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Abstract

Tabular data is used to store information in
many real-world systems ranging from finance
to healthcare. However, such structured data
is often communicated to humans in visually
interpretable formats (e.g. charts and textual
paragraphs), making it imperative that fact-
checking models should be able to reason
over multiple pieces of structured evidence pre-
sented across different modalities. In this pa-
per, we propose Multi-Document Multi-Modal
Table-based Fact Verification (M 2-TabFact), a
challenging fact verification task that requires
jointly reasoning over visual and textual rep-
resentations of structured data. We design an
automatic data generation pipeline that converts
existing tabular data into descriptive visual and
textual evidence. We then use Large Language
Models to generate complex claims that depend
on multi-document, multi-modal evidence. In
total, we create 8,856 pairs of complex claims
and multi-modal evidence through this proce-
dure and systematically evaluate M 2-TabFact
with a set of strong vision-language models
(VLM). We find that existing VLMs have large
gaps in fact verification performance compared
to humans. Moreover, we find that they are
imbalanced when it comes to their ability to
handle reason about different modalities, and
currently struggle to reason about information
extracted from multiple documents.

1 Introduction

Structured data are widely used to organize and
present information in various settings ranging
from web pages to spreadsheets and infographics.
In an age where misinformation and hallucinated
text generation continue to spread rapidly on the
internet (Gao et al., 2021), building autonomous
systems that can verify factual claims against struc-
tured data will lead to the reduction of misinforma-
tion and a safer experience on the internet.

Recently, several benchmarks have been pro-
posed to evaluate automatic fact verification sys-
tems’ ability to reason over structured data (Chen
et al., 2020; Wang et al., 2021). However, two main
limitations still remain. First, structured data in
documents are commonly presented in complex but
interpretable formats (e.g., visual chart plots or nat-
ural language summaries) rather than simple tables.
Second, existing table-based fact-checking systems
built for these benchmarks simply assume that all
of the evidence is contained in a single document
or source. This is different from real-world scenar-
ios, where human fact-checkers typically need to
review multiple structured data evidence sources to
evaluate the truthfulness of a complex claim.

To address the above limitations, we propose
Multi-Document Multi-Modal Table-based Fact-
Checking (M 2_TabFact), a benchmark task which
requires table-based fact verification systems to
reason about information from multiple sources
of structured data represented in multiple modali-
ties. An example instance from our corpus is given
in Figure 1. Given a text hypothesis, the task is
to verify the truthfulness of this claim against a
chart and a text paragraph converted from two as-
sociated structured tables. Solving this task entails
decomposing the claim into two simpler pieces of
information to retrieve, identifying the evidence
from each modality necessary to retrieve the corre-
sponding information, and then finally combining
the information obtained from the two pieces of
evidence to make a final decision on whether the
claim is factual.

M?-TabFact is constructed through an automatic
pipeline involving four high-level steps. (1) Evi-
dence Table Collection: we split a table into two
sub-tables to construct two plausibly related source
tables for multi-document, multi-modal evidence
creation. (2) Multi-hop Claim Creation: we sam-
ple various data points from each source table and
generate multi-hop claims that require multiple rea-
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Visual Evidence

Source Table
Number of
Motor Engines 1601000
January 206,686 ’ 2015
Februay 207,773
June 227,624
Ay 52892 Text Evidence
The production of motor engines in the United
September 224,917 Kingdom experienced some fluctuations. In this

period, the maximum monthly number of motor
engines produced is 227624.0 achieved in June.

Three months later, the number of motor engines

produced was 2,707 less than the maximum

Claims:

The number of motor engines produced
in September is smaller than that
produced in January.

Visual Evidence Key Information :
Q: What is the number of motor engines
produced in January ?

A: 206,686.

Textual Evidence Key Information:
Q: What is the number of motor
engines produced in September ?
A: 224,917.

number.

Final Verification Decision: x

Figure 1: An example of M 2-TabFact where the claim verification requires: 1) parsing the key information of the
claim; 2) verifying the key information against each piece of uni-modal evidence. 3) combining the verified key
information from uni-modal evidence to assess the claim’s truthfulness. The key information is highlighted in red.

soning operations between the sampled data points
via pre-defined templates. (3) Multi-modal Evi-
dence Creation: we convert one source sub-table
into a chart using Data Visualization tools and the
other sub-table into a text summary. (4) Paraphras-
ing: we prompt Large Language Models (LLM) to
paraphrase the template-based text claim and text
evidence into more diverse and fluent language.

To verify the unique challenges presented by
our new dataset, we empirically evaluate a set
of strong Vision and Language Models (VLMs)
on M?2-TabFact, and compare their evaluations to
human-level performance. We find that our dataset
poses a great challenge to existing VLMs. The
strongest model evaluated only achieves slightly
less than 60% accuracy, significantly lagging be-
hind human-level performance 88%. Hence, M?2-
TabFactis a challenging problem and will stimu-
late progress on fact-checking against multi-modal
structured data.

The contributions of our paper are as follows:

» We introduce M 2-TabFact, a large-scale fact-
checking dataset consisting of 8,856 claim and
evidence pairs constructed from multi-source,
multi-modal tabular data.

* We propose an automatic pipeline to construct
this dataset at scale.

* We systematically analyze the limitations of

existing SOTA Vision and Language Models
on this task and suggest future directions.

2 Related Work

2.1 Evidence-based Fact Checking

The task of predicting the truthfulness of a sup-
posedly factual claim against evidence has been
widely explored in the natural language process-
ing research community. The majority of exist-
ing evidence-based fact-checking work focuses on
text-based evidence (Thorne et al., 2018; Jiang
et al., 2020; Augenstein et al., 2019; Kotonya and
Toni, 2020; Wadden et al., 2020; Saakyan et al.,
2021). As much information on the internet is dis-
seminated in other modalities (e.g. infographics),
there is naturally a growing interest in develop-
ing automated fact-checking (AFC) systems that
can process evidence in other modalities such as
images (Boididou et al., 2015; Fung et al., 2021;
Jindal et al., 2020; Nakamura et al., 2019; Raj and
Meel, 2021) and videos (Micallef et al., 2022; Pa-
padopoulou et al., 2019; Rayar et al., 2022).

This has led to the development of fact-checking
benchmarks that require grounding on multi-modal
evidence (Mishra et al., 2022; Nielsen and Mc-
Conville, 2022; Yao et al., 2023). While most
of these multi-modal fact-checking benchmarks
sourced their documents from news and social me-
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(2) Multi-Hop

(1) Evidence Table
Claim Creation

Collection

» “Compare [# Motors
Produced in January, #

Motors Produced in
September]”

(3) Multi-Modal
Evidence Creation

(4) LLM Paraphrase

»/Jl‘zzl}

Figure 2: An overview of the automatic data generation pipeline for M 2-TabFact that involves four steps.

dia posts, in our work we explore multi-modal
formats of structured data as the evidence source
which is more often used in scientific papers, tech-
nical reports, and infographics.

2.2 Structured Data Fact Checking

Chen et al. (2020) proposed the first table-based
fact-checking benchmark by collecting tables from
Wikipedia as evidence and asking crowd workers
to create contrasting claims where one does and
does not contradict the source. Wang et al. (2021)
extracted table evidence from scientific articles and
created claims based on the sentences in the arti-
cle that describes those same tables. There is also
another line of research that collects fact-checking
datasets from charts, a commonly used visual rep-
resentation of tabular data. ChartFC (Akhtar et al.,
2023a) extends TabFact dataset (Chen et al., 2020)
by converting a subset of the table evidence into
bar charts via visualization libraries. Following this
work, ChartCheck (Akhtar et al., 2023b) collects
real-world charts from the internet extending the
coverage of more chart types. These existing ef-
forts are still limited to a single document and a
single modality setting. In contrast, the complex
fact-checking process conducted by humans in real-
world applications usually requires checking multi-
ple different resources such as figures, tables and
articles in a research paper. To address this need
for more realistic fact-checking procedure, we con-
struct the first multi-modal multi-hop fact-checking
dataset grounded on tabular evidence.

3 M?>-TabFact: Data Creation

In this section, we introduce our automatic pipeline
to systematically create a challenging, large-scale
multi-modal fact verification dataset pairing textual
claims with multi-modal structured data. Figure 2
provides an overview of the data creation process.
As introduced in Section 1, the whole process is

broken down into four high-level steps: (1) Evi-
dence Table Collection; (2) Multi-Hop Claim Cre-
ation; (3) Multi-Modal Evidence Creation (4) LLM
Paraphrasing. We introduce details of each step in
the following section.

3.1 Evidence Table Collection

Our goal is to create a diverse multi-modal fact
verification dataset from real-world tabular data,
where the tabular data is suitable to be converted
to both a chart plot and text summary. Therefore,
we collect our tabular data resources from existing
Chart Captioning or Chart Summary datasets that
provide paired tabular data annotations. Our seed
chart datasets include Vistext (Tang et al., 2023)
and Chart-to-Text (Kantharaj et al., 2022). The ta-
bles for both datasets are crawled from Statista.com
and cover a diverse set of topics including technol-
ogy, trade, retail, and sports. They also cover a
diverse set of chart types including: pie chart, line
chart, bar chart, and area chart. We filter out tables
that contain crushed values and are left with 8,856
source tables.

After collecting our source evidence tables, we
need to create claims that depend on two pieces of
evidence sources. In order to obtain two plausibly
related tables, we split each original source table
into two sub-tables. Each table is composed of
two parts: the data and the title. For the data, we
perform a column-wise or row-wise splitting strat-
egy from the middle point of the table to ensure
the information contained in the two sub-tables is
relatively balanced. While the original title can be
directly inherited by the sub-tables in the major-
ity of the time, there are several cases where the
sub-table titles should be adjusted accordingly. For
example, titles that cover time-range of the table
content (e.g. "The average Boston Celtics ticket
price from 2010 to 2020") or titles that cover all
the categorical values of the row header or column
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header (e.g "The total number of bilingual speakers
in England, France, and Spain in 2024.") need to
be adjusted based on the time range or the categori-
cal values found in the sub-tables data. To address
this issue, we build a classifier to classify whether
the title of the sub-tables needs to be changed from
the original title and then map the title to the ad-
justed version using an LLM. We summarize the
process of editing sub-table titles in Appendix A.1.

3.2 Multi-Hop Claim Creation

After we split source tables into two sub-tables, we
adopt a template-based method to create claims
that require information from both sub-tables to
verify. We first parse the sub-tables into a more
manipulable format. We extract key-value pairs
and their units from the table. An example of this
is shown in Fig 3.

Table Title: ¢
“U.S. egg imports and

exports from 20014 to

2018 (in million dozen)*”

Table:

"Year | Imports & 2014 |
35 & 2015 | 124 & 2016 |
122 & 2017 | 32 & 2018 |
18' 5

‘Title": 'U.S. egg imports and exports from
20014 to 2018 (in million dozen)*,
'data": {
* Imports "
{'2014" '35',
* '2015": '124',
'2016": '122',
'2017" '32',
'2018": '181},
‘keys': 'Year',
‘values': 'U.S. egg imports and exports (in
million dozen)’

Figure 3: Parsing tables into dictionaries. We convert
columns and rows of the table into key-value pairs.

To create a diverse set of claims, we designed 3
groups of multi-hop reasoning composition types:
Compare, Coref, and Math. Each consists of a
set of diverse templates using the key-value pairs
extracted from the tables.

Compare requires comparing values from two
individual sub-tables. We randomly sample a key-
value pair from each of the sub-tables and create a
true claim based on the relative percentage of the
values (Table 1 row 1). Negative claims are simply
reversing the relationship between values.

Coref requires identifying entities that are ref-
erenced across sub-tables. We filter out pairs of
sub-tables that contain the same entities (e.g. Ta-
blel and Table2 both contain the year "2020"). We
create a claim by randomly sampling key-value
pairs from both tables under the same entity. Neg-
ative claims are created by swapping values with
randomly sampled values from the table.

Math requires performing algorithmic opera-
tions. We created 10 templates involving differ-
ent mathematical operations, including the sum of
all entries, sum of two entries, maximum, median,
mean etc. Negative claims are generated by cal-

culating results with randomly sampled entries or
with missing or additional entries.

All multi-hop claims can be decomposed into
two sub-claims, each requiring information from
only one of the sub-tables. We prompt an LLM to
convert these sub-claims into QAs.

Detailed templates will be released with our
code.

Composition | Template

type

Compare The {unit} of {k2} is {x}% larger
than {k1}

Coref The {entity_type} that {k1} has
{v1} in {unit}, {k2} has {v2} in
{unit}

Math The total {unit} of all
{x_axis}s in {chart_title} and
{table_title} is {sum}

Table 1: Templates for claim creation

3.3 Multi-Modal Evidence Creation

Visual Evidence To create the visual evidence,
we convert one sub-table to a chart plot via existing
data visualization tools. For tables from Vistext,
as they provide the metadata to plot the chart from
the original table with the Vega-Lite visualization
library (Satyanarayan et al., 2017), we simply re-
place the original table data with the sub-table data
in the meta-file to create the chart plot with the
same tool. For tables from Statista, we use the Mat-
plotlib library to plot the sub-tables into the same
chart type as the chart type of the original table,
also applying one of the 24 visual themes provided
by the library. Details can be found in Appendix
A2

Textual Evidence For the other sub-table, we
convert it into a natural language summary as tex-
tual evidence. Learning from the human-annotated
chart summary from Vistext and Chart-to-Text, we
create a set of templates to compile key summary
statistics such as variation trends over time, min,
max, and mean values from the given sub-table.
Besides this general key information, the text sum-
mary must also capture the sub-table’s sampled
data information used to create the multi-hop claim
(e.g, in Figure 1, the text summary needs to capture
the number of motor engines produced in Septem-
ber — 224,917). However, simply mentioning this
sampled data point in the textual summary will
make it fairly easy for the model to detect. Thus,
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we create templates to present a numerical connec-
tion of the sampled data information to one of the
general key summary statistics captured from the
sub-table (e.g the number of produced motor en-
gines in September is 2,707 less than the maximum
number), which forces the model to perform multi-
hop reasoning in order to accurately identify the
sampled data information. Additional details of tex-
tual evidence generation are included in Appendix
A3

3.4 LLM Paraphrasing

Finally, we leverage a highly capable LLM to im-
prove the language diversity and fluency of the
claim and textual evidence which were automat-
ically generated from the pre-defined templates.
The prompts we used for paraphrasing are pre-
sented in Appendix A.4. The prompt requests a
rewritten version of a given sentence that is more
natural with corrected grammar, while preserving
the original content. We include a few examples in
the prompt as context.

3.5 Quality Control

After we synthesize the dataset, we conduct human
evaluation on a small subset of the generated data
to understand the quality. We randomly check 100
examples of the generated data and verify three
things: (1) is the claim verifiable by the two pieces
of evidence; (2) does the verification require key in-
formation from both evidence modalities. (3) does
the generated multi-modal evidences have factual
inconsistency with the original table evidences. In
our final version of the data, 92% of claims are ver-
ifiable from the given two pieces of evidence. All
the sampled data will require joint interpretation
from both modalities and none of the generated
evidence in the sampled data has conflicts with the
original table evidence. This demonstrates that the
proposed pipeline can generate high-quality multi-
modal multi-hop fact verification dataset over struc-
tured table evidence.

Split | Compare Coref Math | Total
train 2924 2015 2579 | 7518
val 172 118 151 | 441
Test 344 238 305 | 897

Table 2: M?2-TabFact Statistics on the distribution of
different compositional claims and corresponding train,
validation, and test split.

3.6 Dataset Statistics

Table 2 gives an overview of our M ?2-TabFact
dataset. For each unique table, we generate one
claim, visual evidence piece, and textual evidence
piece, resulting in a total number of 8,856 unique
data samples. There are 4,397 supported and 4,449
refuted claims, which are relatively balanced. The
table summarizes the distribution of the three dif-
ferent multi-hop compositional claims defined in
section 3.2. We separate the data into train, val and
test split using a 85/5/10 ratio.

4 Experiments and Results

4.1 Task Definition

We define our task of verifying factual claims
against multi-modal structured table evidence as
follows. Each instance i is represented by the tu-
ple (¢;,v;, ti, y;) consisting of a natural language
claim ¢;, a piece of visual evidence representing
a structured table v;, textual evidence represent-
ing data from a structured table ¢;, and a claim
label y; € {0,1} which represents whether ¢; is
supported (y; = 1) or refuted (y; = 0) by the
two pieces of evidence (v;, t;). Each claim is also
associated with two questions (g?, ¢¢) and their cor-
responding answers (a?, al), where each question
asks about the key information to verify the claim
from a piece of uni-modal evidence. These uni-
modal question-answer pairs form a subtask which
is useful in verifying whether the result of the fi-
nal claim is supported by the correct intermediate
reasoning.

4.2 Baselines

We evaluate several strong vision and language
methods on M ?2-TabFact, which can be grouped
into two categories: (1) domain-specific chart-
based vision language models (C-VLMs ) that are
tailored towards chart understanding tasks; or (2)
large foundational vision language models (LVLMs
) that are universally powerful generalists for a di-
verse set of multi-modal tasks.

The C-VLMs include Pix2struct (Lee et al.,
2023), MATCHA (Liu et al., 2023), and, UniChart
(Masry et al., 2023). All three models use a similar
generative encoder-decoder architecture with differ-
ent pre-training tasks. Pix2struct is pre-trained on
HTML code generation from web screenshots and
achieves strong performance across multiple docu-
ment understanding tasks. MATCHA is a version
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Model Setting Compare Coref Math | Overall
Pix2Struct | SFT 48.8 487 52.8 50.2
MATCHA | SFT 45.1 752 521 55.6
UniChart SFT 52.3 76.5 534 59.2
LLAVA Prompt 49.7 483 51.6 50.0
Gemini Prompt 55.7 48.1 484 51.1
GPT-40 Prompt 62.5 483 518 55.0
Human - 90.4 89.1 865 88.2

Table 3: Fact Verification Results on M2-TabFact with different VLM Methods and Human Evaluator.

of Pix2Struct which is pre-trained with two addi-
tional tasks, chart-to-table translation and mathe-
matical reasoning, and further fine-tuned for chart
reasoning. UniChart is pre-trained on a set of di-
verse Chart understanding tasks which achieves
strong performance on multiple chart understand-
ing datasets, including ChartQA (Masry et al.,
2022), PlotQA (Methani et al., 2020), and Chart-
to-Text (Kantharaj et al., 2022).

For LVLMs, we evaluate GPT-40 (Achiam et al.,
2023), Gemini 1.5 Pro (Gemini Team et al., 2024),
and LLAVA 1.6 (Liu et al., 2024)!, which repre-
sents a group of frontier generalist vision and lan-
guage models on various benchmarks.

4.3 Experimental Set-up

All baseline models are evaluated on the primary
Multi-Modal Fact Verification task which evalu-
ates c; against the two pieces of multi-modal evi-
dence (v;, ¢;). The distribution of labels for sup-
prted and refuted claims are fairly balanced (49.6%
vs 50.4%), we measure task performance in terms
of accuracy.

The C-VLMs are fine-tuned with cross-entropy
loss (SFT) on the training split of M 2-TabFact and
then evaluated on the test split. For all models,
we fine-tune for 10,000 steps, using a batch size
of 8, on 4 NVIDIA Titan RTX GPUs. We use
AdaFactor with a learning rate of 1e — 5, and use
cosine scheduling with 1000 warm-up steps.

The LVLMs are directly evaluated with zero-
shot inference on the test-split. The LVLM is asked
to provide the final verification result after gen-
erating an intermediate reasoning chain, similar
to work on unimodal reasoning (e.g. Wei et al.
(2022)). The prompt is available in Appendix B.
We also evaluate human-level performance on this

'We use the LLAVA 1.6 13b model for our experiment

task by asking two human evaluators to each verify
50 claims sampled from the test split. We ensure
each type of compositional claim is equally rep-
resented in this test batch and the distribution of
supported and reputed claims is also balanced. We
find that human-level performance on this task is
88.2 %. We also observe agreement on over 90 %
of their decisions on claim verification. The failed
cases are mainly due to the difficulty of identifying
the correct data values from visual evidence and
sometimes the gap between the incorrect value in
the refuted claim is too close to the correct value.

4.4 Results and Discussion

Table 3 provides an overview of all of our bench-
marking results on our multi-modal, multi-hop
claim classification task. We analyze both the over-
all performance and the performance on the indi-
vidual claim types.

Overall, we find that this task is quite challeng-
ing for existing VLMs. Even highly specific Chart-
VLMs with further fine-tuning on our downstream
task can only reach 59.2% accuracy, and frontier
LVLMs are only able to reach 55.0% accuracy. In
contrast, humans can achieve close to 90% on this
task, indicating that the task is solvable with robust
reasoning.

We also find that claims that require different
compositions of multi-modal evidence demonstrate
different degrees of challenges to the baselines.
For frontier LVLMs like Gemini and GPT-40, the
claims that require comparison of data value across
the multi-modal evidence seem to be the easiest
type of claim to handle, whereas mathematical
reasoning appears to be more challenging . This
also aligns with the pattern of human performance
across the three different types of claims. We think
this is because comparison only requires a coarse-
level estimation of data while arithmetic operations
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will need accurate computation for every data value.
However, we observe a different pattern on the
performance on the fine-tuned CVLMs. We ob-
serve that fine-tuning C-VLMs like MATCHA and
UniChart is specifically helpful to the performance
of co-reference evaluation where they both outper-
form the best performing LVLM by at least 26.9%.
LVLM struggles to perform well on co-reference
type claims due to a bias in its reasoning process to
collect key information of a queried subject from
one evidence. While supervised finetuning are use-
ful for improving the multi-modal reasoning capa-
bilities on these tasks and even surpassing frontier
LVLMs with smaller specialized models, the cur-
rent gap from human-level performance indicates
that the standard tuning approaches are still insuffi-
cient for learning multi-modal multi-hop reasoning.

Model ‘ V-QA T-QA Accuracy
MATCHA* | 18.9 18.7 54.5
UniChart* 19.8 18.5 57.3
Gemini 29.5 18.1 51.1
GPT-40 41.6  40.3 55.0

Table 4: Evaluation results on uni-modal evidence ques-
tion answering for M 2-TabFact. We present the relaxed
accuracy for uni-modal evidence question answering
and the overall accuracy of final claim verification. The
fine-tuning process of Matcha* and Unichart* is differ-
ent from that in table 3, where we finetune the model
on both uni-modal question answering tasks and final
claim verification tasks.

4.4.1 Understanding of Uni-modal Evidence

The ability to verify each claim against multi-modal
evidence requires the model to first accurately ver-
ify the key sub-components of the claim against its
corresponding uni-modal evidence (i.e. either the
chart or the text paragraph). Thus, we also evalu-
ate the model’s capability to predict the key sub-
information from the final claim that corresponds
to uni-modal evidence via the question-answering
task. An example is included in Figure 1. To ver-
ify the truthfulness of the final claim, the model
needs to be able to answer the question what is the
number of motor engines produced in January? via
checking the chart. Additionally, the model should
also be able to tell the number of engines produced
in September from the text evidence.

Table 4 summarizes our findings on the uni-
modal reasoning capability of the best-performing

models on our task. We measure the model’s ability
to accurately answer the question against the chart
or text evidence. For questions with golden answer
of numerical value , we allow an error tolerance
of 5% of the generated answer to be considered
correct following (Masry et al., 2022). For all other
answer types, we require an exact match in order
for a candidate prediction to be considered correct.

We find that GPT-4o displays the strongest uni-
modal evidence understanding capability, Although
it is worse than Uni-Chart when it comes to pro-
ducing the final prediction, we find that the pre-
diction result of GPT-40 is more consistent with
its intermediate uni-modal evidence understanding
and the Uni-Chart final verification performance
is less reliable. We also notice that textual under-
standing is comparatively more difficult than the
visual understanding in our task. Gemini’s perfor-
mance on textual evidence question answering is
9.4% lower than its performance on chart evidence
answering, and both GPT-40 and UniChart display
a 1.3% performance degradation on the textual ev-
idence question-answering task. The difficulty of
the textual evidence may be due to the multi-hop
reasoning required to identify the key information
which was introduced in the data generation proce-
dure in Section 3.3.

4.4.2 Qualitative Error Analysis

To further identify the limitations of existing VLMs,
we have gone through 60 examples where the best-
performing VLM: GPT-4o fails to make the correct
verification. From these failure predictions, we ob-
serve that there are two major limitations of the
existing VLMs on this task. (1) Failure to extract
correct data value from charts: we find that most
of the time when the model fails to verify a claim
that requires accurate numerical operation, it is due
to the model’s inaccurate data extraction from chart
evidence. For example, in Fig 4, GPT-40 mistak-
enly interpret the data value for home furniture and
decor as 0.12 which should be 0.13 instead. This is
especially true when more than 10 data points are
contained in the chart evidence. (2) Limited ca-
pability to compare data points across multiple
pieces of evidence: these examples indicate that
GPT-40 may only account for data points that orig-
inate from the same source, and mistakenly think
that the data value of the subject from another evi-
dence source is not provided. As shown in Fig 5,
in the claim “The difference between Count von
Count and Oscar the Grouch is 0.05”. The model
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Text Evidence: As the United States grapples with the impacts of the coronavirus pandemic, consumer spending
expectations for various products have shown notable fluctuations. Across all consumer categories, these expectations
have varied within a range of 0.06, with a minimum value of 0.12 observed. Notably, the highest consumer spending
expectation was recorded for Outerwear/jackets/coats, indicating a potential uptick in demand for these items. In contrast,
spending expectations for Luxury/fashion items fell short of the peak, being less than the maximum by
0.04999999999999999. This divergence highlights shifting consumer priorities as the nation navigates the ongoing public

Claim: The difference between home furniture and décor and luxury/fashion is 0.0.

GPT-40 Prediction: False

GPT-40 Reasoning: The chart shows that the consumer spending expectation for home furniture and décor is
approximately 0.12. From the text evidence we can estimate the spending forr luxury fashion is 0.13, which is 0.0499999
lower than maximum which is 0.18. The difference should be 0.12-0.13 = 0.01.

Figure 4: An example of GPT-4o failed claim verification due to its in accurate prediction of the data value from the
chart. The error in the reassoning chain is highlighted in red

Most popular Sesame Street character among adults in the United States as of October 2019
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Share of respondents

iconic figures from their childhood.

Text Evidence: In October 2019, a survey revealed intriguing insights into the popularity of Sesame Street characters
among American adults. Notably, Cookie Monster emerged as the most beloved character, reaching a peak popularity that
highlighted his enduring appeal. In contrast, Oscar the Grouch lagged behind, with his popularity falling short of Cookie
Monster's by 0.07. Overall, the data showed that the popularity of these characters fluctuated within a range of 0.11, with
the lowest recorded value being 0.05. This variance underscores the nostalgic connection many adults still have with these

Claim: The difference between Count von Count and Oscar the Grouch is 0.05.

GPT-40 Prediction: False

GPT-40 Reasoning: The chart does not provide any information about Oscar the Grouch's popularity. Therefore, it

is not possible to verify the claim with the given evidence.

Figure 5: An example of GPT-40 failed claim verification due to limited capability to interpret cross-modal
information. The error in the reasoning chain is highlighted in red

thinks that the claim is unverifiable as the infor-
mation about Oscar the Grouch’s popularity is not
available on the chart, although the statistic can be
found in the evidence in the text evidence. We hope
these findings can inspire future work to focus on
enhance VLM’s capability on accurate data extrac-
tion from charts and joint interpretation of multiple
evidences presented in different modalities.

4.4.3 Ablation Studies

Additional Transfer Learning A common strat-
egy for C-VLMs is to transfer knowledge from a
set of large-scale and diverse chart-understanding
tasks, according to the intuition that different
chart-understanding tasks can mutually benefit
each other. Such strategies are commonly used

even for already pre-trained models (i.e., pre-
finetuning; Aghajanyan et al. (2021)) for multi-
ple modalities (Chen and Yu, 2023)). Existing
work finds that the largest performance improve-
ments are yielded only from the most highly re-
lated tasks (Chen and Yu, 2023; Padmakumar et al.,
2022). We thus explore whether pre-finetuning on
other chart understanding tasks can benefit their
performance on the multi-modal chart fact verifica-
tion task. We pre-finetune MATCHA and UniChart
on three highly related tasks — Chart Question
Answering (Masry et al., 2022), Chart Summariza-
tion(Kantharaj et al., 2022), and Chart Fact Check-
ing(Akhtar et al., 2023b) — and then finally fine-
tune them on our multi-modal fact verification task.
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Model ‘ Base ChartQA Chart2Text ChartCheck
Matcha 55.6 59.2 54.6 53.0
UniChart | 59.2 51.9 56.4 57.5

Table 5: Evaluation results on M?2-TabFact with different chart understanding tasks to pre-finetune

Table 4 summarizes the result of pre-finetuning on
each related task.

We observe that pre-finetuning on other indi-
vidual chart understanding tasks frequently leads
to degraded downstream task performance. Pre-
finetuning on ChartQA improves downstream veri-
fication performance for MATCHA but leads to a
significant performance drop on UniChart. One
possible explanation for this degradation is the
multi-hop nature of our multi-modal verification
task. While the majority of the existing chart un-
derstanding tasks focus strictly on information ex-
traction from the chart, M 2-TabFact requires the
model to additionally compare and reason over in-
formation from two equally weighted modalities.

Challenges from Multiple Modalities and Multi-
ple Documents We further study the challenges
arising from multi-modality and multi-document
reasoning. In Table 6, we compare the perfor-
mance of GPT-40 and Unichart when it is provided
on three different evidence formats: (1) Single-
modality and single-document, where the evidence
is provided as the original table or a chart plot of
the table. (2) Single-modality and multi-document,
where the original tables are split into two sub-
tables and then the two sub-tables are directly
provided as the evidence or converted into two
chart plots to serve as visual evidence. (3) Multi-
modality and multi-documents, where the model
is provided a pair consisting of a sub-table and the
chart plot of the other sub-table.

If all the evidence is contained in a single docu-
ment with one modality, we observe that GPT-40 is
more capable of modeling tables than charts. Even
GPT-4o is pre-trained on a more comprehensive set
of datasets and tasks, it is clear that it is still bot-
tlenecked by their ability to handle visual context
compared to textual context. However, for Chart
specialized VLM like Unichart, the table appears
to be the harder modality to handle.

When the uni-modal evidence is split into two
pieces , we observe consistent performance degra-
dation. Splitting one chart to two causes around 3%
performance degradation for GPT-40. This shows

that LVLM may encounter challenges combining
the information extracted from multiple documents
even if there is no additional information compared
to the single document evidence. Finally, when
the evidence is split into two pieces with different
modalities, we see that for LVLM the performance
of the model degrades close to the performance on
the single document setting for the more challeng-
ing modality. For CVLM like UniChart, they are
more vulnerable to multi-modal evidences. This
shows that current VLMs additionally lack cross-
model understanding, and may be bottlenecked by
both their imbalanced capabilities across modali-
ties and their ability to aggregate information from
multiple documents.

Evidence Format | UniChart GPT-40

Chart 68.3 59.6
Table 57.7 67.1
Table-Table 58.0 65.3
Chart-Chart 58.3 56.7
Chart-Table 51.2 59.8

Table 6: Comparing model’s performance when struc-
tured data are presented in different settings of sources
and modalities

5 Conclusion

We introduce M?2-TabFact, the first multi-
document multi-modal fact-checking dataset over
structured data to simulate the complex real-world
fact-checking scenario on multi-source table evi-
dence. We evaluate SOTA models including chart-
focused VLMs and powerful foundational VLMs
in a fine-tuned setting and a zero-shot setting. Our
best baseline achieves 59.2 % accuracy, which
is still lagging far behind human’s performance.
We identify the major bottom neck of existing
VLMs’low performance on this dataset is the unbal-
anced capability to handle structured data in differ-
ent modalities. We hope our research can inspire
the development of robust fact-checking system
against various structured data representations.
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Limitation

There are several limitations exist in this research
work. First, as we generate our text evidences and
claims with predefined template paraphrased by a
LLM, there is certain language diversity limitation
and bias from LLM that leads to a gap compared
to human-written evidence and claims. In the fu-
ture, we plan to further augment the quality of the
dataset by having human annotators to re-edit the
existing claims and evidences. Second, although
M?-TabFact includes tables that cover a wide range
of topics and various chart types, certain table top-
ics (e.g., the biomedical domain) and chart types
(e.g., heat maps) are not covered. Addressing a
broader range of table themes and chart types is an
important future research direction.

Ethical Consideration

Our dataset is created from the tables of public
dataset that is free to be reused for research pur-
pose based on their license: GPL-3.0. Our pro-
posed dataset is intended for research purposes, not
as a tool to evaluate any real-world applications.
We do not intend to have anyone to train models
for making decision on the truthfulness of a claim
against real-world context. We informed the hu-
man evaluator about all data being collected and
its purpose. We hire students from our lab to con-
duct the evaluation. We pay the human evaluators
above the minimum wage and decide the payment
based on their working hours on accomplishing the
evaluation task. To support the future research, we
plan to release the dataset as well as the code script
to evaluate different VLMs.
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A Dataset Creation

In this section, we introduce details not covered in
our main sections for the automatic data generation
process including: (1) Table Title Re-Writing (2)
Text Evidence Generation (3) Prompt for LLM
paraphrasing.

A.1 Table Title Re-writing

As introduced in section 3.1, we need to rewrite
the original tile in certain cases such as the titles
covering time-range or the titles that cover categor-
ical values mentioned in the row header or column
header. The title for the sub-table needs to be ad-
justed based on the time range or the categorical
values of the sub-table data. To check whether the
table covers a time range, we check if there is a
match of key word like "year", "month" in row
header or column header. For titles that cover cate-
gorial values across row headers or column headers,
we also check every category value in these head-
ers against the original table title. Once one of
these two case is detected, we prompt a large lan-
guage model, GPT-4o0 to rewrite the title using the
following prompt:

You are the table title editor. Your
job is to edit a given title to adapt it
to a provided table.

Given the original table:
<0riginal Table>

and the original title:
<Original Title>

please edit the original
accordingly to the new table:
<New Table>

and generate the title in the following
format: ’The new title is: ’

title

A.2 Visual Themes

The full list of 24 visual themes we use are: 1.bmh;
2.classic; 3.dark background; 4.fast; 5.fivethir-
tyeight; 6.ggplot; 7.grayscale, 8.seaborn vOS;
9.seaborn v08 brigh; 10.seaborn v08 colorblind;
11.seaborn vO8 dark; 12.seaborn vO8 dark palette;
13.seaborn vO8 darkgrid; 14.seaborn v08 deep;
15.seaborn vO8 muted; 16.seaborn v0O8 note-
book; 17.seaborn v08 paper; 18.seaborn v08
pastel; 19.seaborn v08 poster; 20.seaborn v08
talk; 21.seaborn vO8 ticks; 22.seaborn vO8 white;
23.seaborn v08 whitegrid; 24.tableau colorblind10.

A.3 Text Evidence Generation Procedure

An overview of text evidence generation process is
displayed in figure 6. Given the source table, the
text evidence is mainly composed of two types of
information: (1) the general facts about the source
table such as the variation trend, maximum value,
and average value. (2) the key data information
from the source table that is required for the final
claim assessment.

The types of general fact we extract from the
table is listed as following where the definition of
each type is followed by an example template:

Range the data value range of table.

The production of motor engines experienced fluc-
tuations within a range of <RANGE VALUE> from
June to September.

Min Value the minimum data value of the table.
The minimum number of motor engines is produced
in June as <MIN VALUE>

Max Value the maximum data value of the table.
The maximum number of motor engines is produced
in September as <MAX VALUE>

Average Value
table.

The average number of motor engines is produced
from June to September is <Average VALUE>

the averrage data value of the

Variation Trending the overall trend of data
change across time.

The number of motor engines produced is increased
Jfrom June to September We sample one or two
types of general fact out of all the categories every
time to create the textual evidence.

After summarizing the general fact of the table,
we will include the key data information from the
source table that is used for final claim verifica-
tion. Instead of directly summarizing the key data
into natural language sentence, we identify the nu-
merical connection between the key data with the
extracted general fact and present the key infor-
mation indirectly. For example, in figure 6, we
summarize the key data information as Septem-
ber produced <NUM DIFF> fewer motor engines
when compared to the month with the maximum
production.

Finally we prompt GPT-40 to convert the sum-
marized general facts and key data into a natural
text paragraph with the following instruction:

You are writing a news report in four to
five sentences to draw conclusions on the
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Text Table 1. Data Insight
Number of
Motor
Engines
June 227,624
July 184,992
2. Fact Verification Info
September 224,917

[ )

The production of motor engines in
the United Kingdom experienced
some fluctuations in the months
from June to September 2015. In
this period, the number of motor
engines produced fluctuated within a
range of 114847.0, with the minium
value of 227624.0. Interestingly,
the production reached its
minimum value in August.
However, one month later, the
number of motor engines
produced was 112140.0 greater
than the minimum, indicating a
potential rebound in production.

\_ )

Figure 6: The text evidence generation process includes three steps: (1)summarize general fact of the table with
predefined template. (2) summarize the numerical connection between the genral table fact with the key data
information for final claim verification. (3) paraphrase the extracted summary with a LLM.

data provided about: <Table Title>.

Your news report should focus on
presenting the following fact:
<EXTRACTED FACT>

1. You can add any relevant context to the
topic, and add any transition sentences.
2.Don’t simply copy the given facts into
the final paragraph.

A.4 Prompt for paraphrasing

Prompt: Without changing the meaning or
sentence structure, rewrite the provided
sentence into a more natural one with
correct grammar and spelling. Examples:
Original: The Year that Services has
37.2% Share in gross domestic product
(GDP), Agriculture has 14.09% Share 1in
gross domestic product (GDP) .
Rewritten: The year that Service sector
had a 37.2% share in gross domestic
product (GDP), the Agriculture sector had
14.09% share in GDP.

Original: The Year that Imports has 18 in
Million dozen, Exports has 333 in Million
dozen.

Rewritten: The year that Imports had 18
million dozen, Exports had 333 million
dozen.

Original: The year that Photo had 3%

in distribution of worldwide mobile app
revenues in the Apple App Store from 2018
to 2024, in U.S. dollars, Music had 5%
in distribution of worldwide mobile app
revenues in the Apple App Store from 2018
to 2024, in U.S. dollars.

Rewritten: The year that Photo had 3%
in distribution of worldwide mobile app
revenues in the Apple App Store, Music had
5% in distribution of worldwide mobile app
revenues.

2 Let’s Start!

Original:

B Fact Checking Instruction for LVLMs

Here we provided the instruction template we
use to prompt the LVLMs: GPT-40, LLAVA, and
Gemini to solve M 2-TabFact .

You are given a text claim and two
pieces of evidence: a chart and a text
article. The verification of the claim
will require jointly interpreting both
two evidences. Your task is to verify
the claim against the two evidences and
determine whether the claim is factually
consistent with the given two evidences.
<CLAIM>

<Text Evidence>
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You must respond in a structured JSON
format that can be directly parsed with
json.loads. Your response should contain
two fields and two fields only:
"verification”: Answer "Yes" if the two
pieces of evidence factually support the
claim. Answer "No"”, if you think the
claim is not factually supported.
"explanation”: an explanation of your
verification result

C Interface for Human Evaluation

Instruction: Please verify the truthfulness of the given claim agains two pieces of
evidence: Chart and Text Paragraph

Text Evidence: Between 2013 and 2019, the Toronto Blue Jays experienced
significant fluctuations in total regular season home attendance, with figures
varying within a range of 1.6400000000000001 and peaking at 3.39. Despite some
seasons drawing considerable crowds, attendance hit its lowest point in 2019,
reflecting possible factors such as team performance and fan engagement.
However, fast forward four years, and the total regular season home attendance
has rebounded, surpassing the 2019 low by 1.04. This resurgence suggests a
renewed enthusiasm among fans, potentially driven by team improvements and
promotional efforts.

Claim: The home attendance of Toronto Blue Jays at year 2015 is more than that in
2008.

Total regular season home attendance of the Toronto Blue Jays from 2005 to 2011 (in millions)
24
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Figure 7: Screenshot of Human Evaluation Task for
M?-TabFact

26256



