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Abstract

Recent advancements in large language models
(LLMs) have demonstrated remarkable capabil-
ities in complex reasoning tasks, such as math
problem-solving and code generation. How-
ever, multi-hop question answering (MHQA)
over long contexts, which demands both ro-
bust knowledge-intensive reasoning and effi-
cient processing of lengthy documents, remains
a significant challenge. Existing approaches
often struggle to balance these requirements,
either neglecting explicit reasoning or incur-
ring expensive computational costs due to full-
attention mechanisms over long contexts. To
address this, we propose Search-in-Context
(SIC), a novel framework that integrates Monte
Carlo Tree Search (MCTS) with dynamic key-
value (KV) retrieval to enable iterative, context-
aware reasoning. SIC dynamically retrieves
critical KV pairs (e.g., 4K tokens) at each step,
prioritizing relevant evidence while mitigating
the "lost in the middle" problem. Furthermore,
the paper introduces a Process-Reward Model
(PRM) trained on auto-labeled data to guide
the MCTS process with stepwise rewards, pro-
moting high-quality reasoning trajectories with-
out manual annotation. Experiments on three
long-context MHQA benchmarks (HotpotQA,
2WikiMultihopQA, MuSiQue) and a counter-
factual multi-hop dataset demonstrate SIC’s
superiority, achieving state-of-the-art perfor-
mance while significantly reducing computa-
tional overhead.

1 Introduction

Recent advancements in large language mod-
els (LLMs) (Brown et al., 2020) have signifi-
cantly improved their capability to tackle complex,
reasoning-intensive tasks across diverse domains,
including mathematical problem-solving (Jaech
et al., 2024; Yang et al., 2024a), repository-level
code generation and correction (Hui et al., 2024;
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Luo et al., 2024), and scientific reasoning (Ma et al.,
2024). Such achievements highlight their growing
capacity to handle sophisticated tasks that were pre-
viously thought to require human-level expertise.

Despite these advances, applying LLMs to multi-
hop question answering (MHQA) over long con-
texts remains a significant challenge (Bai et al.,
2023), as it requires models to simultaneously
satisfy two key capabilities: Strong knowledge-
intensive reasoning capability: The model must
effectively integrate information across multiple
reasoning hops, effectively synthesizing relevant in-
formation from intermediate subquestions to enable
knowledge-driven inference (Mavi et al., 2022).
Robust long-context processing capability: The
model must efficiently handle extensive contexts
(often exceeding 10K tokens) while filtering out
irrelevant or distracting information (Fu et al.,
2024b), ensuring the accurate identification and
extraction of key information across length context
necessary for answering the question.

Current approaches struggle to meet these dual
requirements simultaneously. Many existing meth-
ods rely on long-context LLLMs to directly answer
MHQA tasks (Bai et al., 2023; Zhang et al., 2024b),
underestimating the task’s complexity and over-
looking the importance of explicit test-time reason-
ing.

To bridge this gap, some works adopt chain-
of-thought (CoT) prompting techniques (Li et al.,
2024a; Trivedi et al., 2023; Wei et al., 2022). Un-
like reasoning tasks in mathematics or science,
where contexts are typically limited to a few hun-
dred tokens, MHQA over long contexts requires
models to generate reasoning chains based on in-
puts exceeding 10K tokens. In such scenarios,
generating a reasoning chain necessitates comput-
ing full attention over an increasingly large Key-
Value (KV) cache at each decoding step, leading
to quadratic computational complexity growth (Fu
et al., 2024a). Furthermore, models often struggle
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with vast amounts of distractive information, a phe-
nomenon commonly referred to as the "lost in the
middle" problem (Liu et al., 2024b).

In this paper, we propose a novel framework
that integrates Monte Carlo Tree Search (MCTS)
with dynamic KV retrieval to empower LLMs with
iterative, context-aware exploration over long con-
texts. Inspired by test-time scaling algorithms
(Snell et al., 2024; Qi et al., 2024), our method
formulates the retrieval and reasoning as a search
tree process, where each node represents a poten-
tial reasoning step guided by contextually retrieved
evidence. At each iteration, the model selectively
utilizes portions of critical KVs (e.g., 4K token bud-
gets) based on a specialized KV retriever, rather
than relying on computationally expensive full-
attention over the entire KV cache. This process ef-
fectively retrieves and prioritizes the most relevant
KVs that contribute to uncovering critical infor-
mation for subsequent reasoning hops, mitigating
the "lost in the middle" problem in long context
and improving reasoning efficiency. Additionally,
we incorporate a Process-Reward Model (PRM)
into the MCTS process to guide the model’s rea-
soning. This PRM provides step-by-step rewards
to encourage the model to follow high-quality rea-
soning paths. Importantly, the PRM can be trained
using automatically labeled data without requiring
manual annotation, ensuring scalability and reduc-
ing human intervention.

The main contributions of this paper can be sum-
marized as follows:

* We propose Search-in-Context (SIC), an
innovative framework utilizing a modified
Monte Carlo Tree Search (MCTS) algorithm
to enhance multi-hop QA in long contexts,
guided by a trained Process Reward Model
which utilizes an automated annotation pro-
cess.

* We integrate dynamic key-value (KV) re-
trieval into the MCTS process, enabling the
model to selectively focus on the most rele-
vant portions of the context (e.g., 4K token
budgets) at each step.

» Extensive experiments on three long-context
multi-hop reasoning datasets (e.g., HotpotQA
, 2WikiMultihopQA , MuSiQue ) and a coun-
terfactual multi-hop dataset adapted for long
contexts demonstrate the superiority of SIC in
long-context multi-hop QA tasks.

2 Related Work

Multi-hop Reasoning. Multi-hop question answer-
ing (MHQA) (Yang et al., 2018; Trivedi et al., 2022;
Ho et al., 2020) is a challenging task that requires
models to reason over multiple pieces of infor-
mation, often scattered across different parts of
a document or multiple documents, to arrive at the
correct answer (Mavi et al., 2022). Conventional
approaches (Zhang et al., 2024a; Zhu et al., 2021)
adopt the selector-reader framework, where a se-
lector module retrieves relevant documents or pas-
sages, and a reader module extracts or generates the
final answer based on the retrieved context. Recent
developments, however, have marked a significant
shift toward a paradigm centered on long-context
language models (LMs) (Li et al., 2024a; Trivedi
et al., 2023). This emerging approach eliminates
the need for a separate selector module, instead
relying on a long-context LM to process the entire
set of retrieved documents and fulfill the role of the
reader.

Long-context Language Modeling. Scaling LLM
to process long texts poses significant challenges
due to the quadratic computational complexity of
attention mechanisms (An et al., 2024). To miti-
gate the computational and memory constraints, re-
cent research has explored various KV compression
techniques (Sun et al., 2024; Yang et al., 2024b).
These methods selectively retain subsets of KVs
based on predefined reduction strategies, often com-
pressing them to a fixed budget (Tang et al., 2024;
Lietal., 2024b; Huang et al., 2024; Shi et al., 2024).
For instance, H20 (Zhang et al., 2023b) employs a
policy that discards KVs during generation accord-
ing to a scoring function derived from cumulative
attention. InfLLM (Xiao et al., 2024) partitions
KVs into fixed-size chunks and retains the top-k
most salient chunks based on attention score pat-
terns.

3 Preliminary

In this section, we provide a formal and descriptive
definition of our task.

Problem Formulation. Multi-hop Question An-
swering (MHQA) over long context is a complex
reasoning task requiring iterative reasoning across
multiple, often disparate sources of information
over documents to deduce an answer. We formulate
this task as follows: Given the input which contains
the query g and contexts C = {c, ca, ..., ¢, } where
¢; represents a single and independent document,
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### Context:

Passage 2: ... The last Birmingham City league victory over Aston Villa was on 20 March 2005, when Blues won 2-0 at St Andrew’s. ...

Passage 8: ... The second match of the season resulted in the first Blues win since 2005, as they beat Villa 2-1 in the 2010-11 League

Cup Quarter Final on 1 December 2010. ...

### Question:

When was the last time the team that Terry Twell was a member of beat the 1894-95 winner of the FA Cup?

/' MCTS Search

Query:
ID:

**Support Passage index**: 8
Quote:

Hypothesis:

When was the last time Birmingham City beat Aston Villa?

AA... Quarter Final on 1 December 2010.JAA

The passage indicates that Birmingham City last beat
Aston Villa on 1 December 2010.
The answer is {1 December 2010}. 7
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Figure 1: The overall framework of our SIC approach.

the task is aimed at predicting an answer a € A,
that satisfies:

IP, CC,|Py| > 1 APy |= (a answers ¢) (1)

where P, = {¢1, ¢a, ..., ¢ } represents the minimal
sufficient evidence set to deduce the answer.

4 Methods

4.1 Decomposed Reasoning with Structured
Thought Chains

To enable systematic and controllable multi-step
reasoning, we formalize the reasoning process as a
sequence of structured steps comprising three com-
ponents: query refinement, evidence grounding,
and hypothesis generation.

Query Refinement. Query refinement is the pro-
cess of breaking down the original question ¢ into
sub-questions ¢; that guide the model’s reasoning
at each step. As shown in Figure 1, for each step,
SIC first generates a sub-query ¢; to decompose the
original question into more focused sub-problems.
Alternatively, based on the evidence retrieved in
previous steps and the intermediate reasoning out-
comes, the model may either refine the sub-query

further to explore unresolved aspects or conclude
the reasoning process by synthesizing the final an-
swer from the accumulated evidence and logical
deductions.

Evidence Grounding. In long-context multi-hop
QA, contexts often contain redundant or irrelevant
information, making it crucial to dynamically re-
trieve only the most pertinent evidence for each
sub-question ¢;. Motivated by the methodology of
reasoning with attribution(Li et al., 2024a; Gao
et al., 2023; Trivedi et al., 2023), evidence re-
trieval component consists of two parts: supported
passage index ¢d and relevant snippet quotation
quote, which are formatted into structured evi-
dence & = (idy, quote;). The former identifies the
most relevant documents from the contexts, while
the latter extracts specific evidence that directly ad-
dresses ¢;. This structured representation ensures
that each reasoning step is grounded in verifiable
and relevant document snippets, critical for main-
taining faithfulness and reducing hallucination.

Hypothesis Generation. After obtaining the re-
fined sub-query ¢; and the corresponding evidence
&, the hypothesis generation component formu-
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lates intermediate conclusions h; to bridge the gap
between raw evidence and final answers. This step
is critical for transforming raw evidence into in-
sights, ensuring that each reasoning step is both
logically coherent and grounded in facts.

This design allows the Monte Carlo Tree Search
(MCTS) which is illustrated in Section 4.2 to treat
each step as a discrete node in the search space, fa-
cilitating guided exploration and pruning of invalid
paths.

4.2 Guided Exploration via Process-Aware
MCTS

Multi-hop reasoning over long-context documents
requires systematically planning sub-queries to
break down complex questions into steps (Radhakr-
ishnan et al., 2023). By question decomposition,
it is more effective than standard chain-of-thought
prompting, as it is easier for LLMs to generate one
step rather than a whole solution in a single-turn
inference. To address this, we adopt Monte Carlo
Tree Search (MCTS) (Coulom, 2007; Kocsis and
Szepesvéri, 2006; Hao et al., 2024), a powerful
planning algorithm that balances exploration and
exploitation to navigate the combinatorial search
space of multi-step reasoning.

During the search process, the algorithm begins
at root node sy, which unfolds in three iterative
stages: selection, expand and evaluation, backup:

* Selection Starting from the root node, the
algorithm traverses the tree by selecting ac-
tions (sub-queries ¢;) that maximize the crite-
rion according to ¢; = arg maxy(Q(s¢, q) +
U (st,q)) where Q(s¢, ) illustrates the cumu-
lative reward and U (s¢, q) is calculated by a
variant of PUCT algorithm (Rosin, 2011):

ZbN(St, b)

1+ Nsvg) O

U(Sta Q) = Q- Wek(Q|5t)

where « balances the exploration and exploita-
tion, N (s,q) is the visit count of selecting
sub-query ¢ at node s. And the prior 7(q/|s¢)
is defined as the exponential of mean log-
probability of all tokens in sub-query gq.

* Expand and Evaluation When a leaf node s
is reached, the tree is expanded by generating
new candidate sub-queries g;4; with sampling.
For each candidate g4 1, we then use the LLM
to predict the next state through structured

thought decoding as described in Section 4.1.
Thus each node s; 11 can be represented as:

St4+1 = <Qt+17 5t+1, ht+1> 3)

After obtaining the next node state, the re-
ward function evaluates s;, computing a re-
ward score r(s¢, g;) based on correctness and
contribution to the final correct answer. The
reward design will be discussed in further de-
tail later.

* Backup Once the terminal state is reached
(e.g., the final answer is validated or a com-
putational budget is exhausted), the backup
phase propagates rewards backward along the
reasoning path, updating the visit count [V,
the cumulative reward () and the state value
V:

Q(st,qt) < 7(5t,qt) + 7V (se41) D

> N(st41)Q(s5t,q)
>q NV(st41)
N(s¢) ¢ N(s0) + 1 ©)

V(st) )

where + is the discount for future state values.

Reward Design. The reward function is de-
signed to balance factual correctness (grounding
in retrieved evidence) and reasoning contribution
(progress toward resolving the question). It com-
bines two components:

e Factual Correctness For evidence &; in
each node, factual correctness evaluates 7.
whether the quotation in the evidence exists
and aligns with the supported evidence indices.
This evolves a two-step verification process:
validate that every document index cited in &
is present in the context C and ensure the ref-
erenced content of the corresponding snippet
exists in the supported index passage. Align-
ment is measured using fuzzy match:

Teor = 1(ids € Ciq) - I(F M (quotey, cia,) > 1) (7)

where C;; denotes the document index set, T
represents the threshold for fuzzy matching.

* Reasoning Contribution The contribution of
a reasoning step s; is defined as its poten-
tial to reduce uncertainty toward the correct
answer. Traditional outcome-based reward
models (ORMs) evaluate solutions holistically
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(Yao et al., 2023), lacking granular feedback
on intermediate steps. To address this, moti-
vated by Math-Shepherd (Wang et al., 2024)
which demonstrates that automated process
supervision—leveraging Monte Carlo Tree
Search (MCTS) principles, we extend this in-
sight to design our contribution metric and the
process-based reward model (PRM) in step-
level. The reasoning contribution is scored
with the original question g, provided contexts
C and partial solutions s7.¢:

Tcon = PRM([C, q; 51:t]) S [07 1] (8)

For this PRM training, the step-wise labels
are automatically constructed via this process:
for each step s¢, a completer will generate
K subsequent reasoning process from this
step:{s¢+1,5, ...,sDj,j,aj}jK:l where a; and
D; are the answer and the number of reason-
ing steps for j-th solution. Then we use the
frequency of reaching the correct answer a*
as the contribution label for the step sy:

¥E (a; = a*)

J:
% (&)

yst =
After obtaining the label for each step, we can
train the PRM using cross-entropy loss.

Therefore, the final reward score for each step s;
is calculated as 7(s¢, qt) = T'cor * Tcon-

4.3 Context-Aware Evidence Retrieval with
Dynamic KV Cache

In long multi-hop QA scenarios, the reasoning
process is divided into two stages: prefilling of
long context and generation of multiple reasoning
chains. The prefilling stage is performed only once,
after which the KVs are cached to speed up genera-
tion. During the generation of reasoning chains, the
cached KVs are reused multiple times. However,
this leads to high computational overhead, as each
decoding step requires full attention computation
over the entire lengthy cached KVs.

To address this challenge, we propose a
reasoning-oriented, trainable KV retriever to con-
duct KV cache compression during the generation
of multiple reasoning chains, only using portions
of critical KVs for decoding. Existing KV com-
pression approaches (Xu et al., 2024; Zhang et al.,
2023b) typically rely on heuristic estimations of
full attention based on cumulative attention scores,

Input:
Read the following text and find key information for the question.

The history of netball can be traced to the early development of basketball. A year after
basketball was invented in 1891...

(/Positive) The Australian and New Zealand national teams have traditionally dominated the
international game, although England and Jamaica are becoming increasingly competitive
against their Antipodean counterparts. (Positive/)

Netball includes having 4 defenders including the centre and 4 attackers also including the
centre.

Now, find key information for the question.

Question: Which teams have traditionally dominated the international game in New Zealand?

Figure 2: Synthetic data for KV retriever training.

which yield suboptimal performance in multi-hop
reasoning tasks.

Compression Process. KV compression is per-
formed to select relevant KVs for a given subques-
tion during the reasoning chain generation. To fa-
cilitate retrieval, we first partition the LLM’s input
context X = {z;}!_, into contiguous chunks:

{1, oy} 20 X X ), X = {20}, (10)

where w is the chunk size (128 in practice). A
special landmark token ((LMK)) is appended to
each chunk, forming X, = {a%, ...,z , (Imk)"}.
These landmark tokens serve as representations
of their respective chunks and are used for KV
retrieval.

After pre-filling of the long context, the KVs
are cached and reused for generations of multiple
reasoning chains. During the generation of new
tokens, KV retrieval is conducted for each interme-
diate subquestion within the reasoning chain:

C:{X1, ., X3} =" (X" {X], ... X }e) (D)

where C' represents the compressed KVs used for
attention computation, replacing the expensive full-
attention mechanism. The query ¢ corresponds to
the current subquestion.
KYV Retriever. We propose a reasoning-oriented,
trainable KV retriever to retrieve critical KVs for
each reasoning step. It introduces a set of trainable
parameters to the self-attention module of LLM.

During the self-attention computation, the hid-
den states of normal tokens (n) and landmark to-
kens (b) are sliced out and projected into query, key,
and value vectors respectively:

Q" =WLHH",
Q" =WyH",

K'=WpE H",
Kb =wt H,

V' =WLH",
V=W, H
(12)
where W are the LLLM’s original projection ma-
trices and W are the newly introduced matrices
designed specifically to handle landmark tokens.
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KV importance estimation employs similarity
between the query vector of target chunk’s land-
mark token and the key vectors of past chunks’
landmark tokens:

v m m m—1
PF(X") = top-k { {gm*, k™) } (13)

j=1
where (%, *) denotes the dot product operation.
Training. Training the KV retriever poses a chal-
lenge due to the lack of appropriately labeled long-
context data for retrieval supervision.

As shown in Figure 2, we synthesize 10K pair-
wise long-context data (up to 8K tokens) using text
from Wikipedia (Lehmann et al., 2015) to train the
KV retriever. This dataset contains coherent con-
texts, enabling the retriever to effectively learn to
locate target evidence relevant to a given query. For
each long text, we randomly select a span contain-
ing several consecutive sentences and use ChatGPT
to generate a question based on this span. This pro-
cess provides a retrieval supervision signal, guiding
the KV retriever in identifying the target evidence
corresponding to the query.

Given that the evidence for a query (chunk m) is
located on chunk ¢, we train the KV retriever using
the following contrastive learning objective:

exp((qm*, k™))
S exp((glk, k)

Imk
k.

Ly = —log (14)

where ¢/* and are the query and key vectors

of landmark tokens of corresponding chunks in the
self-attention module.

KV compression is conducted at each decoder
layer, allowing for a broader global contextual view
while enabling the decoder to focus on key infor-
mation within the lengthy text. This process ef-
fectively reduces noise and distractions, enhancing
evidence retrieval performance.

5 Experiments

5.1 Experiments Setup

Datasets and Evaluation Metrics. We conduct
our experiments on multi-hop long-context QA,
i.e., HotpotQA (Yang et al., 2018), 2WikiMulti-
hopQA (Ho et al., 2020) and MusiQue (Trivedi
etal., 2022) from LongBench (Bai et al., 2023). Ad-
ditionally, we also incorporate CofCA (Wu et al.,
2024), a counterfactual MHQA benchmark. To
adapt to the demands of this task, we randomly
sample 100 examples each from the 2-hop, 3-hop,
and 4-hop subsets of CofCA. We then extend their

context lengths to 10K by adding irrelevant docu-
ments, thereby constructing a new variant called
CofCA-10K. This dataset helps reduce the risk of
data contamination, thereby providing a more ro-
bust evaluation of the model’s multi-hop reasoning
capabilities. Table 1 presents the statistics about
these datasets. Following previous works, we adopt
the F1 score as our evaluation metric.

Dataset # Total Samples Max Tokens Avg. Tokens
HotpotQA 200 16323 12780
MusiQue 200 16320 15543
2WikiMultihopQA 200 16336 7097
2-hop 100 11176 10853
CofCA  3-hop 100 11239 10851
4-hop 100 11095 10867

Table 1: Statistics of our test datasets. The number of
tokens is calculated by the tokenizer of Llama-3.1-8B-
Instruct.

Baselines. The baselines we compare can be di-
vided into two categories: (1) single-turn prompt-
ing, including standard prompting (I0) (Brown
et al., 2020) which generates answers directly and
Chain-of-Thought (CoT) prompting (Wei et al.,
2022). (2) multi-turn tree search approaches. We
select Tree-of-Thoughts (ToT) (Yao et al., 2023)
and rStar (Qi et al., 2024) as baselines, using
Breadth-First-Search (BFS) and MCTS, respec-
tively.

Implementation Details. We use two LLMs
as the backbone in our experiments: Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023) and Llama-3.1-8B-
Instruct(Grattafiori et al., 2024). Specifically, we
first train the KV retriever independently using the
synthetic dataset in Section 4.3, enabling it to per-
form reasoning-oriented KV compression for each
reasoning hop. To ensure that the model adheres
to structured node outputs illustrated in Section
4.1 and adapts to the sparse KV contexts retrieved
by the retriever, we fine-tune our backbones for 1
epoch using 1K samples from a mixed training set
derived from the original training sets of HotpotQA
, MusiQue, and 2WikiMultiHopQA. For each ques-
tion in this training set, we utilize DeepSeek-V3
(Liu et al., 2024a) to sample 5 structured reasoning
trajectories. Thus, the whole generated training set
both for the policy model and PRM contains 50K
solutions. These trajectories provide clear, step-by-
step intermediate reasoning paths, ensuring that the
model learns to produce outputs that align with the
desired structured format. The generation prompt
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CofCA-10K

Model Methods MusiQue HotpotQA  2Wiki Avg.
2hop 3hop 4hop

10 19.12 4444 2693 4860 3379 3828 35.19

CoT 26.57 4078 3945 3928 409 35.14 37.02

SIC* 32.54 5347 5975 4345 58.14 5403 50.23
Mistral-7B-Instruct-v0.2 i (y_16) 27.48 3889 3691 4198 37.98 3536 3643
rStar (N=16) 37.90 5080 5191 51.60 4646 39.96 4645

SIC (N=16) 51.80 6154 7066 5393 67.19 60.45 60.93

+Retrieval (4K, N=4)  51.46 63.41 7287 5483 6542 5954 61.26

10 32.09 5727 4608 6397 4665 4599 48.66

CoT 39.60 5431 5979 4895 568 55.19 5244

SIC* 47.86 6177 6598 6246 5484 5235 57.54

Llama3.1-8B-Instruct /1 n—16) 38.24 552 6415 5294 5503 538 5322
rStar (N=16) 4720 6202 7290 5730 57.55 47.67 57.44

SIC (N=16) 59.87 6711 7775 66.66 62.65 5971 65.63

+Retrieval (4K, N=4)  57.10 6638 7683 6694 6531 63.90 66.07

Llama-3.1-70B-Instruct 1O 4075 6439 6268 64.00 53.53 47.55 5548

Table 2: Performance (%) comparison of different baselines on four datasets. SIC* represents the backbone model
after fine-tuning and using CoT prompting with greedy decoding. N denotes the iteration number of the tree search
algorithm. Under the setting of using dynamic KV retrieval, our context window is set to 4K, while other baselines
rely on the full-attention mechanism with a context window of 32K. The boldface indicates the best result.

can be found in Appendix A.

The training set created in this process is also uti-
lized for training the PRM. For each single step, we
use Llama-3.1-8B-Instruct as the completer, with a
sampling number of K=16. Additionally, we select
Llama-3.1-8B as the base model to train the re-
ward model using the entire training set mentioned
above, which serves as the verifier in our algorithm.
For all tree search methods, we set the depth d = 8
and the width w = 5.

5.2 Main Results

Table 2 shows the F1 score of our framework and
all baselines on four MHQA datasets. From the
table, we can find that the SIC method outperforms
other baselines across all four MHQA datasets,
demonstrating its superior ability to handle multi-
hop question answering tasks in long-context sce-
narios.

For single-turn baselines, we observe that our
SIC* method fine-tuned with just 1K data samples
for one epoch achieves significant performance im-
provements on nearly all datasets. For multi-turn
tree search approaches, our framework, which in-
tegrates the MCTS algorithm with dynamic KV
retrieval, achieves significant improvements across
all datasets. Notably, SIC using SLMs even ex-
ceeds the performance of Llama-3.1-70B-Instruct,
highlighting its potential to enhance the capabili-

ties of smaller models in long-context multi-hop
reasoning tasks.

Moreover, with dynamic KV retrieval, the model
operates within a 4K context window, yet it still out-
performs the full-attention approach that processes
the entire context. This highlights the efficiency
and effectiveness of our method in prioritizing rel-
evant information, reducing computational over-
head, and achieving superior results in multi-hop
reasoning tasks over long contexts.

First hop G.T.
A

Second hop G.T.

Figure 3: Attention score map for a CofCA-10K 3hop
sample. Left: from original full attention. Right: score
from our dynamic KV retriever. Red squares indicate
key information for the multi-hop question. For each
turn, the x-axis represents the sequence position (up
to 10K tokens), and the y-axis represents each decoder
layer.
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Models Verifiers MusiQue  HotpotQA  2WikiMQA  CofCA Avg.
Mistral-7B-Instruct-v0.2 SC@majl6 44.88 58.97 65.81 56.08 56.42
BoN16(Ours) 49.26 60.05 69.53 56.75 58.90
Llama-3. 1-8B-Instruct SC@majl6 50.51 62.23 73.70 58.99 61.36
BoN16(Ours) 56.38 62.85 73.94 60.99 63.54

Table 3: Performance of different LLMs on four MHQA datasets using different verification strategies. SC@maj
denotes the self-consistency technique, which samples multiple reasoning paths and selects the most consistent
answer by majority voting. BoN means best-of-N sampling using a verifier.

5.3 Analysis

Results for Cof CA CofCA is a counterfactual
dataset that emphasizes the model’s reasoning abil-
ity rather than its memorization capacity due to data
contamination. In Table 2, SIC achieves the best
performance on the dataset without any specific
training on it. This demonstrates the robustness and
generalizability of our approach, as it relies on the
inherent reasoning capabilities of the framework
rather than dataset-specific fine-tuning. However,
10 prompting on CofCA-2hop outperforms both
CoT and SIC*. This is likely due to the simplicity
of the dataset, where explicit reasoning does not
significantly improve the performance. This out-
come aligns with the findings in (Li et al., 2024a).
Dynamic KV retriever As shown in Figure 3,
while full-attention mechanism fails to capture the
essential KVs, our KV retriever identifies key KVs
effectively with each turn. Notably, the key infor-
mation for the second hop is located in the middle
of the context, a region typically challenging for
models due to the "lost in the middle" problem.
The ability of our KV retriever to successfully iden-
tify this information demonstrates that dynamic KV
retrieval can somewhat alleviate this issue. More
comparison of dynamic KV retriever with other
baseline retrievers is shown in Appendix B.1.

5.4 Ablation Study

Effectiveness under Different Rollouts. For tree
search algorithms, the number of rollouts (itera-
tions) directly impacts both the quality of candidate
solutions and the computational cost. Increasing
the number of rollouts allows the algorithm to ex-
plore a larger portion of the search space, poten-
tially uncovering higher-quality reasoning paths.
However, this comes at the expense of increased
inference time and resource consumption. To inves-
tigate how the number of rollouts affects our SIC’s
performance, we evaluate the performance of the

HotpotQA under different rollouts, as illustrated in
Figure 4.
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o (a) Mistral-7B-Instruct-v0.2 (b) Llama-3.1-8B-Instruct
o

E .
. '__,_,_4"”/ e e -
= . [
5. ® PO - 5 “ .
g |emmme g .
g s g« »
==} - e}

ju o s

s
16 4 16

s [ 5 [
#Number of Solutions #Number of Solutions

Figure 4: Performance comparison on the HotpotQA
dataset under the different number of solutions.

It can be found that SIC benefits from rollouts,
regardless of whether dynamic KV retrieval is used,
which applies to both Llama and Mistral models.
Another observation we can conclude is that self-
consistency (SC) tends to saturate and even decline
on Llama-3.1-8B-Instruct. The reason is that for
chain-of-thought prompting, hallucinations in inter-
mediate steps can occur and compound, leading to
entirely incorrect conclusions (Zhang et al., 2023a;
Wan et al., 2024).

Effectiveness of the Verifier. To evaluate the ef-
fectiveness of the verifier, we compare our veri-
fier, which uses best-of-N (BoN) sampling, with
the self-consistency (SC) (Wang et al., 2022) ap-
proach. In the BoN method, the verifier selects the
best-performing trajectory from multiple sampled
paths based on the last step contribution scores,
while SC aggregates results by majority voting af-
ter sampling diverse reasoning paths. As shown
in Table 3, our trained verifier outperforms self-
consistency across all datasets with both models.
Notably, on the MusiQue dataset, the performance
improvements are significant, with Llama and Mis-
tral achieving gains of 5.87 and 4.38, respectively.

Moreover, the training data used for the verifier

was generated using Llama-3.1-8B-Instruct, yet it
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still demonstrates strong generalization and pro-
vides effective guidance for Mistral. This indicates
that the verifier’s learned scoring mechanism is ro-
bust and transferable, even when applied to differ-
ent backbone models. Moreover, the comparison
between PRM and self-reward signal within our
framework can be found in Appendix B.2.

6 Conclusion

In this paper, we propose SIC, a novel framework
integrating Monte Carlo Tree Search (MCTS) with
dynamic key-value (KV) retrieval to address the
dual challenges of efficiency and reasoning in large
language models (LLMs) for multi-hop question
answering (MHQA) over long contexts. By mod-
eling the reasoning process as a search tree and in-
corporating dynamic KV retrieval, SIC iteratively
focuses on critical contextual segments (e.g., 4K
tokens per step), mitigating the "lost in the middle"
problem while reducing computational complexity.
Our comprehensive experiments across two models
and four datasets validate the superiority of SIC in
long-context multi-hop QA tasks.

7 Limitation

While our framework demonstrates promising re-
sults on long-context multi-hop QA tasks, several
limitations remain for future work. The iterative
nature of the Monte Carlo Tree Search (MCTS) pro-
cess, though effective for refining reasoning trajec-
tories, incurs increased inference latency and com-
putational cost compared to single-pass methods,
limiting its practicality for real-time applications.
Additionally, our framework has primarily been
tested on datasets with contexts around 10-20K to-
kens, leaving its applicability to significantly longer
texts (e.g., 100K+ tokens or even book-length doc-
uments) an open question for future work.

8 Ethical consideration

Our work is built upon open-source LLMs. Conse-
quently, it inherits similar ethical and social risks as
those associated with the base LLM. These risks in-
clude but are not limited to biases in language gen-
eration, potential reinforcement of societal stereo-
types, and the generation of harmful or toxic con-
tent. Despite efforts in LLM pre-training and fine-
tuning to mitigate such risks, no model is entirely
free from unintended biases, as these often stem
from the underlying training data.
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A Prompt List

The prompt used for creating our training dataset
and generating reasoning steps is shown in Figure
5.

B Result Analysis

B.1 Comparison of KV Retriever with
Baseline Retrievers on Multi-Hop QA
Datasets

In this section, we present comparison of our dy-
namic KV retriever against two baseline retrievers:
BM25, a sparse retriever using term matching, and
BGE, a dense retriever based on embeddings. Eval-
uations are conducted on HotpotQA and MuSiQue
datasets with a 4K -token budget per reasoning
step, using Llama-3.1-8B-Instruct as the backbone
model. Performance is measured by F1 score.

The results, presented in Table 4, demonstrate
that our KV retriever consistently outperforms both
BM25 and BGE on HotpotQA and MuSiQue. Un-
like traditional Retrieval-Augmented Generation
(RAG) methods, such as BM25 (a sparse retriever)
and BGE (a dense retriever), our KV retriever is
reasoning-oriented and trainable. It dynamically
selects critical key-value pairs (e.g., 4 K tokens) tai-
lored to each reasoning step within our SIC frame-
work. This adaptability enables the KV retriever to
focus on the most relevant evidence for multi-hop
question answering over long contexts. The supe-
rior performance over static methods like BM25
and embedding-based approaches like BGE high-
lights the KV retriever’s ability to enhance evidence
retrieval, making it particularly effective for com-
plex, multi-step reasoning tasks.

Table 4: F1 scores of retrievers on HotpotQA and
MuSiQue.

Retriever HotpotQA MuSiQue
BM25 61.60 49.88
BGE 62.41 51.53
KV Retriever (ours) 66.38 57.10

B.2 Comparison between PRM and
Self-reward signal

To assess the contribution of the PRM in our frame-
work, we conducted an ablation study comparing
its performance against a simpler self-rewarding
signal, following the RAP (Hao et al., 2023) frame-
work. Experiments were performed on the Hot-

potQA and MuSiQue datasets using the Llama-
3.1-8B-Instruct model as the backbone,with a 4K -
token retrieval budget, and N = 4 reasoning steps.
Performance is evaluated using the F1 score.
Table 5 shows that incorporating PRM yields sig-
nificant performance improvements over the self-
rewarding signal. These results highlight PRM’s
critical role in guiding high-quality reasoning tra-
jectories, surpassing the capabilities of a simpler re-
ward signal in multi-hop question-answering tasks.

Table 5: F1 scores comparing PRM and self-rewarding
signal on HotpotQA and MuSiQue.

Methods HotpotQA MuSiQue
SIC w/ Retrieval

w/ Self-Reward 62.53 51.08
w/ PRM 66.38 57.10
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Prompt for Generation

Answer the multi-hop question based on the given context.

### Context

{context}

### Instruction

Answer the multi-hop question based on the given text. Break the original question into smaller,
logical sub-questions, ensuring each step addresses a single, specific aspect of the question and is
fully supported by the provided context. Follow the detailed reasoning format below:

Step 1: A sub-question that directly reflects a critical part of the question, ensuring no words or
nuances are missed.

**Supported passage index:<Number>**

Provide the original text or context using """[]*™" to highlight the most key text first. Explain the
reasoning process in detail, ensuring it is logical, clear and natural. Finally, give the subanswer in
this step in a natural way and enclose the exact answer in "{{}}" in the sentence. Note that the
subanswer is the answer to the brief title and should be a short phrase.

Step n: Now we can answer the question.

Please provide a detailed reasoning step to connect all subanswers logically to derive the final
answer. The final answer should be a concise, non-sentence answer and enclosed in "**{{}}**"
like "The final answer is **{ { XXX} } **".

### Question

{question}

### Answer

Let’s think step by step.

Figure 5: Prompt used in SIC framework.
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