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Abstract

Process-driven dialogue systems, which oper-
ate under strict predefined process constraints,
are essential in customer service and equipment
maintenance scenarios. Although Large Lan-
guage Models (LLMs) have shown remarkable
progress in dialogue and reasoning, they still
struggle to solve these strictly constrained dia-
logue tasks. To address this challenge, we con-
struct Process Flow Dialogue (PFDial) dataset,
which contains 12,705 high-quality Chinese di-
alogue instructions derived from 440 flowcharts
containing 5,055 process nodes. Based on Plan-
tUML specification, each UML flowchart is
converted into atomic dialogue units i.e., struc-
tured five-tuples. Experimental results demon-
strate that a 7B model trained with merely 800
samples, and a 0.5B model trained on total
data both can surpass 90% accuracy. Addi-
tionally, the 8B model can surpass GPT-4o up
to 43.88% with an average of 11.00%. We
further evaluate models’ performance on chal-
lenging backward transitions in process flows
and conduct an in-depth analysis of various
dataset formats to reveal their impact on model
performance in handling decision and sequen-
tial branches. The data is released in https:
//github.com/KongLongGeFDU/PFDial.

1 Introduction

Process-driven dialogue systems (Yi et al., 2024),
as a special type of task-oriented dialogue systems,
play a crucial role in various real-world applica-
tions, particularly in scenarios such as customer
service, equipment maintenance, and medical con-
sultation, where strict adherence to predefined pro-
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The power supply is not 
working properly.

Please check if the power 
supply is normal.
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Figure 1: In this scenario, the system interacts with the
user based on a flowchart that checks whether the power
supply is functioning properly. If the power supply is
faulty, the system guides the user to remove the battery.
This interaction follows the decision-making process
outlined in the flowchart.

cess constraints is essential. In these contexts, di-
alogue systems must navigate through complex
decision trees while maintaining precise control
over the conversation flow, ensuring both compli-
ance with established procedures and effective user
interaction. These process flows typically contain
two types of branch: sequential branches that fol-
low a linear progression and decision branches that
require conditional routing based on user input.
Figure 1 illustrates an example scenario of process-
driven dialogue systems.

The emergence of Large Language Models
(LLMs) has brought unprecedented capabilities
in natural language understanding and generation,
demonstrating remarkable performance in both dia-
logue and reasoning tasks. These advances suggest
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potential solutions for process-driven dialogue sys-
tems (Yi et al., 2024; Zhang et al., 2023; Wu et al.,
2020). However, our empirical evaluation reveals
that even state-of-the-art (SOTA) LLMs such as
GPT-4o (OpenAI, 2023) struggle to consistently
maintain process constraints while engaging in di-
alogue. Specifically, these models often deviate
from predefined process constraints, make incor-
rect state transitions, or fail to properly handle com-
plex decision branches, highlighting the need for
more specialized solutions.

To address this challenge, we construct Process
Flow Dialogue (PFDial) dataset, which contains
12,705 high-quality dialogue instructions derived
from 440 flowcharts containing 5,055 process
nodes. Based on PlantUML specification, each
UML flowchart is converted into atomic dialogue
units, forming structured five-tuples (flowchart de-
scription, current state, user input, next state, robot
output). This structured representation enables
models to learn precise state transitions while main-
taining natural dialogue capabilities. Through su-
pervised fine-tuning (SFT) on PFDial, models can
acquire strong controlled reasoning capabilities for
process flows effectively following the prescribed
state transitions and decision logic.

We conducted comprehensive experiments to
address four key questions:

(1) How does our approach perform com-
pared to SOTA LLMs? Our main experimental re-
sults demonstrate that models with varying param-
eter sizes can achieve excellent results after SFT
on total data of PFDial. For instance, even a 0.5B
model can achieve accuracy of 98.99% and 92.79%
on in-domain and out-of-domain tests, respectively.
More impressively, an 8B model achieves 97.02%
accuracy on out-of-domain tests, surpassing GPT-
4o by 11.00%, with over 43.88% improvement in
decision branches.

(2) How does model performance scale with
training data size? Our data scaling experimental
results show that a 7B model can surpass 90% accu-
racy with only 800 training samples. As the train-
ing dataset increases, the overall performance of
the model continues to improve. This underscores
PFDial’s exceptional effectiveness in enhancing the
model’s capability for controlled reasoning tasks
with minimal data.

(3) How effective is our approach in handling
backward transitions? We evaluated the model’s
performance on more challenging backward tran-
sitions in decision branches using our constructed

dataset, PFDial-H. This specialized benchmark fo-
cuses on cases where the next state returns to a
previous point in the process flow. These transi-
tions are particularly challenging due to their rel-
ative scarcity and the complex reasoning they re-
quire. Results on PFDial-H further validate our
approach’s superiority in challenging controlled
reasoning tasks.

(4) How do different state representation for-
mats affect model performance? Through sys-
tematic analysis of three different dataset formats,
we provide interpretable insights into how different
formats impact model performance on decision and
sequential branches, offering valuable guidance for
future research.

Overall, our contributions can be summarized as
follows:

• We have developed the Process Flow Dialogue
(PFDial) dataset, which is derived from 440
flowcharts encompassing 5,055 process nodes.
This dataset contains 12,705 high-quality di-
alogue instructions, serving as a valuable re-
source for training process-driven dialogue
systems.

• The comprehensive experiments demonstrate
that the PFDial dataset is highly effective.
Even models with a smaller number of param-
eters (e.g., 0.5B, 1B, 1.5B) or those trained
on relatively limited data (800 training sam-
ples) can achieve high accuracy. An 8B
model achieves 97.02% accuracy on out-of-
domain tests, surpassing GPT-4o by 11.00%,
with over 43.88% improvement in decision
branches.

• We demonstrate our model’s superior perfor-
mance on complex backward transitions in
decision branches using the PFDial-H bench-
mark, highlighting its capability in handling
rare and intricate reasoning tasks. Addition-
ally, we provide insights into the impact of dif-
ferent dataset formats on model performance,
offering guidance for future research.

2 PFDial

In this section, we introduce PFDial, a Chinese
dataset specifically designed for process-driven di-
alogue systems.
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Figure 2: The left side illustrates the data construction process. The right side shows an example of the five-tuple
dataset generated based on the leftside flowchart.

Statistics Train ID Test OOD Test

Flowcharts 440 80 80
State Nodes 5055 902 1262
Sequential Samples 9029 1628 2265
Decision Samples 3676 645 698
Dialogue Samples 12705 2273 2963
Avg. Length 277.16 270.57 326.10

Table 1: Statistics of the PFDial Dataset

2.1 Dataset Overview

PFDial The construction of PFDial follows a
systematic pipeline, including flow chart collec-
tion, textual representation conversion, state transi-
tion Information extraction, prompt generation, and
data validation. The dataset combines real-world
scenarios and synthetic data, achieving broad cov-
erage of practical applications while maintaining
high quality and diversity. Table 1 presents detailed
statistics of the PFDial dataset.

PFDial-H Considering the prevalence and im-
portance of backward transitions in practical appli-
cations, we specifically constructed a supplemen-

tary dataset that incorporates backward transition
mechanisms called PFDial-Hard (PFDial-H). By
strategically adding backward transition nodes to
existing flowcharts using GPT-4o, we implemented
backward transition functionality for cases where
conditions are not met. This improvement was
applied to both the out-of-domain test and train-
ing flowcharts, generating new training samples
through the same prompt augmentation process.
Table 5 in Appendix B.2 presents detailed statistics
of the PFDial-H dataset.

2.2 Dataset Construction Process

Flow Chart Collection Through extensive re-
search, we identified and categorized 90 specific
business scenarios, details of which can be found
in the Appendix 18. Additionally, we designed a
carefully constructed template dataset. After iden-
tifying the business scenarios, we collected the
flowcharts manually or automatically, depending
on whether pre-existing flowcharts were available.
This process, combining automation with human
review, significantly improved the efficiency and
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accuracy of UML flowchart generation.

Textual Representation Conversion To effi-
ciently convert flowcharts into machine-readable
formats, we conducted a comparative study of sev-
eral text-based representation schemes, including
PlantUML1, chart-mage2, nomnoml3, and Mer-
maid4. After comprehensive evaluation, we se-
lected PlantUML as the standard format. This de-
cision was made for several reasons: First, Plan-
tUML employs a code-like structured representa-
tion utilizing syntax features such as indentation,
branching, and loops, making flowchart descrip-
tions both intuitive to read and convenient for pro-
gram processing. Second, a preliminary experi-
ment using GPT-4o demonstrated that the Plan-
tUML format exhibited superior accuracy com-
pared to other approaches. Details can be find in
Table 4 in Appendix B.1. During data processing,
we represented all flowcharts in PlantUML format
and generated standardized state nodes and their
transition relationships through parsing, providing
a unified representation for subsequent five-tuple
dataset generation.

State Transition Information Extraction Based
on the standardized PlantUML representation, we
developed a specialized algorithm to extract com-
plete state transition information, which is shown
in Algorithm 1 in Appendix A.1. During this pro-
cess, we got all existing paths and identified 5,055
distinct state nodes from the training set. Each state
transition pair (current state -> next state) strictly
corresponds to a specific path in the flowchart, en-
suring the accuracy and consistency of the state
information extraction.

Prompt Generation To create quality training
samples, we used the GPT-4o model for bidirec-
tional prompt augmentation for each state transi-
tion. This involved generating user input and robot
output based on the current and next states, along
with the flowchart. Detailed prompts can be found
in Appendix D.

Data Validation To ensure the reliability of the
dataset, we implemented a rigorous multi-level val-
idation process: first, ensuring that all state nodes
strictly correspond to the original flowcharts; sec-
ond, validating the syntax correctness of the Plan-

1https://plantuml.com/
2https://chartmage.com/intro.html
3https://www.nomnoml.com/
4https://mermaid.js.org/

tUML; and finally, checking the logical consistency
between user inputs and state transitions. Any data
that does not meet these criteria will be regener-
ated.

This dataset construction methodology not only
ensures data quality and diversity, but also pro-
vides a solid foundation for subsequent model train-
ing. Through systematic construction processes
and strict quality control, the PFDial dataset effec-
tively balances authenticity, standardization, and
scalability requirements. Figure 2 illustrates the
data construction process flowchart and an exam-
ple of the five-tuple dataset generated based on the
data construction flowchart.

3 Experiments

In this chapter, we present a series of comprehen-
sive experiments to address the four key questions
mentioned in Section 1. We conducted the main ex-
periment, data scaling experiment, backward tran-
sition studies, and format ablation studies respec-
tively.

3.1 Experimental Setup
Base Models We evaluate our method using two
series of base models with varying parameter sizes.
The first series includes Qwen2.5 models (Yang
et al., 2024) ranging from 0.5B to 7B parame-
ters (Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-3B,
and Qwen2.5-7B). The second series consists of
Llama3 models (Dubey et al., 2024) spanning from
1B to 8B parameters (Llama3.2-1B, Llama3.2-3B,
and Llama3.1-8B). This diverse selection of models
enables us to comprehensively analyze the impact
of model scale on performance.

Baselines For comparison, we select a compre-
hensive set of both open-source and proprietary
state-of-the-art (SOTA) LLMs that have demon-
strated strong performance across various NLP
tasks. These include proprietary models like GPT-
4o (OpenAI, 2023), GPT-3.5-turbo (Ouyang et al.,
2022a), Gemini-2.0-flash-exp (Anil et al., 2023),
and Claude-3.5-sonnet 5, as well as open-source
models such as DeepSeek-v3 (DeepSeek-AI et al.,
2024), Llama3.1-8b-instruct (Dubey et al., 2024),
and Qwen2.5-7b-instruct (Yang et al., 2024). These
models represent the current frontier of language
model capabilities and serve as strong baselines for
evaluating our approach.

5https://www.anthropic.com/news/
claude-3-family
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Model ID-test OOD-test

Acc Decision
Acc

Sequential
Acc

Acc Decision
Acc

Sequential
Acc

Baselines
LLaMA-3.1-8B-Instruct − − − 13.20 2.16 15.00
Claude-3.5-Sonnet − − − 62.74 22.06 69.40
Qwen2.5-7B-Instruct − − − 65.87 37.88 71.34
Gemini-2.0-Flash-Exp − − − 75.17 47.48 79.66
DeepSeek-v3 − − − 79.02 47.72 84.11
GPT-3.5-Turbo − − − 79.76 39.57 86.29
GPT-4o − − − 86.29 51.80 91.90

FineTuned on PFDial
LLaMA-3.2-1B 98.90 98.59 98.96 93.57 87.05 94.62
LLaMA-3.2-3B 98.77 98.02 98.91 95.81 91.37 96.53
LLaMA-3.1-8B 99.03 98.31 99.17 97.29 96.88 97.35
Qwen2.5-0.5B 98.99 98.02 99.17 91.35 89.45 91.66
Qwen2.5-1.5B 98.90 97.46 99.17 94.00 88.97 94.82
Qwen2.5-3B 98.77 98.31 98.85 94.97 89.69 95.84
Qwen2.5-7B 98.94 98.02 99.11 96.51 90.65 97.47

Table 2: Results on PFDial: Decision Acc represents the accuracy of the decision branch, and Sequential Acc
reflects the accuracy of the sequential branch. Acc is The overall accuracy.
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Figure 3: Results on Data Scaling: The left plot shows the accuracy of ID and OOD tests using data scaling strategy
(a), while the right plot shows the accuracy using data scaling strategy (b).

Datasets Our main experiments utilize the PF-
Dial dataset containing 12,705 training samples.
For evaluation, we maintain two test sets: our
out-of-domain test set comprising 698 decision
branches and 2,963 sequential branches, and an in-
domain test set containing 645 decision branches
and 1628 sequential branches. For backward transi-
tion experiments, we use the specially constructed
PFDial-H dataset. For format ablation studies, we
construct corresponding training and test sets in
three different state representation formats to sys-
tematically evaluate their impact on model perfor-
mance.

Implementation Details We combine the PFDial
dataset with the general dialogue dataset BELLE
(BELLEGroup, 2023; Wen et al., 2023) in a 1:1

ratio for SFT. For the training process, we uti-
lize the OpenRLHF(Hu et al., 2024) framework.
For instance, the training of Qwen2.5-7B model is
conducted on 8 H20 GPUs, with a total training
time of approximately 1 hour. For detailed hyper-
parameter configurations, please refer to Table 6 in
Appendix C.1.

Evaluation Metrics Model performance is eval-
uated by exact match accuracy between predicted
and ground truth next states. For a prediction
to be considered correct, it must exactly match
the ground truth state transition. Specifically, our
dataset contains two types of samples: sequential
samples and decision samples. Sequential sam-
ples refer to cases where there is only one unique
next state given the current state. Decision samples
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Model PFDial-H OOD-test of PFDial

Acc Backward
Acc(Dist <5)

Backward
Acc(Dist ≥5)

Acc Decision
Acc

Sequential
Acc

Baselines
LLaMA-3.1-8B-Instruct 15.00 13.64 15.52 13.20 2.16 15.00
Claude-3.5-Sonnet 57.50 59.09 56.90 62.74 22.06 69.40
Qwen2.5-7B-Instruct 31.25 31.82 31.03 65.87 37.88 71.34
Gemini-2.0-Flash-Exp 26.25 22.73 27.59 75.17 47.48 79.66
DeepSeek-v3 40.00 31.82 43.10 79.02 47.72 84.11
GPT-3.5-Turbo 51.25 54.55 50.00 79.76 39.57 86.29
GPT-4o 58.75 68.18 55.17 86.29 51.80 91.90

Secondary Fine-tuning
Qwen2.5-0.5B 58.75 77.27 51.72 50.77 52.67 39.09
Qwen2.5-1.5B 47.50 45.45 48.28 87.90 88.82 82.25
Qwen2.5-3B 57.50 59.09 56.90 79.73 80.91 72.42
Qwen2.5-7B 66.25 90.91 56.90 76.04 76.82 71.22

Integrated Training
Qwen2.5-0.5B 65.00 72.73 62.07 92.76 93.22 89.93
Qwen2.5-1.5B 70.00 72.73 68.97 93.87 94.82 88.01
Qwen2.5-3B 75.00 90.91 68.97 94.57 96.18 84.65
Qwen2.5-7B 76.25 86.36 72.41 96.31 96.96 92.33

Table 3: Results on PFDial and PFDial-H: Backward Acc represents the accuracy of backward transition.

refer to cases where there are at least two possi-
ble next states for the current state. Accordingly,
our accuracy can be further refined into two types:
sequential accuracy and decision accuracy.

3.2 Main Results

Table 2 presents our detailed experimental results
on the main experiments. Our experiments demon-
strate significant improvements over baseline mod-
els across all parameter scales. Even our small-
est 0.5B parameter model achieves 91.35% ac-
curacy on out-of-domain tests, with particularly
strong performance on decision branches. Our 8B
model achieves sota performance with 97.29% ac-
curacy on out-of-domain tests, surpassing GPT-4o
by 11%. In decision branches, our 8B parameter
model achieves 96.88% accuracy, surpassing GPT-
4o by 43.88%. See Appendix E for a detailed case
study analyzing the reasons behind model errors.

3.3 Data Scaling Experiments

Experimental Setup To investigate data effi-
ciency, we conducted experiments with varying
training data sizes from 100 to 12,705 samples. We
employed two data scaling strategies: (a) keeping
fixed 12,000 general dialogue data samples while
gradually increasing PFDial data, and (b) maintain-
ing a 1:1 ratio mixing of general dialogue data and
PFDial data.

Results and Analysis Figure 3 presents our ex-
perimental results on the data scaling experiments.
The results demonstrate remarkable performance

even with limited data: using only 800 samples, a
7B model can surpass 90% accuracy on OOD test.
Performance continues to improve consistently
with increased data volume, though we observe
diminishing returns after approximately 3,000 sam-
ples. The comparable performance across both
data scaling strategies validates the effectiveness of
our PFDial dataset, demonstrating its robust data
efficiency regardless of the mixing approach. For
comprehensive results on decision accuracy and
sequential accuracy across various data scaling con-
figurations, please refer to Appendix C.2.

3.4 Backward Transition Studies

Experimental Setup We evaluated models’ ca-
pability in handling complex backward transitions
on the PFDial-H test set, which provides a more
rigorous assessment of models’ ability to strictly
follow process constraints. The details of PFDial-H
test set is shown in table 5 in Appendix B.2. For
handling backward transitions, we compared two
approaches: integrated training, which incorporates
440 PFDial-H training data samples to our PFDial
training data during initial training, and secondary
fine-tuning, which applies a secondary fine-tuning
phase using PFDial-H data on the SFT-completed
model with 440 PFDial-H training data samples.

Results and Analysis Detailed experimental re-
sults are shown in Table 3. Our results demonstrate
that our method achieves optimal performance in
handling backward branches, with the integrated
training approach yielding superior results by main-
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Figure 4: Results on Model Performance with Different Formats: The left plot shows the sequential accuracy for
different models across three different formats (Format-NL, Format-SC, and Format-Hybrid). The right plot shows
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Figure 5: Logits changes of Three formats

taining robust performance on forward transitions
while significantly improving accuracy in back-
ward transition cases. Specifically, with integrated
training, the Qwen2.5-7B model achieves 76.25%
overall accuracy on PFDial-H, with 86.36% ac-
curacy on backward transitions with distance less
than 5, and 72.41% accuracy on transitions with
distance greater than or equal to 5. Meanwhile, the
model maintains a high accuracy of 96.31% on the
OOD test.

In contrast, secondary fine-tuning not only fails
to improve performance on backward transition
cases but also reduces performance on the PFDial
dataset, with Qwen2.5-7B’s OOD test accuracy
dropping from 96.31% to 76.04%. These results
emphasize the importance of integrating backward
transition samples during the initial training pro-
cess rather than treating them as a post-hoc fine-
tuning step.

3.5 Format Abliation Studies

Experimental Setup We conducted experiments
for three state representation formats: Format-
NL: natural language description (default method),
Format-SC: state codes (e.g., S1, C2), and Format-
Hybrid: combining codes and descriptions to ex-
plore the impact of different data formats on model
performance and the underlying reasons. Specific
cases of data in different formats and the visualiza-
tion results can be seen in Appendix C.3. To ensure
fairness, we fine-tuned the base model on data in
all three formats and tested it with corresponding
test sets containing the same content.

We then froze the attention heads of each layer
and compared the model’s output logits with the
original logits in these scenarios. By examining
the logits changes , we assessed the impact of each
attention head after fine-tuning with different for-
mats. Finally, we visualized these attention heads
to gain deeper insights into their roles.
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Results and Analysis The model performance
with different formats are shown in Figure 4. The
results indicate that Format B achieved the highest
accuracy in most cases, particularly on Decision
Accuracy, however, it performed slightly worse
than other formats on Sequential Accuracy. The fol-
lowing experimental results, to some extent, shed
light on the reasons behind this phenomenon.

The comparison results of the three formats’s
attention heads are shown in Figure 5. The models
fine-tuned with FormatB and FormatC showed a
more uniform and diverse distribution of attention
head contributions. This can be explained that both
of the latter formats introduced code state identi-
fiers, requiring the language model to learn both
the sequence of state transitions and the correspon-
dence between code states and natural language
states. Thus more attention heads with different
functions were activated.

In particular, head_layer27_head20 is crucial
in all three formats. We visualized this attention
head’s scores for all three formats in Figure 6, Fig-
ure 7, and Figure 8, respectively, focusing on sig-
nificant differences. The attention scores for both
the natural language and hybrid formats were con-
centrated at the intersection of the user’s current
state and the corresponding state in the flowchart.
Format-Hybrid, which includes some state codes,
showed a more moderated concentration. In con-
trast, Format-SC did not exhibit such clustering.
We hypothesize that the introduction of state codes
allows the model’s attention to generalize across
different input parts, rather than being confined to
specific segments. This enables models to better
understand user inputs and facilitates learning of
global logic, such as condition checking and state
selection. This also reasonably explains previous
results.

4 Related Work

4.1 Controllable Reasoning in LLMs

Controllable reasoning in LLMs has gained sig-
nificant attention in recent years. Ouyang et al.
(2022b) pioneered instruction-guided control via
Reinforcement Learning from Human Feedback
(RLHF), combining supervised fine-tuning (SFT),
reward model training, and Proximal Policy Opti-
mization (PPO) to align outputs with human pref-
erences. While effective, this approach requires
complex annotation and training (Li and Liang,
2021). In contrast, our approach simplifies the pro-

cess by encoding reasoning logic into structured
UML state flowcharts, guiding learning through
SFT alone. This provides a clear, human-readable
control mechanism, addressing the ’reasoning opac-
ity’ challenge (Liang et al., 2024b).

4.2 Graph-based Enhanced Reasoning

Previous research (Pan et al., 2024) has explored
graph-based approaches to enhance the reasoning
capabilities of LLMs. Several works (Liang et al.,
2024a; Luo et al., 2024a,b) have used Knowledge
Graph (KG) structural information to reduce hal-
lucinations by breaking reasoning into path extrac-
tion and inference steps. Similarly, Zhou et al.
(2024) showed that graph-based training improves
multi-hop reasoning accuracy. However, these
methods mainly treat graphs as external knowledge
sources rather than explicit control mechanisms.

4.3 LLM-based Dialogue Systems

Task-Oriented Dialogue (TOD) systems help users
achieve specific goals through conversations (Yi
et al., 2024). Current approaches fall into two main
categories: Pipeline-based Approaches, which sep-
arate dialogue systems into modules with LLMs
handling specific tasks (Comi et al., 2023; Parikh
et al., 2023; Chen et al., 2019; Nguyen et al., 2023),
and End-to-End Approaches, which use LLMs to
generate responses based on the entire dialogue his-
tory (Hemanthage et al., 2023; Zhang et al., 2024,
2023; Wu et al., 2020; Algherairy and Ahmed,
2025). Pipeline-based Approaches offer better
transparency but require extensive annotated data,
while End-to-End Approaches are simpler but less
controllable and demand higher model capabilities.

5 Conclusion

In this paper, we introduce the PFDial dataset, a
novel resource designed to enhance process-driven
dialogue systems. By utilizing structured dialogue
instructions derived from UML flowcharts, PFDial
provides a robust framework for training models
to handle complex decision-making and sequential
processes. Our experiments demonstrate that mod-
els fine-tuned on PFDial achieve high accuracy,
even with limited training data, and outperform
sota LLMs like GPT-4o on specific tasks.

We conducted an in-depth analysis of backward
transitions using the PFDial-H dataset, highlighting
the importance of integrated training approaches
for maintaining strong performance across diverse
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dialogue scenarios. Additionally, we explored the
impact of various data representation formats, find-
ing that structured state codes significantly improve
the accuracy of state transition predictions.

Overall, our work underscores the potential of
structured datasets like PFDial to advance process-
driven dialogue systems, offering new insights into
the design and training of models for precise and
controlled reasoning. Future research will focus on
expanding the dataset to cover more scenarios and
refining training methodologies to enhance model
generalization and adaptability.

Limitations

Our research presents a comprehensive set of exper-
iments, yet it is not without limitations. First, the
Chinese-centric nature of our dataset introduces po-
tential cross-lingual generalization constraints. Sec-
ond, the scarcity of standardized flowchart bench-
marks in Chinese process specifications increases
the risk of domain-specific biases, despite our rig-
orous validation framework. Besides, the potential
residual inconsistencies in flow-to-text conversion
may emerge from the inherent subjectivity in inter-
preting semantic structures.
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A Algorithm

A.1 Parse PlantUML Code
This algorithm parses the given PlantUML code by
line by line. It initializes an empty dictionary, node-
Dict, to store state nodes. Then, it calls PARSESE-
QUENTIAL (Algorithm 2) to process the sequential
flow. Finally, it returns all paths originating from

the start node, representing the complete execution
flow.

Algorithm 1 Parse PlantUML Code
1: function PARSEPLANTUML(code)
2: Split code into lines
3: Initialize an empty dictionary nodeDict to

store nodes
4: Call PARSESEQUENTIAL

5: return all paths originating from the start
node

6: end function

A.2 Parse Sequential Blocks

This algorithm parses the sequential execution flow
by processing each line to identify states. Sequen-
tial states create and merge new nodes, while deci-
sion states call PARSEDECISION (Algorithm 3) for
further processing.

Algorithm 2 Parsing Sequential Blocks

1: function PARSESEQUENTIAL(startNode, lines,
nodeDict)

2: root← startNode
3: for each line in lines do
4: Trim whitespace
5: if the line represents a sequential state

then
6: Create a new node into nodeDict
7: Merge new nodes
8: else if the line represents a decision

state then
9: Call PARSEDECISION

10: Connect new nodes
11: else
12: Continue processing
13: end if
14: end for
15: return
16: end function

A.3 Parse Decision Blocks

This algorithm handles decision structures by first
parsing the "if" block using PARSESEQUENTIAL

(Algorithm 2). If an "else if" block is encountered,
it recursively calls itself to process nested condi-
tions. For an "else" block, it parses the sequence
and connects the resulting nodes using PARSESE-
QUENTIAL (Algorithm 2). This ensures correct
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branching and flow control within decision blocks.

Algorithm 3 Parsing Decision Blocks

function PARSEDECISION(startNode, lines,
nodeDict)

root← startNode
Call PARSESEQUENTIALto parse “if” block
if meet “else if” block then

Recursively call PARSEDECISION

Connect new nodes
return

else if meet “else” block then
Parse the “else” block using PARSESE-

QUENTIAL

Connect new nodes
return

else
return

end if
end function

B Dataset

B.1 Different Format to Represent Flowchart
In Table 4, we compares different formats to repre-
sent flowchart. We select a complex flowchart with
21 paths, and let GPT-4o to find all paths and count
the number paths. Only with PlantUML, GPT-
4o correctly output the right path number, which
means flowchart with PlantUML is easy for mod-
els to understand. Moreover, syntax features, as is
shown in Table 4, such as indentation branching,
and loops, making PlantUML a good format to read
and convenient for program processing.

B.2 PFDial-H Tests
Table 5 presents the details of PFDial-H tests, in-
cluding the total number of dialogues in the test set,
average dialogue length in turns, and the proportion
of dialogues with backward transition distances di-
vided by the threshold of 5.

C Experimental Details

C.1 Implementation Details
To ensure reproducibility of our experiments, we
provide detailed hyper-parameter configurations
used in our training process. All experiments were
conducted using the AdamW optimizer with cosine
annealing learning rate scheduling. The complete
set of training hyper-parameters is presented in

Table 6. We maintained consistent hyper-parameter
settings across models of different scales to ensure
fair comparison.

C.2 Supplementary Data for Data Scaling
Experiment

While the section 3.3 presents the overall accuracy
trend with increasing training samples, here we pro-
vide the complete experimental results. Tables 13
and 14 present the performance results for Strategy
A and Strategy B respectively. Each table shows
overall accuracy, decision accuracy, and sequential
accuracy metrics on both ID and OOD tests across
different training sample sizes. The information
of dataset with different training sample sizes is
shown in Table 12.

C.3 Details in Format Ablation Study

In this section, we present specific cases of data
in different formats and the visualization results
for head_layer27_head20. As shown in Figure
6, 7, and 8, we visualize the attention patterns
for Format-NL (Natural Language) in Table 15,
Format-SC (State Code) in Table 16, and Format-
Hybird in Table 17 respectively.

D Prompt

D.1 Prompt for generating User Input

We use the prompt from Table 7 to generate user
inputs. This prompt helps us create appropriate
user input text based on the given state transitions.

D.2 Prompt for generating Robot Output

We use the prompt from Table 8 to generate robot
outputs. This prompt helps us create appropriate
robot responses based on the current state, next
state, and user input.
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Format PlantUML ChartMage NomNoml Meamaid

Decision Block

if (D) then (C1) D - C1 ->> S1 [D] C1-> [Block1] A{D} – C1 –> B[S1]
S1 D - C2 ->> S2 [D] C2-> [Block2] A – C2 –> C[S2]

else (C2)
S2

Input
Here is the flowchart code:
[a UML flowchart with 21 paths, expressed in the corresponding format]
Show all possible complete paths and count how many there are.

Path Count 21 15 19 17

Table 4: Comparison of Flowchart Formats

Backward Distance < 5 22
Backward Distance ≥ 5 58

Dialogue Samples 80
Avg. Length 534.36

Table 5: PFDial-H Tests Data Overview

Hyperparameter Value

Optimizer AdamW
Learning Rate 5× 10−6

Learning Rate Scheduling Cosine Annealing
Adam Beta1 0.9
Adam Beta2 0.95
Batch Size 128
Batch Size Per-Device 4
Training Epochs 5

Table 6: Training Hyper Parameters

User
These examples are five-tuples consisting of the
PlantUML diagram, the current state, the next state,
user input, and the robot output.

[several examples]

The user’s input explains the change in state from
the current state to the next state. The robot output
is related to next state. Robot acts as the server-
provider. For example, if the current state is A,
tobot might output "Now process A." or, when a
choice is required, robot lets user to make a choice.
Now I have a five-tuple consisting of the PlantUML
diagram, the current state next state, and the user
input, without robot output. Your task is to generate
the robot’s output based on the rules provided.

This is the five-tuple need to be filled:
[five-tuple to be filled]

Table 8: The prompt for generating the robot’s output.

User
These examples are four-tuples consisting of the
PlantUML diagram, the current state, the next state,
and the user input.

[several examples]

The user’s input explains the change in state from
the current state to the next state. For example, if
the original state is A, the user might input "A has
been completed." or, when a choice is required, the
user selects an option based on the next state.
Now I have a four-tuple consisting of the Plan-
tUML diagram, the current state, and the next state,
without user inpupt. Your task is to generate the
user’s input based on the rules provided.

This is the four-tuple need to be filled:
[four-tuple to be filled]

Table 7: The prompt for generating the user’s input.
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D.3 Prompt for Adding Backward Transition

In the third step, we use the prompt from Table 9
to add backward transitions. This prompt guides us
in adding logical loop structures to the flowchart.

User
This is a flowchart in PlantUML syntax and the
result after adding a loop to itself:

[original PlantUML and revised PlantUML]

Your task is to follow this modification rule ro add
a loop to the plantuml that I will give you next. The
following conditions must be met:
1. The added loop is logical
2. The conditional state of “repeat while” cannot be
repeated with the any conditional state that already
exists in the original PlantUML
3. Ensure that the syntax of PlantUML is correct
4. Add is([need to loop]) not([jump out of loop])
statements after repeat while as much as possible.

PlantUML to be modified:
[original PlantUML]

Table 9: The prompt for Adding Backward Transition.

E Case Study

We analyzed specific cases to provide intuitive ex-
planations in Table 10 and 11. First, generally
speaking, these models fail because they don’t pre-
cisely provide complete descriptions of the next
state, or they generate states related to user input
but not in the original flowchart, or they don’t fol-
low the format required in the system prompt. Our
task examines models’ ability to predict the next
state in sequential branches and decision branches.
Below we provide examples and analyze why GPT-
4o performs poorly in these areas.

E.1 Sequential Branch
For sequential branches, the model only need to
capture the current state and state transition. This
is typically simple because adjacent states in Plan-
tUML are usually adjacent lines. However, when
multiple decision branches are nested, things be-
come complicated and the line distance between
adjacent states increases. For example, in Table 10,
after "Repeatedly check if printing is complete", all
nested loops have ended and should transition to
"Customer leaves the photo shop". However, due to
the high complexity caused by multiple nested se-
quential branches, GPT-4o struggles to accurately
capture the contextual state relationships, resulting
in errors.

E.2 Decision Branch
For decision branches, the model needs to precisely
transition to the next state based on the current state
and user input. Unfortunately, in most wrong cases,
due to the high similarity between user input and
the first state of the correct branch during condi-
tion judgment, the model tends to skip this first
state and directly enter subsequent states, failing to
accurately follow the agreed path. More challeng-
ing issues arise when decision branch conditions
involve more than just yes/no decisions, requiring
models to comprehensively understand user input
and judge their true intentions. For example, in
Table 11, when the user inputs "The position of the
lighting fixture needs to be adjusted.", it indicates
that the lighting position needs to be modified at
this point. However, the model struggles to strictly
adhere to the process constraints and makes an in-
correct state prediction based on the user input,
skipping the correct state of this branch.
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PlantUML @startuml
start
:Customer arrives at photo shop;
:Submit photo files for printing;
:Select print size and quantity;
:Choose paper quality and surface effect;
:Confirm print order and price;
if (Photo quality check passed?) then (yes)

:Pay fee;
:Photo printing in progress;
if (Printing completed?) then (yes)

:Display printed photos;
:Customer satisfied?;
if (Customer satisfied?) then (yes)

:Complete transaction;
else (no)

:Reselect photos;
:Reprint;
:Complete transaction;

endif
else (no)

:Wait for photo printing;
:Repeatedly check if printing is complete;

endif
else (no)

:Notify poor photo quality;
:Reselect photos;
:Reprint;
:Complete transaction;

endif
:Customer leaves the photo shop;
stop
@enduml

Current State Repeatedly check if printing is complete

User Input Printing is completed.

Predicted Next State Display printed photos (Incorrect)

Correct Next State Customer leaves the photo shop (Correct)

Table 10: Case Study in Sequential Branch
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PlantUML @startuml
start
:Communicate lighting design plan with construction team;
:Explain design requirements and fixture layout;
:Provide technical support and guidance;
:Coordinate installation time and progress;
:Supervise fixture installation process;
:Perform fixture debugging and brightness adjustment;
repeat
:Confirm fixture layout and installation position;
:Supervise fixture installation process;
repeat while(Installation and debugging unsuccessful)
:Check fixture installation quality and safety;
if (Need to adjust fixture position?) then (yes)

:Negotiate adjustment plan;
:Reinstall or adjust fixture position;

else (no)
:Confirm final installation result;

endif
:Final acceptance of lighting system;
:Ensure lighting system meets design requirements;
:Complete construction documents and records;
stop
@enduml

Current State Need to adjust fixture position?

User Input The position of the lighting fixture needs to be adjusted.

Predicted Next State Reinstall or adjust fixture position (Incorrect)

Correct Next State Negotiate adjustment plan (Correct)

Table 11: Case Study in Decision Branch
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Training Sample Size 100 200 400 800 1600 3200 6400 9600 12705

Flowcharts 3 5 12 29 59 113 208 308 440
State Nodes 49 79 149 304 612 1236 2473 3772 5055
Sequential Samples 62 134 264 561 1099 2185 4293 6717 9029
Decision Samples 38 66 136 239 501 1015 2107 2883 3676
Avg. Length 386.22 368.19 320.24 286.92 275.63 272.29 273.00 280.90 277.16

Table 12: Statistics of the PFDial Dataset with Different Training Sample Sizes.

Training Sample Size ID-test OOD-test

Acc Decision
Acc

Sequential
Acc

Acc Decision
Acc

Sequential
Acc

100-all 77.61 54.52 81.87 73.59 39.81 79.08
200-all 84.82 83.33 85.10 80.83 62.35 83.83
400-all 88.91 90.68 88.59 87.80 76.50 89.64
800-all 90.37 92.37 89.99 88.44 78.90 89.99
1600-all 93.84 94.92 93.64 91.59 84.17 92.79
3200-all 96.61 97.46 96.46 93.26 89.69 93.84
6400-all 97.89 97.18 98.02 95.34 91.85 95.91
9600-all 98.86 98.31 98.96 96.45 90.17 97.47
all 98.94 98.02 99.11 96.51 90.65 97.47

Table 13: Performance with different training sample sizes across ID and OOD datasets after training on Qwen2.5-
7B, with data scaling strategy (a).

Training Sample Size ID-test OOD-test

Acc Decision
Acc

Sequential
Acc

Acc Decision
Acc

Sequential
Acc

100-100 61.37 23.45 68.37 59.12 13.91 66.46
200-200 82.31 84.46 81.92 77.88 65.47 79.90
400-400 89.71 89.55 89.73 86.03 75.30 87.77
800-800 91.55 92.66 91.35 90.01 81.06 91.47
1600-1600 93.80 93.50 93.85 91.79 85.13 92.87
3200-3200 97.01 98.02 96.82 94.30 90.65 94.90
6400-6400 97.98 98.31 97.92 95.54 90.65 96.34
9600-9600 98.90 97.46 99.17 95.95 89.45 97.00
all 98.94 98.02 99.11 96.51 90.65 97.47

Table 14: Performance with different training sample sizes across ID and OOD datasets after training on Qwen2.5-
7B, with data scaling strategy (b).
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Figure 6: local attention score of head_layer27_head20 using Format-NL
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Figure 7: local attention score of head_layer27_head20 using Format-SC
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Format Data Example

Format-NL PlantUML:
@startuml start :College entrance exam results announced; :Student obtains college entrance exam score
report; :Student checks the exam results and determines the range of colleges and majors to apply for;
if (Do you need to research colleges and majors in advance?) then (Yes) :Student conducts research on
colleges and majors; else (No) :Skip this step; endif :Student logs into the application system; :System
provides the application entry and instructions; :Student fills out the application, prioritizing choices;
:After completing the application, the system generates an application form; :Student confirms the form
and submits it; if (Application deadline?) then (Yes) :System closes the application entry; :Wait for the
admission results to be announced; else (No) :Student can modify the application before the deadline;
:Wait for the application deadline; endif :Admission results announced; if (Admitted?) then (Yes) :Student
completes registration procedures according to the admission notice; else (No) :Student applies for
supplementary applications or participates in the supplementary application process; endif :Enroll in the
school; stop @enduml
Current state:
System closes the application entry
Next state:
Wait for the admission results to be announced
User input:
The application deadline has passed, and the application system is now closed.
Robot output:
Please patiently wait for the announcement of the admission results.

Table 15: Example Data Display - Format-NL
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Format Data Example

Format-SC PlantUML:
@startuml start :S1; :S2; :S3; if (C1) then (Yes) :S4; else (No) :S5; endif :S6; :S7; :S8; :S9; :S10; if (C2)
then (Yes) :S11; :S12; else (No) :S13; :S14; endif :S15; if (C3) then (Yes) :S16; else (No) :S17; endif
:S18; stop @enduml
Dictionary of the state codes:
{ "College entrance exam results announced": "S1", "Student obtains college entrance exam score report":
"S2", "Student checks the exam results and determines the range of colleges and majors to apply for": "S3",
"Do you need to research colleges and majors in advance?": "C1", "Student conducts research on colleges
and majors": "S4", "Skip this step": "S5", "Student logs into the application system": "S6", "System
provides the application entry and instructions": "S7", "Student fills out the application, prioritizing
choices": "S8", "After completing the application, the system generates an application form": "S9",
"Student confirms the form and submits it": "S10", "Application deadline?": "C2", "System closes the
application entry": "S11", "Wait for the admission results to be announced": "S12", "Student can modify
the application before the deadline": "S13", "Wait for the application deadline": "S14", "Admission
results announced": "S15", "Admitted?": "C3", "Student completes registration procedures according
to the admission notice": "S16", "Student applies for supplementary applications or participates in the
supplementary application process": "S17", "Enroll in the school": "S18" }
Current state:
System closes the application entry
Next state:
Wait for the admission results to be announced
User input:
The application deadline has passed, and the application system is now closed.
Robot output:
Please patiently wait for the announcement of the admission results.

Table 16: Example Data Display - Format-SC
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Format Data Example

Format-Hybrid PlantUML:
@startuml start :S1: College entrance exam results announced; :S2: Student obtains college entrance exam
score report; :S3: Student checks the exam results and determines the range of colleges and majors to apply
for; if (C1: Do you need to research colleges and majors in advance?) then (Yes) :S4: Student conducts
research on colleges and majors; else (No) :S5: Skip this step; endif :S6: Student logs into the application
system; :S7: System provides the application entry and instructions; :S8: Student fills out the application,
prioritizing choices; :S9: After completing the application, the system generates an application form; :S10:
Student confirms the form and submits it; if (C2: Application deadline?) then (Yes) :S11: System closes
the application entry; :S12: Wait for the admission results to be announced; else (No) :S13: Student can
modify the application before the deadline; :S14: Wait for the application deadline; endif :S15: Admission
results announced; if (C3: Admitted?) then (Yes) :S16: Student completes registration procedures
according to the admission notice; else (No) :S17: Student applies for supplementary applications or
participates in the supplementary application process; endif :S18: Enroll in the school; stop @enduml
Current state:
System closes the application entry
Next state:
Wait for the admission results to be announced
User input:
The application deadline has passed, and the application system is now closed.
Robot output:
Please patiently wait for the announcement of the admission results.

Table 17: Example Data Display - Format-Hybrid
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Category Senarios

Lifestyle Services Hairdressing, Phone Card, Car Wash, Agritainment, Printing &
Copying, Lawyer, Yoga Studio, Music Classroom, Internship

Daily Convenience Takeout, Scenic Spots, Furniture Cleaning, Wedding Photography,
Movie, Cleaning Service, Self-service Car Wash, Second-hand
Car Trading, Visa Application

Food & Education Catering, Training Courses, Physiotherapy & Massage, Lighting
Design, Gym, Express Delivery, Travel Group Purchase, Health
Check-up, Group Tour

Entertainment & Trans-
portation

Concert, Car Rental, Baking Studio, Digital Repair, Airplane
Ticket, Water Delivery, Florist Shop, Photo Studio, Course Selec-
tion

Business & Professional
Services

Commercial Photography, Hospital, Pet Boarding, Café, Dentist,
Pet Grooming, Tea House, Outdoor Expansion, Electrician Inspec-
tion

Luxury & Specialized Ser-
vices

Beauty Salon, Museum, Horticultural Design, Car Maintenance,
Cruise, Photography Studio Rental, Piano Tuning, Basketball
Court, Cargo Delivery into Cabin

Living-related Services Laundry, House Rental, Education Consultation, Library, Cultural
Exhibition, Health Consultation, Holiday Villa, Interior Design,
Bank Account Operation

Maintenance & Care Ser-
vices

Home Appliance Repair, Hotel, Leather Goods Care, Arcade,
Furniture Installation, Medical Check-up, Car Insurance Claim,
Bicycle Rental, Parts Inspection

Comprehensive Services Moving, Resort, Language Translation, Medical Aesthetics, Driv-
ing School, Wedding Planning, Pet Hospital, Manicure, Document
Approval

Shopping & Other Activi-
ties

Shopping, Train Ticket, Water & Electricity Repair, Ski Resort,
Credit Card, College Entrance Examination Volunteer Filling,
Cooking, DIY Handicraft, Content Creation

Table 18: Senarios
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