored a setting where the generated pairs are
accumulated, allowing for retrieval and reuse. If
the demonstration pool becomes large enough, it
can serve as a training dataset for developing a
translation-specialized model. Therefore, lever-
aging LLMs to generate translation pairs in low-
resource scenarios is a crucial research direction,
both for in-context learning and fine-tuning.

Post Editing Another line of research in trans-
lation using LLMs is post-editing, which focuses
on refining the initial translation (Raunak et al.,
2023b). Our research can be effectively combined
with this method. In post-editing approaches, the
quality of the initial translation is crucial. Applying
DAT to generate the initial translation in scenarios
where no in-context examples are available and
then refining it presents a highly promising transla-
tion strategy.

7 Conclusions

In this paper, we explore an interesting research
direction that leverages only LLMs to generate
source-target pairs. Accordingly, we propose a sim-
ple yet effective method, DAT, which utilizes two
priors and MMR to generate in-context examples.
Experiments proved that DAT achieves superior
translation quality for low-resource languages com-
pared to baselines, without relying on any human-
created resources. This highlights the potential
of our method in scenarios where a demonstra-
tion pool is unavailable or fails to provide relevant
translation examples. Furthermore, we investigated
cases where fixed human pairs significantly un-
derperform compared to zero-shot translation and
explored the potential of an accumulation setting
as a cost-efficient alternative.

8 Limitations

Translation from a Low-resource Language In
this work, we focus on translating English into
other low-resource languages. This is because
most LLMs are primarily trained on English, al-
lowing them to generate high-quality in-context
examples on the source side. In contrast, translat-
ing in the opposite direction would heavily rely on
the LLM’s monolingual generation capabilities for
low-resource languages. Therefore, this setting is
not explored in this paper and remains an important
challenge for future research.

Open-source LLMs Most open-source LLMs
are primarily trained with a strong emphasis on
English, limiting their effectiveness in handling
a diverse set of languages. Given the scarcity of
open-source models that offer robust multilingual
support, we conduct our experiments using Llama-
3.1, an open-source LLM designed to support a
wide range of languages, including English.

Accumulation Setting In DAT with accumula-
tion, the performance did not fully reach that of
generating pairs for all test data. We aimed to cre-
ate a larger demonstration pool to explore the point
at which performance reaches that of generating
pairs for all test data. However, this investigation
could not be performed due to the high computa-
tional cost and is left for future work.

9 Ethical Considerations

We conducted our experiments using publicly avail-
able datasets and models, and the datasets do not
involve any ethical concerns.
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[System message]

You are a fluent assitant in {source_language}. 

Given a sentence, generate {m} sentences based on the following criteria. 

1. Relevance: Each sentence should be similar to the given sentence, but not identical to it. 

2. Diversity: The generated sentences should be varied without duplicating each other. 

The generated sentences must be separated from each other by \n and do not output any additional sentence such as explanation or

reasoning in your response.

[User message]

{source sentence}

Figure 5: Prompt format used to generate source sentences with two criteria.

[System message]

You are a helpful assistant for translation. 

Translate a given {source language} sentence to {target language} sentence. 

Start the answer with [{target language}] and do not output any additional sentence such as explanation or reasoning in your 

response.

[User message]

[{source language}] {source sentence}

Figure 6: Prompt format used to translate a source sentence.

A Additional Information

To ensure the reproducibility of the experiments,
we used a temperature of 0.1 during token decoding
and the dataset statistics can be found in Table 6.
Experiments is mainly conducted with RTX 3090
GPU. Zero-shot translation of the Flores devtest set
using Llama-3.1-8B and 70B takes approximately
1 hour and 2 hours, respectively. We load Llama-
3.1-8B and 70B from Hugging Face’s Transform-
ers (Wolf et al., 2020), with the LLaMA-3.1-70B
model quantized to 4-bit. The fixed pair set used
in the experiment consists of the 1st, 2nd, 3rd, and
4th data points from the dev set. We used ChatGPT
to correct grammar.

train dev devtest
- 997 1012

Table 6: Data statistics of the Flores dataset (Goyal et al.,
2022) used in all experiments.
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