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Abstract

Automatic text summarization has a potential
flaw that affects the factuality of summaries.
Recently, Large Language Models (LLMs)
have been introduced as detectors for factual
inconsistencies in summaries. However, LLM-
based methods rely on reasoning capabilities
and face challenges in terms of efficiency and
explainability. We focus on decoupling LLMs’
information extraction and reasoning capabili-
ties to address prominent challenges, and pro-
pose a novel framework, UIEFID (Universal
Information Extraction-enhanced Factual In-
consistency Detection). Our idea is to define a
self-adaptive structured schema to guide fine-
tuned LLMs in extracting unified structured
information from documents and summaries,
ultimately detecting the origins of inconsisten-
cies in extraction information. The evaluation
on 5 open-source models shows that UIEFID
not only enhances the detection accuracy on the
AGGREFACT benchmark but also significantly
reduces redundant reasoning.

1 Introduction

Automatic text summarization compresses exten-
sive source documents into brief summaries, cover-
ing diverse content like news articles, source codes,
and cross-lingual text (Pu et al., 2023). Previous
summarization models are categorized into two
main paradigms (Varab and Xu, 2023). Extractive
models select and combine significant sentences or
passages, ensuring faithfulness but potentially lack-
ing coherence and conciseness. Abstractive models
generate novel content, producing more natural
and fluent summaries but risking faithfulness is-
sues. Recently, Large language models (LLMs)
have demonstrated remarkable capability and open
new possibilities for enhancing abstractive summa-
rization (Dhaini et al., 2024; Jin et al., 2024). Nev-
ertheless, LLMs cannot fully guarantee the faith-
fulness of generated summaries.

In response to factual inconsistency in abstrac-
tive summarization, leveraging LLMs as detectors
is gaining increasing popularity (Shen et al., 2023;
Wang et al., 2023b). However, two main challenges
exist in LLM-based methods: (1) Efficiency. Cur-
rent methods heavily rely on the reasoning capa-
bility of LLMs. This implies that whether these
inconsistencies are explicit or implicit, LLMs typ-
ically use extensive reasoning to analyze the dis-
crepancies between summaries and source docu-
ments (Luo et al., 2023). Especially for long docu-
ments, LLMs struggle to deliver detection results
concisely. (2) Explainability. LLM-based meth-
ods may contain reasoning errors and produce un-
stable outputs, which can be referred to as “halluci-
nations” (Zhang et al., 2023). Such inherent flaws
render the detection results unreliable and deficient
in explainability.

Recent research (Wang et al., 2024; Rettenberger
et al., 2024) has demonstrated that LLMs excel
in processing structured information. We focus
on decoupling LLMs’ information extraction and
reasoning capabilities to address prominent chal-
lenges. By introducing Universal information ex-
traction (UIE) (Lu et al., 2022), we facilitate LLMs
to identify patterns, extract key information, and
transform unstructured textual data into structured
data for more refined detection.

Consequently, we propose a novel detec-
tion framework, UIEFID (Universal Information
Extraction-enhanced Factual Inconsistency Detec-
tion). Our framework obtains a fine-tuned LLM
with excellent information extraction capability,
enabling it to extract corresponding structured in-
formation from both summaries and documents
efficiently. By analyzing the discrepancies within
structured information, LLM can pinpoint and an-
notate the origins of inconsistencies, subsequently
feeding them back into further refined reasoning to
retrieve substantiating evidence from the document
to validate inconsistencies.
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Our work emphasizes the information extraction
capabilities of LLMs rather than relying solely on
their zero-shot or few-shot reasoning capabilities.
By leveraging UIE, our approach can effectively
extract structured information that facilitates easy
comparison and verification while directing the tra-
jectory and scope of reasoning. This enhances both
the efficiency and explainability of the detection.
Our contributions are threefold:

• Our study pioneers the integration of UIE to
enhance the efficiency and explainability of
LLM-based factual inconsistency detection.

• We propose UIEFID, a novel detetion frame-
work that can rapidly perform and output
structured detection results with strong ex-
plainability.

• The comprehensive experiments on the popu-
lar AGGREFACT benchmark demonstrate the
effectiveness of UIEFID, and the quantitative
analysis regarding the reduction of redundant
reasoning is provided.

2 Approach

2.1 Problem Definition
Given a non-empty document D = {di}1≤i≤N and
a corresponding summary S = {sj}1≤j≤M , where
D contains N sentences and S contains M sen-
tences, typically N ≥ M , and the text length of S
does not exceed that of D. This indicates that con-
verting D into S involves a mapping from multiple
sentences to a single sentence, or a mapping from
a single sentence to a single sentence.

f({dp, · · · , dq}1≤p≤q≤N ) → {sj}1≤j≤M (1)

Inspired by text compression algorithms (Li
et al., 2022) , we present a concise hypothesis: ap-
plying a lossless structured information extractor
(IE) to D and S, transforming the semantics and
logic of the textual expression into Unified struc-
tured information (USI). This hypothesis can be
formalized and defined as follows:

IE(D,S) → (Id, Is) (2)

where IE(·) is a function that converts document
D and summary S into their corresponding struc-
tured information, Id and Is, respectively.

The information extraction not only completely
reflects the semantic entities, logical relationships,

and positional markers in text but also significantly
reduces the substantial redundancy of content that
needs to be processed, accelerating machine de-
tection. As shown in Figure 1, the summary is
factually consistent with the document, and the
document’s structured information should logically
entail the summary’s structured information.

Figure 1: Lossless text compression (tree structure). E∗
represents an entity, and R∗∗ represents the relationship
corresponding to each entity.

In semantics, the subject refers to the entity that
performs the action or is described. To express
structured information concretely, Id and Is can
be transformed into a subject-centered triplet for-
mat (clarity in structure and ease of processing),
described as follows:

Id, Is → {Subi : (kj , vj)1≤j≤pi}1≤i≤n/m (3)

where Subi denotes the i-th subject in D or S,
kj , vj respectively denote the j-th key-value pair
belonging to Subi, which express specific attributes
or relations, n and m respectively represent the
total number of subjects present in D and S, and pi
indicates the number of key-value pairs possessed
by the i-th subject.

Our fundamental idea involves assessing the fac-
tuality in the summary by detecting the inconsis-
tency between Id and Is.

2.2 UIEFID

To concretize the abovementioned detection idea,
we propose a novel detection framework UIEFID.
It adopts a sequential strategy that combines de-
tection and revision for inconsistency, divided
into three phases: Subject Alignment, Key-value
Analysis and Factuality Evaluation.

2.2.1 Subject Alignment
A summary typically consists of statements involv-
ing semantic elements such as subject, action, ob-
ject, modification, and state assertions. In this pa-
per, the term "subject" is used to encompass all
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Figure 2: UIEFID framework consists of 3 phases: (1) Subject Alignment. Identifying and correcting inconsis-
tencies in subjects between the document and the summary. (2) Key-value Analysis. Extracting USI from the
summary and using it as a extraction schema to guide the fine-tuning LLM to extract USI from the document, and
then prompting LLM to reason and analyze the differences in structured key-value pairs and obtain the detection
results. (3) Factuality Evaluation. Collecting inconsistencies from two phases and merging them to calculate the
final factuality score.

terms related to named entities, which is equiva-
lent to the intermediate nodes of a tree-structured
information (see Figure 2).

In this phase, we compare the subject differ-
ences in the structured information by Named en-
tity recognition (NER) , and identify three types of
errors: non-existent, spelling errors, and misplace-
ment. Specifically, non-existent indicates that the
subject in the summary does not have a correspond-
ing subject in the source document; spelling errors
means that the subject in the summary was not
correctly output; misplacement refers to the rela-
tive position of the subject in the summary being
different from that in the source document.

After identifying inconsistencies, we perform
text similarity computation and coreference resolu-
tion to select appropriate subjects from the docu-
ment to replace the inconsistent content in the sum-
mary. Meanwhile, the analysis results of subject
alignment are recorded as a basis for subsequent
calculations of the factuality score.

Clearly, subject misalignment represents a funda-
mental semantic error. Significant discrepancies be-
tween subjects extracted from the summary and the
document can mislead LLMs into over-reasoning
and introduce biases during detection. Thus, it is
imperative to promptly correct subject errors to en-
sure that LLMs can focus on more complex logical
inconsistencies.

2.2.2 Key-value Analysis

After eliminating subject misalignment, we fine-
tune LLMs specifically for information extraction
tasks to extract structured information (subject:
key-value pairs) from summaries, akin to construct-
ing triples for knowledge graphs. We then mask
these values to form extraction schemas, which
guide the LLMs to retrieve relevant content from
the document and fill in the masked values (for ex-
amples, see Appendix A). Finally, we directly com-
pare the differences between the key-value pairs
extracted from the structured information in the
summary and the document to determine the source
of inconsistencies.

Existing LLM-based methods typically rely on
the document as a reference for detecting inconsis-
tencies within summaries (Shen et al., 2023; Wang
et al., 2023b). However, a primary drawback of
this approach is its high sensitivity to document
length, and longer documents can significantly de-
grade performance due to the increased complexity
and computational load associated with inconsis-
tency detection. Our approach redefines the focus
of inconsistency detection. Given that summaries
are typically much more concise than their source
documents, we base our verification on the sum-
mary text to retroactively validate whether there
exists any structured information in the document
that contradicts the summary.
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2.2.3 Factuality Evalution
To enhance the explainability, we quantify the accu-
mulated consistencies after detection and revision,
thereby computing the factuality score (FS) of the
summary. The computation formula is as follows:

FS =
|entsfc|
|ents| ×

∑|Sub|
i=1

|pfc
i |

|pi|
|Sub| (4)

where entsfc and pfci represent factually consistent
entities in each summary and key-value pairs for
i-th subject, | · | represents the corresponding quan-
tity. This computation ensures that high factuality
scores are achieved only when both entities and
key-value pairs exhibit a high degree of consistency
with the document.

The factuality score serves as a metric to evalu-
ate the degree of consistency between the summary
and the document. By leveraging the document
as a reference, we compute the proportion of en-
tities in the summary that align with those in the
document. Additionally, we evaluate the propor-
tion of key-value pair matches within the structured
information extracted through the universal infor-
mation extraction. This dual approach provides a
comprehensive evaluation of summary factuality.

3 Experiment and Results

3.1 Experimental settings
We introduce experimental settings, including
the benchmark, evaluation metric, and baselines.
Benchmark. We evaluate the effectiveness of
UIEFID on AGGREFACT, the established bench-
mark for assessing summarization factuality met-
rics. AGGREFACT aggregates 9 existing annotated
summary factuality datasets of news articles. All
datasets contain summaries generated from articles
in CNN/DM and XSum. Given the unique char-
acteristics of CNN/DM and XSum, our proposed
benchmark includes two subsets, AGGREFACT-
CNN and AGGREFACT-XSUM, that evaluate the per-
formance of factuality metrics on these two datasets
separately. Tang et al., 2023 stratify it according
to the underlying summarization model, catego-
rized into FTSOTA, EXFORMER and OLD based on
their development timeline. (1) FTSOTA represents
state-of-the-art fine-tuned summarization models,
including BART (Lewis et al., 2020), PEGASUS
(Zhang et al., 2020), and T5 (Raffel et al., 2020).
(2) EXFORMER is a collection of early Transformer-
based summarization models, comprising BERT-

Sum (Liu and Lapata, 2019) and GPT-2 (Radford
et al., 2019). (3) OLD covers the remaining models,
such as Pointer-Generator (See et al., 2017) and
BottomUp (Gehrmann et al., 2018).
Evaluation Metric. We use balanced accuracy
to evaluate the performance of factual inconsis-
tency detection methods due to the imbalance of
factually consistent and inconsistent summaries in
AGGREFACT dataset.
Baselines. We evaluate the effectiveness of
UIEFID against 12 recent baselines. They are cat-
egorized into three types based on their detection
pattern: NLI, QA, and LLM-based metrics (see
section 4) .

3.2 Implementation Details
Filtering and Alignment. Employing LLMs
directly to detect elementary errors such as
misaligned subjects is unnecessary. Instead,
we utilize the low-resource NLP tool spaCy’s
en-core-web-trf (Jugran et al., 2021) to extract
inconsistent subjects in document-summary pairs.
We then leverage its built-in similarity computation
function to re-match the subjects in the document
that align with those in the summary, thereby
achieving preliminary subject alignment.

Fine-tuning. High-quality instruction data
is the vital key for enhancing the specific capa-
bilities of LLMs. We first fine-tuned the base
models using the open-source IEPile (Gui et al.,
2024) (a comprehensive bilingual [English and
Chinese] information extraction instruction corpus
containing approximately 0.32B tokens) to en-
hance their performance in information extraction,
including the three primary tasks of named entity
recognition (NER), relation extraction (RE), and
event extraction (EE) (Niklaus et al., 2018). We
selected Llama 3-8B (Meta, 2024), Llama 3.1-8B,
Qwen2.5 (7B, 14B) (Qwen, 2025) for fine-tuning
to facilitate subsequent performance comparison
and result analysis. Additionally, we invoked the
advanced DeepSeek-R1 (DeepSeek-AI, 2025)
API to test the improvement of our framework’s
detection performance.

Schema Design. Inspired by the Structured
extraction language for UIE (Lu et al., 2022), we
designed a schema for LLMs to perform structured
extraction after fine-tuning (see Appendix B). For
information extraction, the schema is typically
constructed in a JSON-like format to ensure that
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the responses are uniformly formatted and readable

Detection and Revision. LLMs are instructed to
extract structured information from the summary
and mask the detailed values of key-value pairs,
retaining only the subjects and corresponding keys.
We use the masked format as the schema to guide
LLMs in filling in new values according to the
document. We can quickly detect inconsistencies
by comparing the differences between the struc-
tured information extracted from the document
and the summary. We directly prompt LLMs
to revise and polish the summary by addressing
the identified sources of factual inconsistencies.
(prompt templates, see Appendix C)

3.3 Results and Analysis

Table 1: Balanced acccuracy results on the test sets
of the AGGREFACT-CNN and AGGREFACT-XSUM
datasets (threshold-per-dataset setting).

Agg-CNN Agg-XSum
FTS ExF OLD FTS ExF OLD AVG

Baseline 50.0 50.0 50.0 50.0 50.0 50.0 50.0

DAE* 59.4 67.9 69.7 73.1 - - 67.5

QuestEval 63.7 64.3 65.2 61.6 60.1 59.7 63.7

SummaC-ZS 63.3 76.5 76.3 56.1 51.4 53.3 68.1

SummaC-Conv 70.3 69.8 78.9 67.0 64.6 67.5 71.5

TrueTeacher-11B 62.0 67.5 80.5 75.9 68.4 52.8 71.4

QAFactEval 61.6 69.1 80.3 65.9 59.6 60.5 69.2

MENLI 63.4 54.9 66.8 59.0 59.7 70.5 61.0

AlignScore 62.7 73.2 78.0 69.4 77.5 63.7 70.8

ChatGPT-ZS 66.2 64.5 74.3 62.6 69.2 60.1 66.9

ChatGPT-CoT 49.7 60.4 66.7 56.0 60.9 50.1 58.2

ChatGPT-DA 48.0 63.6 71.0 53.6 65.6 61.5 59.1

ChatGPT-Star 55.8 65.8 71.2 57.7 70.6 53.8 62.6

Llama3-8B 61.3 59.7 63.4 60.2 69.2 59.3 61.2

+fine-tuning 63.1 62.9 64.2 62.4 72.5 61.3 63.2

+UIEFID 68.6 76.8 77.2 71.3 76.6 70.2 73.5

Llama3.1-8B 63.5 61.8 67.4 63.2 71.3 63.2 64.0

+fine-tuning 64.2 63.9 69.5 65.3 72.5 66.8 65.7

+UIEFID 75.6 78.4 81.2 73.8 81.3 72.4 77.3

Qwen2.5-7B 56.7 59.3 61.7 60.2 66.3 59.7 59.5

+fine-tuning 58.2 60.4 62.2 63.4 68.5 60.9 61.1

+UIEFID 65.8 71.2 75.6 72.5 78.3 67.3 71.3

Qwen2.5-14B 65.7 64.2 69.1 61.6 71.2 64.7 65.2

+fine-tuning 66.4 66.8 71.3 57.8 72.8 66.3 65.6

+UIEFID 78.9 80.7 83.4 76.1 80.5 78.7 79.8

DeepSeek-R1 75.8 82.3 85.7 77.5 84.2 86.4 80.3

+UIEFID 80.4 85.3 87.4 81.6 90.1 89.5 83.7

We evaluate open-source LLMs under three
distinct strategies: zero-shot without fine-tuning,
zero-shot with fine-tuning (+fine-tuning), and
the strategy with fine-tuning and executed in ac-
cordance with the UIEFID framework (+fine-
tuning+UIEFID). Due to the limitations of hard-
ware resources, we are unable to deploy and fine-
tune DeepSeek-R1 locally, and can only conduct
experiments through the API.

3.3.1 Acccuracy
Table 1 presents the balanced accuracy scores on
the AGGREFACT test sets. A trivial baseline that
predicts all examples as factually (in) consistent
reports a balanced accuracy of 50%. Following
Tang et al., 2023, we exclude the performance of
DAE on the EXFORMER (EXF in table) and OLD

datasets in the AGGREFACT-XSUM partition, since
it was trained on XSumFaith (Goyal and Durrett,
2021) which is part of those splits. Results in bold
indicate the best performance, while underlined
values represent the second best.

DeepSeek-R1 (+UIEFID) sets a new state-of-
the-art performance on AGGREFACT, resulting
in the highest average balanced accuracy score.
DeepSeek-R1 is more inclined towards in-depth
thinking and reasoning, and its remarkable perfor-
mance is not unexpected. This demonstrates that
breakthroughs in model reasoning capabilities sig-
nificantly boost factual inconsistency detection.

On the other four open-source LLMs, the exper-
imental results reveal that the zero-shot detection
performance of base models without fine-tuning
did not significantly outperform other baselines.
Upon specific fine-tuning geared towards informa-
tion extraction, the models exhibited a marginal
enhancement in effectiveness. Furthermore, in-
tegrating the fine-tuned models into the UIEFID
framework and executing the three stages sequen-
tially led to a marked improvement in performance
(with a maximum increase of 14.5%)

Overall, the detection performance aligns with
the scaling laws (Kaplan et al., 2020), indicating
that more extensive model parameters correlate
with higher accuracy.

3.3.2 Efficiency
To assess the efficiency of UIEFID, we construct a
utility metric denoted as U , defined as:

U =
1

N

N∑

i=1

(
TQ
i

TR
i

)
(5)
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Figure 3: Utility Assessment for Factual Inconsistency Detection (*DeepSeek-R1 skips the fine-tuning step.)

where N represents the number of document-
summary pairs. U quantifies the ratio of the number
of input tokens (TQ

i ) in the query (encompassing
document-summary pairs and prompt) to output
tokens (TR

i ) generated by LLMs in response to
detected factual inconsistencies.

Figure 3 presents a comparative analysis of the
utility metric across different models and strate-
gies for factual inconsistency detection. The
models assessed include Llama3-8B, Llama3.1-
8B, Qwen2.5-7B, Qwen2.5-14B, and DeepSeek-
R1, evaluated under three conditions: zero-shot,
fine-tuning (FT), and fine-tuning combined with
UIEFID (FT+UIEFID).

The results indicate that the FT+UIEFID strat-
egy consistently outperforms the other two strate-
gies across all models, suggesting that integrating
UIEFID significantly enhances the efficiency of
factual inconsistency detection. This is evidenced
by the higher utility values achieved, which imply
a more favourable ratio of input to output tokens,
thereby reducing the generation of redundant infor-
mation. Appendix D further analyzes the signifi-
cant variations in the proportions of reasoning and
extraction within the responses LLMs as document
length increases. This indicates that UIEFID can
effectively suppress the divergence of reasoning.

However, DeepSeek-R1 exhibits the lowest util-
ity value under the UIEFID strategy, possibly due
to its requirement to incorporate additional reason-
ing and thinking in its responses (DeepSeek-AI,
2025). While this approach enhances the trans-
parency and explainability of the responses, it also
significantly increases the number of output tokens.
Although DeepSeek-R1 may perform well in accu-

racy, its efficiency in generating concise and effi-
cient responses may not be as high as that of other
models.

3.4 Ablation Study

UIEFID framework treats subject alignment as
a preprocessing step for detecting document-
summary pairs, with the aim of effectively eliminat-
ing subject-related errors. Theoretically, this design
prevents LLMs from overcomplicating otherwise
simple problems in subsequent analysis, thereby
avoiding prolonged reasoning processes that could
ultimately lead to instability in key-value analysis
outcomes.

To validate the necessity of subject align-
ment, we conduct an ablation study on fine-tuned
Qwen2.5-7B under three configurations: ZS (zero-
shot detection without UIEFID components), KVA
(key-value analysis without subject alignment),
SA+KVA (full UIEFID framework). In the context
of ZS configuration, the absence of framework limi-
tations and constraints often leads to uncontrollable
detection outcomes. This is manifested by the pos-
sibility of obtaining two contradictory judgment
results when the same document-summary pair is
subjected to multiple detections. Consequently, we
repeat the entire experiment ten times and record
the final results and range of variation.

As shown in Table 2, the full UIEFID framework
(SA+KVA) achieves the highest balanced accuracy
on both Agg-CNN (72.6) and Agg-XSum (75.3)
subsets, with an average of 73.9. This demonstrates
clear performance gains over both ZS (59.3) and
KVA (70.2). The results indicate that subject align-
ment (SA) and key-value analysis (KVA) have com-
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Table 2: Balanced accuracy across the three configura-
tions (∆AVG denotes the average accuracy gain relative
to the preceding configuration).

Config Agg-CNN Agg-XSum AVG ∆AVG
ZS 56.3± 0.8 62.4± 0.3 59.3 –

KVA 68.2± 2.1 72.2± 0.2 70.2 +10.9

SA+KVA 72.6± 2.4 75.3± 0.6 73.9 +3.7

plementary effects: KVA alone improves average
balanced accuracy by 10.9 points over ZS, while
SA provides an additional 3.7-point gain. Notably,
the moderate increase in range suggests that perfor-
mance improvements are achieved without intro-
ducing instability.

3.5 Robustness
To further assess the robustness of the UIEFID
framework, it is important to carefully consider
whether the length disparity between the document
and the summary affects the performance of incon-
sistency detection. We partition the AGGREFACT

dataset into five clusters based on summary com-
pression ratios (defined as document-to-summary
word count ratio): [0, 10×], (10×, 20×], (20×,
30×], (30×, 40×], and (40×, ∞). Subsequently,
four fine-tuned LLMs are deployed within our
framework to detect factual inconsistencies, and
their accuracy is evaluated under varying compres-
sion conditions. The corresponding results are il-
lustrated as line plots in Figure 4.

Figure 4: Accuracy across different summary compres-
sion ratios.

Empirical results indicate that Qwen2.5-14B out-
performs the other three models, which aligns with
the common expectation that larger models per-
form better. However, the relationship between
summary compression ratio and model accuracy
does not exhibit a strictly linear trend: accuracy ini-
tially declines with increasing compression, then

gradually recovers. This non-linear behavior is
partially attributable to data distribution, and it
also suggests that UIEFID maintains relatively sta-
ble performance when handling extremely simple
or highly compressed document-summary pairs,
while exhibiting more variability in intermediate
compression ranges.

This finding underscores the necessity of ac-
counting for document-summary length disparities
when evaluating LLM-based factuality detection
frameworks. The fluctuations in accuracy across
different compression levels indicate that input
complexity can significantly affect the model’s rea-
soning and prediction accuracy.

4 Related Work

4.1 Factual Inconsistency Detection

Recently, research on factual inconsistency
detection (also known as factuality evaluation)
in text summarization has been highly active.
The current detection metrics mainly fall into the
following three paradigms.

NLI-based metrics. The Dependency Arc
Entailment (Goyal and Durrett, 2020, DAE)
leverage the entailment between the dependency
parse trees of document sentences and the
summary. SummaC-Cov (Laban et al., 2022)
enables NLI models to be successfully used for
this task by segmenting documents into sentence
units and aggregating scores between pairs of
sentences. Chen and Eger, 2023 proposed a
series of NLI-based indicators for evaluating
the factuality of summaries. They utilized the
source document as the premise for the NLI
system and the entire summary as the hypothesis
for verification. AlignScore (Zha et al., 2023)
provides a novel alignment system which aligns
the summary with large blocks of text from the
source document and provides an overall score for
entire summary.

QA-based metrics. This category of met-
rics typically depend on a Question Generation
(QG) model designed to formulate questions based
on the input document as context, and check
whether information in the summary can be used
to answer such questions, and vice versa. FEQA
(Durmus et al., 2020), QAFactEval (Fabbri et al.,
2022) and QuestEval (Scialom et al., 2021) are
representative approachs among these metrics.
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LLM-based metrics. Recent studies (Shen
et al., 2023; Wang et al., 2023b) have shown that
LLM-based metrics exhibit stronger evaluation
performance compared to NLI-based metrics.
TrueTeacher (Gekhman et al., 2023) analyzed
the LLMs’ capability of generating large-scale
factuality datasets and then trained smaller student
models on such data, outperforming existing NLI
metrics. The recent trend of methods revolve
around prompt engineering strategies, where
LLMs are typically instructed with task descrip-
tions, the input documents, and system-generated
summaries. Luo et al., 2023 were among the
first to utilize LLMs for the detection of factual
inconsistencies, inputting the source document
in SUMMAC (Laban et al., 2022) along with
its summary into GPT-3.5 for evaluation. Fu
et al., 2023 demonstrated the capabilities of
LLMs in achieving multi-aspect, customized,
and training-free evaluation. G-Eval (Liu et al.,
2023) experimented with chain-of-thoughts (Wei
et al., 2024a, COT) and form-filling instruction
paradigms. However, early attempts have shown
that LLMs underperform traditional models due
to their limited ability to follow instructions and
the absence of an effective detection methodology
(Tang et al., 2023).

4.2 Universal Information Extraction
Information Extraction (IE) is a crucial domain in
natural language processing that converts plain text
into structured knowledge (Xu et al., 2023) . There
has been a recent surge of interest in generative IE
methods (Qi et al., 2023; Parvez et al., 2021) that
adopt LLMs to generate structural information. Xu
et al., 2023 categorize universal IE frameworks into
two formats: natural language (NL-LLMs based)
and code language (Code-LLMs based).

Lu et al., 2022 first propose a unified text-to-
structure generation framework named UIE, which
can universally model different IE tasks, adaptively
generate targeted structures, and collaboratively
learn general IE abilities from different knowl-
edge sources. InstructUIE (Wang et al., 2023a)
is a UIE framework based on instruction tuning
in LLMs, which can uniformly model various in-
formation extraction tasks and capture the inter-
task dependency. ChatIE (Wei et al., 2024b) is a
two-stage framework to transform the zero-shot
IE task into a multi-turn question-answering prob-
lem. Code4UIE (Parvez et al., 2021) is a universal

retrieval-augmented code generation framework
based on LLMs,which adopts Python classes to
define task-specific schemas of various structural
knowledge in a universal way.

5 Conclusion

Text summarization models have a potential flaw
that causes the generation of summaries with fac-
tual inconsistencies. Inspired by structured se-
mantic extraction and lossless text compression,
we employ a novel method, innovatively combin-
ing LLMs with Universal Information Extraction
(UIE), and propose a novel UIEFID framework.
It effectively enhances the efficiency and explain-
ability of summary factual inconsistency detection.
We conduct comprehensive experiments to demon-
strate the effectiveness of UIEFID on the popu-
lar AGGREFACT benchmark and provide a detailed
quantitative analysis of whether reducing redun-
dant reasoning. Our experiment results indicate
that fully leveraging LLMs’ remarkable universal
information extraction capabilities is a promising
path to improve detection performance. UIEFID
can effectively extract factual inconsistencies in
summaries and incrementally refine them until they
are consistent with source documents. Future re-
search will consider adding a “self-reflection” mod-
ule to LLM-based text summarization. LLMs ac-
tively detect and provide feedback to correct the
generated results through frameworks based on
UIEFID.

Limitations

UIEFID framework relies on the capabilities of
base models. Our findings highlight the improve-
ment in efficiency and explainability brought about
by leveraging universal information extraction.
However, our results do not establish that struc-
tured triplet representations are optimal. Alterna-
tive representations may better convey the struc-
tured semantic content of the text. Furthermore,
our analysis is limited by the absence of summary
datasets derived from the latest LLMs and a lack of
comprehensive examination of the characteristics
inherent to LLM-based text summarization. Due
to the lack of maintenance and unresolved runtime
issues in the official repositories of certain detec-
tion baselines, our ability to extend comparative
experiments has been partially constrained.
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A Key-value Analysis Example

Figure 5: A process of key-value analysis based on an example. It describes a process of key-value analysis based
on an example. Subject alignment mitigates discrepancies in subjects between the document and the summary. We
observe that the summary supplements personal names, without access to external verification, it is challenging to
ascertain the absolute accuracy of these names in the summary. Consequently, we replace them with names that are
present in the document. For the key-value analysis, we initially instruct LLMs to extract structured information
(#1) from the revised summary. Subsequently, we mask the values within the key-value pairs of #1 with "[?]" to
construct a schema (#2) that guides the LLMs in selectively extracting information from the document. Thereafter,
we prompt the LLMs to compare the extracted structured information (#1 and #3), generate a concise analysis
report, and utilize this report as a basis for further refining the summary content.

B Schema Design

Figure 6: We refer to the design of the Structured Extraction Language for Universal IE (Lu et al., 2022) and design
our structured schema. Then, we provide an example from “Animal Farm” to demonstrate the extraction results.
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Content

At first, Animal Farm prospers. Snowball works at teaching the animals to read,
and Napoleon takes a group of young puppies to educate them in the principles of
Animalism. When Mr. Jones reappears to take back his farm, the animals defeat
him again, in what comes to be known as the Battle of the Cowshed, and take the
farmer’s abandoned gun as a token of their victory. As time passes, however,
Napoleon and Snowball increasingly quibble over the future of the farm, and
they begin to struggle with each other for power and influence among the other
animals. Snowball concocts a scheme to build an electricity-generating windmill,
but Napoleon solidly opposes the plan. At the meeting to vote on whether to take
up the project, Snowball gives a passionate speech. Although Napoleon gives
only a brief retort, he then makes a strange noise, and nine attack dogs—the
puppies that Napoleon had confiscated in order to “educate”—burst into the barn
and chase Snowball from the farm. Napoleon assumes leadership of Animal Farm and
declares that there will be no more meetings. From that point on, he asserts,
the pigs alone will make all of the decisions—for the good of every animal.

Extraction Result

{
"Animal Farm": {

"Initial State": "prospers",
"Battle": "Battle of the Cowshed",
"Victory Token": "farmer’s abandoned gun"

},
"Snowball": {

"Role": "teaches animals to read",
"Plan": "build an electricity-generating windmill",
"Speech": "gives a passionate speech",
"Expulsion": "chased from the farm by attack dogs"

},
"Napoleon": {

"Role": "educates young puppies in Animalism",
"Opposition": "solidly opposes the windmill plan",
"Action": "makes a strange noise to summon attack dogs",
"Leadership": "assumes leadership of Animal Farm",
"Meetings": "declares no more meetings",
"Decision Making": "pigs will make all decisions"

},
"Mr. Jones": {

"Attempt": "to take back his farm",
"Outcome": "defeated in the Battle of the Cowshed"

},
"Attack Dogs": {

"Origin": "puppies confiscated by Napoleon",
"Action": "chase Snowball from the farm"

}
}
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C Prompt templates

C.1 Zero-shot

System prompt

# Your objective is to Verify whether the [summary] is consistent with the factual content of the
[document].
# Key Points for Verification: (1) Core Content: Does the summary accurately reflect the key
information and conclusions of the document? (2) Data and Facts: Are the data and facts in the
summary consistent with those in the document?
# Output:
# Conclusion: Is it consistent?
# Issues: If not consistent, identify the issues.
# Suggestions: Provide recommendations for revision.

User prompt

# Verify whether the [summary] accurately reflects the content of the [document].
# <summary>. . . . . . </summary>
# <document>. . . . . . </document>
# Output [Conclusion, Issues and Suggestions]

C.2 Fine-tuning

System prompt

# Your objective is to Verify whether the [summary] is consistent with the factual content of
the [document]. Leverage your information extraction capabilities to identify the key structured
information from both the summary and the document. The output format should be in the form of
triplets (entity-relation-entity). Compare the differences in two key structured information.
# Key Points for Verification: (1) Core Content: Does the summary accurately reflect the key
information and conclusions of the document? (2) Data and Facts: Are the data and facts in the
summary consistent with those in the document?
# Output:
# Conclusion: Is it consistent?
# Issues: If not consistent, identify the issues.
# Suggestions: Provide recommendations for revision.

User prompt

# Verify whether the [summary] accurately reflects the content of the [document].
# <summary>. . . . . . </summary>
# <document>. . . . . . </document>
# Output [Conclusion, Issues and Suggestions]
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C.3 UIEFID

System prompt

# Your objective is to Verify whether the [summary] is consistent with the factual content of the
[document]. You should strictly follow the sequence below.
# (1) Extract structured information from the summary and output it in JSON format. At the same
time, replace all values in the JSON output with “[?]” to construct a schema for guided extraction.
# (2) Strictly follow the structure of the schema to extract information from the document to fill in
the “[?]” parts.
# (3) Compare the structured information from the summary and the document, and answer the
questions below.
# Conclusion: Is it consistent?
# Issues: If not consistent, identify the issues.
# Suggestions: Provide recommendations for revision.

Note: The prompt here is significantly different from the one above and is related to the
execution process of UIEFID. A three-turn dialogue prompting strategy should be adopted.

User prompt

User prompt (1st turn):
# Extract structured information from the [summary] and construct the schema. The output result
should be enclosed within the <Sum></Sum> and <Schema></Schema>tags.
# <summary>. . . . . . </summary>

User prompt (2nd turn):
# Extract information from the document according to the structure of the [schema], and fill in the
missing content marked by “[?]”. The output result should be enclosed within the <Doc></Doc>
tags.
# <Schema>. . . . . . </Schema>

User prompt (3rd turn):
# Compare the structured information enclosed within the <Doc></Doc> and <Sum></Sum> tags,
and output [Conclusion, Issues, and Suggestions].

25464



D The Impact of Document Length

Figure 7: Statistical analysis of the tests reveals the average proportion of query, reasoning, and extraction segments
during each detection process for open-source LLMs enhanced by UIEFID. Specifically, the query encompasses the
prompt, summary, and document; reasoning refers to the segments that provide detection rationale and comparative
analysis within the context of the response; and extraction corresponds to the parts related to the extraction of
structured information. As document length increases, the relative proportion between reasoning and extraction
gradually decreases, indicating that our approach effectively enhances the information extraction capabilities of
LLMs while suppressing redundant reasoning.

25465


