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Abstract

Large Language Models (LLMs) exhibit im-
pressive capabilities in In-Context Learning
(ICL) but are prone to label bias—an undesir-
able tendency to favor certain answers. Exist-
ing calibration methods mitigate bias by lever-
aging in-domain data, yet such data is often
unavailable in real-world scenarios. To ad-
dress this limitation, we propose SDC (Syn-
thetic Data Calibration), a simple-yet-effective
approach that generates synthetic in-domain
data from a few in-context demonstrations and
utilizes it for calibration. By approximating
the benefits of real in-domain data, SDC ef-
fectively reduces label bias without requiring
access to actual domain-specific inputs. Ex-
perimental evaluations on 279 classification
and multiple-choice tasks from the SUPER-
NATURALINSTRUCTIONS benchmark. The re-
sults show that SDC significantly reduces label
bias, achieving an average Bias Score reduc-
tion of 57.5%, and outperforming all competi-
tive baselines. Moreover, when combined with
Leave-One-Out Calibration (LOOC), SDC fur-
ther improves performance, underscoring its
effectiveness and generalizability in enhancing
the reliability of LLMs.

1 Introduction

Large Language Models (LLMs) demonstrate im-
pressive capabilities in handling unseen tasks by
conditioning on examples of input-output pairs,
known as In-Context Learning (ICL) demonstra-
tions. However, recent research reveals that LLMs’
predictions exhibit Label Bias (Zhao et al., 2021;
Chen et al., 2023, 2024), an undesirable tendency
to favor certain answers. This phenomenon is in-
fluenced by the label distribution in the demonstra-
tions (Min et al., 2022), or by the order of them
(Lu et al., 2022; Zheng et al., 2023). Such a bias
undermines the reliability of LLM predictions and
limits their practical applications, particularly in
fields demanding high reliability, i.e finance.

To address label bias, several calibration-based
methods have been proposed, each using progres-
sively more information from the target task’s input.
Contextual Calibration (CC) (Zhao et al., 2021)
uses little to no domain-relevant input, instead
feeding tokens like N/A to estimate and correct
for the model’s prior predictions. Domain-Context
Calibration (DCC) (Fei et al., 2023) refines this
idea by sampling random texts directly from the
in-domain input, thereby capturing more domain-
specific signals in the calibration process. More
recently, Leave-One-Out Calibration (LOOC) (Reif
and Schwartz, 2024) removes each demonstration
in turn to compute a more precise bias estimation,
effectively harnessing the original demonstration
inputs themselves. Although each of these methods
reduces label bias, they also reveal that additional,
task-related text (domain, random samples, or full
demonstrations) can significantly improve calibra-
tion quality.

Motivated by these trends, we first performed a
preliminary investigation into how real in-domain
inputs help estimate a better prior for calibration.
As expected, when in-domain data is available, it
yields remarkably accurate estimates of the model’s
tendency to favor certain labels. However, real in-
domain inputs are often unavailable in real-world
ICL scenarios, where the model faces entirely un-
seen tasks with only a handful of example demon-
strations. Leveraging the strong generative capabil-
ities of LLMs, we propose using the model itself to
create synthetic in-domain data. In this work, we
develop SDC—Synthetic Data Calibration. SDC
leverages LLLMs to generate synthetic in-domain
data from a few in-context demonstrations. This
synthetic data is then used to calibrate model pre-
dictions, following the same approach as in our
preliminary experiments. By doing so, SDC effec-
tively mitigates label bias without requiring real
in-domain data.

We compared the proposed method with
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Method | p | diag(pa)'p diag(pr)'p
Bias Score | | 0.098 0.060 0.029
RSD | 0.562 0.385 0.194

Table 1: The bias evaluation results for the uncalibrated
model predictions, as well as for the model predictions
calibrated using p4. and p;.

competitive baselines on 279 diverse classifi-
cation and multiple-choice tasks from SUPER-
NATURALINSTRUCTIONS (Wang et al., 2022) us-
ing two widely used LLMs: Llama3-7b (AI@Meta,
2024) and Qwen2-7b (Yang et al., 2024). The re-
sults show that SDC achieves the best performance
among all comparisons, as evidenced by an average
57.5% reduction in Bias Score (Reif and Schwartz,
2024) on two models. Furthermore, when combin-
ing the label bias estimated by SDC with LOOC,
the model’s label bias is further mitigated, achiev-
ing state-of-the-art Micro-F1, strongly demonstrat-
ing the generalizability and effectiveness of SDC.

2 Preliminaries

Label Bias In-Context Learning (ICL) en-
ables LLLMs to solve unseen tasks by prompt-
ing them with several demonstrations. Let
C = {(.131, yl), (132, yg), ey (x‘c|,y|c‘)} denotes
the demonstrations, where x, and y, are the input
and output, respectively. The model is then ex-
pected to predict the answer y for the input x by
feeding the concatenation of C and x into the model,
formally: y = argmaxy,cy p(y|z,C), where p(-)
denotes the probability predicted by the model, Y
is the set of all possible output answers.

However, ICL has been shown to exhibit label
bias, where the model displays an unexpected pref-
erence for certain answers. This bias can be in-
fluenced by the order of examples in C or the to-
ken frequency of answers encountered during the
LLM’s pretraining phase. In this work, we fol-
low Reif and Schwartz (2024) to measure label
bias and performance using three metrics: Bias
Score, Relative Standard Deviation of class-wise
accuracy (RSD), and Micro-F1. The first two cap-
ture how strongly the model favors certain classes,
whereas Micro-F1 evaluates its overall classifica-
tion performance. Formal definitions and detailed
explanations of these metrics are available in Ap-
pendix A.1.

Progressive Use of Task Input in Previous Stud-
ies. Several calibration-based methods have been

proposed to estimate and correct the model’s prior
preference over possible labels, each one exploiting
progressively more domain-relevant input:

Contextual Calibration (CC) (Zhao et al,,
2021) uses minimal domain information to esti-
mate the prior, simply replacing the real input with
a placeholder token (N/A). Formally, pcc(y?) =

p(yi][N/A], C).

Domain-Context Calibration (DC) (Fei et al.,
2023) samples text from in-domain data rather than
using N/A, thus incorporating more task-related
content. This process is described by pg.(y!) =
ﬁ Z%Zl p(y’|[random text],,,, C), where M is
the number of selected random text.

Leave-One-Out Calibration (LOOC) (Reif
and Schwartz, 2024) goes further by exploiting
the original demonstration inputs themselves. It
excludes each (z, y) from C in turn, forms C_y, and
computes the label-wise probability prooc(y*)
over these reduced contexts. Repeating for all la-
bels yields the overall prior prooc.

In-Context Calibration (ICC) (Jang et al.,
2024) extends LOOC by introducing perturbation-
based priors. Specifically, it estimates label priors
using demonstrations with shuffled tokens, aiming
to decorrelate the input-label pairs. While ICC im-
proves over LOOC, its calibration quality depends
on the extent to which the perturbations remove
spurious correlations without losing task semantics.
We include ICC as a competitive baseline in our
experiments.

In every case, the model’s final output probabili-
ties p are rescaled by diag(p.) ™!, where p, is the
respective prior from one of the above approaches.

Mitigating Label Bias using In-Domain Data
Inspired by the observation that richer domain-
specific input often yields a more accurate prior,
we examine an idealized scenario where complete
in-domain data X7 = {z{, ..., fo, } is available.
In this case, we directly average model predictions
over all in-domain inputs:
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The estimated prior becomes Py =
and we can obtain

[pr(y"), - pr(y™ )],
the calibrated model prediction diag(p;)~'p.
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Empirical Setup and Observations. We
instantiate this scenario using the Llama3-
7b model and evaluate on 279 classifica-
tion and multiple-choice tasks from SUPER-
NATURALINSTRUCTIONS (Wang et al., 2022). We
compare the result with DC, where the estimate
prior represented as pg.. Table 1 reports the
average Bias Score and RSD for the uncalibrated
model and for the calibrated predictions under
both pg. and p;. Notably, leveraging the full
in-domain dataset (i.e., py) leads to a marked
reduction in Bias Score and RSD, confirming that
richer domain content significantly improves the
model’s prior estimation. However, since complete
in-domain data is often unavailable in real-world
ICL, we next explore utilize the LLM to generate
domain-relevant data for calibration.

3 SDC: Synthetic Data Calibration

Building on our findings that domain-relevant in-
put greatly improves calibration (Section 2), we
now address the more realistic setting in which real
in-domain data is unavailable. We propose SDC, a
method that leverages the strong generative capa-
bility of LLMs to create synthetic in-domain input
from just a few demonstration examples.

The key intuition behind SDC is that LLMs,
when prompted with demonstrations, can gener-
ate diverse synthetic data that capture essential
patterns of the target domain. By calibrating pre-
dictions with this synthetic data, we approximate
the benefits of real in-domain data without its
availability. In SDC, the LLM is prompted with
In:zq,0ut:yi...In:z)c),Out:yc), In: to gener-
ate synthetic data. ! By sampling outputs from the
model, we can collect a set of unlabeled synthetic
in-domain data, X* = {zf,... ,fos‘}. We then
follow Eq. 1 to estimate the model’s prediction
prior.

1
s

> p(le0), @

z;EX?

ps(y') =

and calibrate the model prediction p via
diag(ps)~'p, where ps=[ps(y), ..., ps (¥ )].
By doing this, SDC only need a few in-domain
demonstrations serve merely as seeds to guide the
LLM in generating synthetic data. Unlike methods
that rely on in-domain input, these demonstrations
'We try multiple strategies to construct the prompt, and

this one performs the best. Results and discussion can be seen
in Appendix A.2

Metric | Llama3-7b | Qwen2-7b
Micro-F1 (1)
Original LM 0.562 0.579
CC 0.581 0.583
DC* 0.610 0.609
LOOC 0.654 0.662
ICC 0.660 -
SDC 0.663 0.667
SDC + LOOC 0.668 0.674
Bias Score ()
Original LM 0.098 0.122
CC 0.081 0.128
DC* 0.060 0.109
LOOC 0.043 0.061
ICC 0.043 -
SDC 0.041 0.055
SDC + LOOC 0.033 0.051
RSD ()
Original LM 0.562 0.506
CC 0.496 0.509
DC* 0.385 0.426
LOOC 0.275 0.259
ICC 0.271 -
SDC 0.257 0.234
SDC + LOOC 0.227 0.228
Table 2: The averaged results of SDC and

the comparisons across 276 tasks from SUPER-
NATURALINSTRUCTIONS. The best results are high-
lighted in bold, and the second best are underlined.
SDC achieves the highest performance in improving
task outcomes and mitigating label bias on both mod-
els. Additionally, combining SDC with LOOC further
enhances task performance and reduces label bias. *
indicates the method require the assess of in-domain
data.

enable the production of a diverse synthetic set that
approximates domain characteristics and is used
solely for prior estimation and calibration.

4 Experimental Settings

4.1 Datasets

We follow Reif and Schwartz (2024) to conduct ex-
periments on 276 classification and multiple-choice
tasks from the SUPER- NATURALINSTRUCTIONS
benchmark (Wang et al., 2022). In this benchmark,
there are 1,000 evaluation instances and an addi-
tional set of 32 held-out instances for estimating
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Figure 1: Results of SDC across various numbers of demonstrations.

the Bias Score. The possible labels for all tasks
are predefined, such as “Positive/Negative” or
“Yes/No”.

4.2 Implementation Details

We use Llama3-7b (Al@Meta, 2024) and Qwen2-
7b (Yang et al., 2024) as the base models. For each
task, we randomly sampled 8 instances as demon-
strations for both generating synthetic in-domain
inputs and evaluating models on each task. We
apply Nucleus Sampling (Holtzman et al., 2020)
with a threshold of p=0.85 to sample diverse syn-
thetic in-domain inputs. For each task, 40 synthetic
in-domain unlabeled instances are generated to es-
timate the model’s prior. We use greedy search
when evaluating the model. Regarding DC, we
also sample 40 random texts of the average input
length, keeping the same number as the synthetic
instances. We conduct all experiments 3 times and
report the averaged results. Running the experi-
ment once requires nearly one GPU hour on an
RTX A6000.

5 Results and Analysis

5.1 Main Results

The results of SDC and baselines applied to two
LLMs are shown in Table 2. All methods reduce
label bias in the original models, as seen in higher
Micro-F1 scores and lower Bias Scores and RSD.
Notably, DC, which uses in-domain data for cali-
bration, reduces Bias Score by an average of 24.7%
across the two models compared to the original
LMs. In contrast, SDC, which does not use in-
domain data, significantly reduces Bias Score by
an average of 57.5% across the two models. This
demonstrates the effectiveness of using synthetic
in-domain data in mitigating label bias.
Moreover, we combine SDC with LOOC by
averaging their estimated priors. The results indi-
cate that this combination further improves task

(c) RSD
0.10 A
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g —e— SDC
Fi Original LM
£ 0.06 1
0.04 -

0 20 40 60 80 100 120 140
Number of Generated Samples

Figure 2: Bias Score of SDC with various number of
synthetic in-domain samples.

performance and reduces label bias, with an aver-
age 17.6% increase in Micro-F1 and reductions of
62.3% and 57.5% in Bias Score and RSD, respec-
tively. This highlights the adaptability of SDC,
which is further enhanced when integrated with
other methods.

5.2 Analysis

Generalizability on Number of Demonstrations:
The number of demonstrations is a crucial pa-
rameter that influences both synthetic data gen-
eration and model predictions. We conducted ad-
ditional experiments on Llama3-7b using 2, 4, 8,
and 12 demonstrations, with the results shown in
Fig. 1. Notably, under this setting, SDC uses the
same number of demonstrations for both synthetic
data generation and model predictions. The figure
shows that SDC effectively mitigates bias across
all tested demonstration sizes and consistently out-
performs alternatives in every comparison. This
highlights its strong generalizability to different
numbers of demonstrations.

Impact of Synthetic Data Quantity: The amount
of synthetic in-domain data is crucial for SDC, as
the model’s prior estimation relies on averaging
the model’s prediction distribution over this data.
Increasing the amount reduces randomness in the
estimated prior. To assess the impact of data quan-
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tity, we conducted experiments on Llama3-7b with
SDC using synthetic instances ranging from 5 to
140. The results, shown in Fig. 2, demonstrate that
SDC consistently mitigates label bias regardless
of the data quantity. As the amount of synthetic
data increases, SDC achieves a lower Bias Score,
indicating stronger bias mitigation. Notably, SDC
performs effectively with even only 5 synthetic in-
stances, matching the Bias Score of DC, which
uses real in-domain data. These findings suggest
that SDC is effective even with a small number of
synthetic examples, providing a flexible and effi-
cient approach to reducing label bias without the
need for real in-domain data.

6 Conclusion

This work introduces SDC (Synthetic Data Cal-
ibration) to mitigate label bias in LLMs without
requiring real in-domain data. By leveraging LLMs
to generate synthetic calibration data, SDC signifi-
cantly reduces label bias, achieving a 57.5% Bias
Score reduction across 279 tasks. Moreover, com-
bining SDC with LOOC further enhances perfor-
mance, demonstrating its effectiveness and adapt-
ability. These results highlight SDC ’s potential in
improving LLM reliability across diverse tasks.

Limitations

While our proposed Synthetic Data Calibration
(SDC) method demonstrates promising improve-
ments in mitigating label bias across a variety of
classification and multiple-choice tasks, several
limitations warrant discussion. First, the quality
and representativeness of the synthetic in-domain
data depend heavily on the underlying generative
capabilities of the LLM. In domains with highly
specialized or nuanced language, the generated ex-
amples may not fully capture the true distribution
of real inputs, potentially limiting calibration effec-
tiveness. Second, SDC ’s performance is sensitive
to the prompt design and the choice of demonstra-
tion examples. Small variations in these factors can
affect the diversity and accuracy of the synthetic
data, suggesting a need for further investigation
into robust prompt engineering strategies.
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A Appendix

A.1 Bias Evaluation Metrics

We follow (Reif and Schwartz, 2024) to use Bias
Score and Relative Standard Deviation of class-
wise accuracy (RSD) to assess the label bias
in the model’s predictions. The Bias Score di-
rectly measures the model’s tendency toward each
class by holding out a set of instances Zpg =
{(@1,91), (¥2,92), -, (T|zpg]s Yizps|)} from the
test set and calculating the average predicted prob-
abilities for each class:

LY o)

7Y | :
(z,y)eThg

pes(y’) =
BS

Method ‘ Baseline ‘ Label First Input First No Label
Bias Score | | 0.098 0.045 0.041 0.073
RSD | 0.562 0.287 0.257 0.384

Table 3: The bias evaluation results for various prompt-
ing strategies.

where Z% ¢ = {(z,y) € Zgsly = ¥}, y' denotes
the answer of the i-th class. Given the average pre-
dicted probabilities for each class, the Bias Score is
computed as the L1 distance between the model’s
prediction distribution and the uniform distribution.

. 1
BiasScore = 3 Z
ytey

sz<y>-|Y|\.

Additionally, RSD assesses the variance in the
model’s prediction accuracy across classes, defined
as:

acc; —acc)?

ap . VETE

acc

)

where acc; denotes the accuracy of the model’s
prediction for the i-th class. Note that a lower Bias
Score or RSD indicates the model has less tendency
toward certain answers, representing lower label
bias.

A.2 Prompt Design

We explore three ways to construct the prompt of
synthetic data generation:

* Label First Prompting, where the demonstra-
tion sequence is (y1,21, Y2, 2, . .., y|c|) and
the LLM is asked to generate the next input
z)c|+1 for a (randomly selected) label yc| 1.

* Input First Prompting, where
the demonstration sequence is
(fxlvylax?ay%'"a$|C\7y|C|) and the

LLM is asked to only generate new input x,
without conditioning on a specific label.

* No Label Prompting, where the demon-
stration contains only input examples, e.g.
(ml, T, ... ,:U|c|). This format prompts the
model to continue with a new input example
T|c|4+1, but makes no mention of any label.

We apply these three strategies to Llama3-
7b and report their results on SUPER-
NATURALINSTRUCTIONS in Table 3. From
the table, we see that Input First Prompting
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achieves the best performance. We suspect
this is because it does not require the model to
learn explicit input-label correspondences, thus
simplifying free-form generation of synthetic
in-domain data. At the same time, including the
label in the demonstration provides a helpful hint
about the overall task.
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