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Abstract

Accurately grounding visual and textual el-
ements within mobile user interfaces (UIs)
remains a significant challenge for Vision-
Language Models (VLMs). Visual ground-
ing, a critical task in this domain, involves
identifying the most relevant UI element or
region based on a natural language query—a
process that requires both precise perception
and context-aware reasoning. In this work,
we present - MoUI, a light-weight mobile
UI understanding model trained on MoIT, an
instruction-tuning dataset specifically tailored
for mobile screen understanding and ground-
ing, designed to bridge the gap between user in-
tent and visual semantics. Complementing this
dataset, we also present a human-annotated rea-
soning benchmark MoIQ that rigorously evalu-
ates complex inference capabilities over mobile
UIs. To harness these resources effectively, we
propose a two-stage training approach that sepa-
rately addresses perception and reasoning tasks,
leading to stronger perception capabilities and
improvement in reasoning abilities. Through
extensive experiments, we demonstrate that our
MoUI models achieve significant gains in ac-
curacy across all perception tasks and state-of-
the-art results on public reasoning benchmark
ComplexQA (78%) and our MoIQ (49%). We
will be open-sourcing our dataset, code, and
models to foster further research and innova-
tion in the field. Code and data are available in
the repo 1

1 Introduction

Mobile user interfaces (UIs) are structured systems
of visual and textual elements that facilitate digital
interactions such as navigation, communication,
and data retrieval. Automating the perception and
interaction within these interfaces has the potential
to significantly simplify how users achieve their
goals (Edwards et al., 1995).

∗Equal Contributions
1Code and Datasets

Figure 1: Comparison of MoUI between other VLMs.
Both Ferret-UI-anyres (8B) and InternVL2.5-4B answer
wrongly, while MoUI model generates the correct out-
put. This is an example from ComplexQA

However, the hierarchical layouts, design com-
plexities, and functional dependencies of UIs
present unique challenges that differ from those
encountered in natural images.

Vision-Language Models (VLMs) (Zhang et al.,
2024a; Dai et al., 2023; Chen et al., 2024c; He et al.,
2024), while highly effective in tasks such as image
captioning and cross-modal retrieval, often struggle
with mobile UI understanding due to their training
on datasets predominantly composed of natural im-
ages. These models typically lack the ability to
handle the context-aware interactions and special-
ized semantics inherent to UIs. One of the cen-
tral challenges in this domain is visual grounding,
which involves aligning textual queries with corre-
sponding UI elements—a task further complicated
by limited structured UI datasets and the need to
infer functional relationships between components.
Consequently, traditional VLMs fall short in captur-
ing the nuanced semantics of interactive interfaces,
underscoring the need for domain-specific solu-
tions. Recent research has made progress in tack-
ling these challenges, with several models showing
promise. For example, ScreenAI (Baechler et al.,
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2024) employs a flexible patching strategy and di-
verse datasets to enhance its understanding of UIs
and infographics.

Similarly, Ferret-UI (You et al., 2023; Zhang
et al., 2024b) is a multimodal large language model
tailored for mobile UI screens, incorporating ad-
vanced capabilities for referring, grounding, and
reasoning. Another noteworthy approach, SeeClick
(Cheng et al., 2024), focuses on GUI grounding to
develop intuitive visual GUI agents capable of ef-
fectively interacting with screen elements. Despite
these advancements, most datasets and models in
this domain remain inaccessible or constrained by
limited availability. Furthermore, many existing
models are computationally large, making them un-
suitable for deployment as UI assistants on edge de-
vices. To address these limitations, we propose Mo-
bile UI Instruct (MoUI-IT), an instruction-tuning
dataset specifically designed for mobile screen
grounding tasks. MoUI-IT provides detailed ex-
amples that align natural language queries with UI
elements, enabling models to better understand user
intent within structured environments. In addition
to this dataset, we introduce a human-written rea-
soning test set aimed at evaluating VLMs’ ability
to perform complex inferential tasks over mobile
UIs. This benchmark serves as a critical resource
for assessing higher-order reasoning capabilities
in this domain. To fully leverage these resources,
we propose a two-stage training framework that
decouples perception from reasoning tasks. The
first stage focuses on developing robust perception
skills for accurately detecting UI elements, while
the second stage enhances the model’s ability to
perform higher-order reasoning over these detected
elements. This structured approach ensures that
perception and reasoning are optimized indepen-
dently yet cohesively. Using this framework, our
1-billion-parameter model achieves state-of-the-
art results on publicly available mobile UI reason-
ing benchmarks, demonstrating its effectiveness in
advancing mobile UI understanding. Our contribu-
tions are:

• MoUI: A series of lightweight models-1B,
2B, and 4B-designed for complex reasoning
tasks on mobile UI screens, achieving state-
of-the-art performance on public reasoning
benchmarks (Section 6).

• MoIT: A 150k instruction-tuning dataset tai-
lored for mobile UI grounding, enhancing the

alignment between user queries and UI ele-
ments (Section 3.1).

• MoIQ: A 3k human-written reasoning evalu-
ation benchmark to assess the complex infer-
ence capabilities of VLMs over mobile UIs
(Section 3.2).

• A two-stage training pipeline that decouples
the learning of perception and reasoning tasks,
leading to more effective model adaptation.
Comprehensive experiments demonstrate that
MoUI models achieve state-of-the-art results
on public reasoning benchmark ComplexQA
(78%) and MoIQ (49%) (Section 6).

By open-sourcing our dataset, code, and models,
we aim to drive further research in mobile UI un-
derstanding and enhance the capabilities of VLMs
in digital mobile environments.

2 Related Work

Perception with VLMs Recent advances in inte-
grating vision encoders with LLMs have enhanced
their reasoning in vision-language tasks (Alayrac
et al., 2022; Liu et al., 2023; Zhu et al., 2023; Dai
et al., 2023; Chen et al., 2024c; Zhang et al., 2024a;
Zhou et al., 2024). However, VLMs struggle with
geometric and numerical interpretation, requiring
pixel-wise analysis (Li et al., 2024a). To address
this, some approaches incorporate bounding-box
regression via quantized coordinates (Chen et al.,
2021; Peng et al., 2023; You et al., 2023; Zhang
et al., 2024b; Wang et al., 2023; Zang et al., 2024),
while others use auxiliary perception modules to
enhance visual understanding (Zhang et al., 2024a;
Wu et al., 2024a; Pi et al., 2024).

Mobile UI Datasets and Grounding on GUIs
Recent efforts have focused on developing bench-
marks for assessing grounding and interpretative
capabilities in mobile UI screenshots.The RICO
dataset (Deka et al., 2017a), a foundational re-
source, contains over 66k annotated screens and
has inspired various expansions. Building on this
foundation, later studies such as RICO Semantics
(Sunkara et al., 2022), MoTIF (Burns et al., 2022),
GUI-WORLD (Chen et al., 2024a), and Mobile-
Views (Gao et al., 2024a) have broadened dataset
types and coverage, further advancing research in
GUI agents. Initial works (Bai et al., 2021; He
et al., 2021) on adapting transformer-based models
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Figure 2: Illustrations of conversational QA pairs in MoIT dataset for all the perception tasks. The data construction
process is elaborated in the section 3.1

that jointly learn from image and text representa-
tions of UIs. Studies such as Gou et al. (2024); Gao
et al. (2024b); Li et al. (2025) introduce text instruc-
tions, while Cheng et al. (2024) extends the dataset
beyond mobile-specific use cases. Others (Zhang
et al., 2024c; Rawles et al., 2023; Li et al., 2020a)
focus on multi-step tasks, and Lu et al. (2024) ex-
plores cross-app navigation. However, existing
datasets lack structural details. Our work addresses
this gap by integrating view hierarchies for single-
screen queries across diverse tasks. Recent VLMs
enhance UI understanding, such as Cheng et al.
(2024) predicting actions and Baechler et al. (2024)
incorporating annotations and QA tasks. You et al.
(2024); Li et al. (2024b) apply LLMs for reasoning
and grounding, though their training datasets re-
main unavailable. Other methods improve percep-
tion and representation learning, including Burns
et al. (2024) that introduces a new pretraining ob-
jective, which trains the model to generate a de-
scription of a future screen image based on an ac-
tion performed in the current visual state, Jiang
et al. (2024)’s Universal Proposal Network and Wu
et al. (2024b)’s multistage pre-training for Chinese

UIs. Our approach advances these works with a
two-stage framework that separates perception and
reasoning while maintaining a unified architecture.

3 Dataset Construction and Tasks

To train a model with a comprehensive understand-
ing of mobile user interfaces, we define a set of UI
tasks designed to enhance both its perception and
reasoning abilities. Perception tasks help the model
develop a holistic understanding of UI design and
its components, while advanced reasoning tasks
assess its ability to interpret relationships between
multiple elements on the screen. In the follow-
ing sections, we provide an overview of each task
category and describe the data collection process.

3.1 Perception Tasks

The primary objective of perception tasks is to help
the model develop a deeper understanding of vari-
ous UI elements, their functions, and their positions
on the screen.
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Figure 3: Examples from the MoIQ dataset illustrating reasoning tasks. The questions are designed in such a way
that the model needs good perception, language comprehension and reasoning abilities to answer correctly

3.1.1 Elementary Tasks
We incorporate standard elementary tasks in UI
domain (You et al., 2023; Li et al., 2024b) to eval-
uate the model’s referring and grounding capabil-
ities. Using the view hierarchy data associated
with each image in the RICO dataset (Deka et al.,
2017b) we parse information like text, icon and
widget type along with their bounding box loca-
tion and generate template based conversational
QA pairs for each of the below tasks. For each task
base template, we generate 10 variants of them for
a diverse set of questions.

Referring tasks enable the model for precise
identification and classification of UI elements. We
define tasks for text, icon and widget extraction/-
classification under this category. The OCR task
entails asking the model to extract the text inside
an element surrounded by a bounding box on the
screen, Icon Recognition task expects the model
to predict the type of icon enclosed within a spec-
ified bounding box on the screen and the Widget
Recognition task asks the model to classify the
type of widget located within the given bounding
box on the screen.

The Grounding tasks are a reverse formulations
of the referring tasks in which the model is ex-
pected to generate the bounding box coordinates of
the target element like text, icon and widget. For-
mally, we define these tasks as Find Text where the
model needs to identify and locate the UI element
that contains a given text string, Find Icon task in
which the model determines the position of an icon
of a specified type and Find Widget task to locate
a widget of a specified type on the screen.

For each task, we generate QA pairs for the re-
ferring task, then reverse input and output labels
to create grounding QA pairs, helping the model
associate element type and location.

In addition to the above elementary tasks, we
also introduce a new Spatial task Spatial Po-
lar which evaluate the model’s ability to reason
about the spatial relationships between UI elements
which is essential for screen navigation and inter-
action for agents. Given the 2-dimensional nature
of UI screens, we restrict ourselves to spatial rela-
tions like "left", "right", "above" and "below". In
Spatial Polar task, given two elements with their
bounding boxes and a specified spatial relationship,
the model must determine whether the relationship
holds with a Yes/No. We leverage the Screen An-
notation dataset for generating template based QA
pairs on the above tasks.

3.1.2 Spotlight Tasks

We consider the following tasks defined in Spot-
light (Li and Li, 2023, 2022) for improving the
model’s UI comprehension and contextual under-
standing. Screen summarization requires the
model to summarize the contents of the screen in a
concise manner. In Widget Captioning task, given
a bounding box around any element on the screen,
the model is tasked to generate a brief summary
about the functionality of the element.

To train on these tasks, we leverage the
Screen2Words (Wang et al., 2021) and Widget Cap-
tioning (Li et al., 2020b) datasets, which provide
annotated images from the RICO dataset. We con-
vert these annotations into conversational QA pairs
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in an instruction-tuning format. Specifically, we
employ the open-sourced InternVL2-40B model
to generate structured QA conversations between
a user and a digital assistant using the existing
annotations as guidance. This guided approach en-
hances the quality of QA pairs while minimizing
hallucinations. The generated dataset is human
verified and filtered to ensure quality. Figure 2 pro-
vides the complete detail of all the perception tasks
along with the examples based on the UI screen.
Appendix F gives a statistical overview of the MoIT
dataset generated.

Dataset Name Training Samples
Stage I (Perception Phase)

Screen Summarization 8,000
Widget Captioning 15,480
OCR 15,032
Icon Recognition 15,135
Widget Recognition 15,421
Find Text 15,032
Find Icon 15,135
Find Widget 15,421
Spatial Polar 15,407

Stage II (Reasoning Phase)
Complex ScreenQA 6,347
ScreenQA Short 10,000
Total 146,410

Table 1: Training Mixture Statistics. Screen Question-
Answering datasets are generated using VLMs, Elemen-
tary task datasets are generated using template based
methods from View Hierarchies and we also use a sub-
set of the publicly available ScreenQA datasets

3.2 Advanced Reasoning Tasks

For the advanced reasoning tasks, we use the pub-
licly available mobile UI reasoning datasets, Com-
plex ScreenQA and ScreenQA Short introduced in
ScreenAI. We use the training split of 6K QA pairs
from the Complex ScreenQA dataset and select a
subset of 10K QA pairs from the 80K ScreenQA
Short dataset to maintain a balanced training mix.

We also introduce a new reasoning benchmark
MoIQ for mobile UI screens, consisting of 3k
human-annotated complex reasoning questions
spanning 885 unique mobile screens from the
RICO dataset with most answers consisting of 2-3
words. Annotators are instructed to create ques-
tions that require engaging with multiple elements
on the screen and involve at least one step of reason-
ing to arrive at the answer. The questions evaluate

the models on the functionality, positions, color
and the spatial relationships between the various
UI elements on the screen. Annotation details for
MoIQ are described in Appendix A. Unlike Com-
plex ScreenQA, which is model-generated, our
benchmark is entirely human-annotated, ensuring
higher-quality and more challenging questions. fig-
ure 3 shows a few examples from our MoIQ bench-
mark.

4 Training Strategy

To effectively address the challenges of mobile UI
grounding and reasoning, we adopt a two-stage
training strategy as shown in the figure 4. This
approach ensures that the model first learns strong
perceptual representations before transitioning
to reasoning-intensive tasks, enabling a more
structured learning process.

Stage I: Grounding, Referring, and Spatial
Understanding
The first stage focuses on enhancing the model’s
perceptual understanding of mobile UI screens by
training it to associate visual elements with textual
descriptions accurately. This phase involves three
key tasks: Grounding: The model learns to locate
the most relevant UI element based on a natural
language query. Referring: The model resolves
references to specific UI elements, especially when
multiple similar components exist on the screen.
Spatial Understanding: The model is trained to
interpret spatial relationships between UI elements,
such as proximity, alignment, and hierarchical
structure.

To achieve this, we adopt an instruction-tuning
approach, where the model is exposed to a diverse
set of tasks requiring it to ground, refer, and spa-
tially reason about UI elements based on textual
queries. The model is trained using Next Token
Prediction (NTP) loss, ensuring it learns to gener-
ate accurate responses by integrating both visual
and textual information. Given a mobile UI im-
age I and an instruction q, the model generates
a sequence of tokens Y = (y1, y2, . . . , yT ). The
training objective is formulated as:

LNTP = −
T∑

t=1

log p(yt|I, q, y<t)

where yt is the predicted token at timestep t, I is the
input UI image, q is the textual query or instruction,
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Figure 4: Overview of our two-stage training. In Stage-I training the model learns to refer to and ground UI elements,
comprehend screens, and infer widget functionalities. For the Stage-II training, the key entities are extracted from
question and the corresponding bounding boxes are annotated on the image. We then train the perception aware
model with these annotated images on Complex ScreenQA and ScreenQA Short datasets for enhancing reasoning
abilities of the model. This two-stage training pipeline equips MoUI models with strong perception skills, thereby
enhancing their reasoning capabilities.

y<t represents previously generated tokens. This
stage enables the model to develop a structured
representation of mobile UIs, aligning natural lan-
guage instructions with their corresponding visual
components effectively.
Stage II: Reasoning through perception guid-
ance
Once the model has developed a strong percep-
tual foundation, the second stage fine-tunes the
model for reasoning-intensive tasks that demand
complex inference over UI elements. The process
begins by extracting key entities from user queries
using an entity recognition function:E = g(q) =
{e1, e2, . . . , en}, where g(q) identifies relevant en-
tities ei from the query q. Next, the perception
model from Stage I retrieves the corresponding
bounding box coordinates bi for each entity: bi =
fperception(I, ei), where fperception is the model’s
learned function for grounding entities in the UI
image I . Instead of masking irrelevant regions,
the bounding boxes are superimposed onto the
original image to explicitly highlight the relevant
UI components: I ′ = Superimpose(I, {bi}ni=1),
where Superimpose denotes a function that over-
lays the bounding boxes bi onto the original image
I while preserving the rest of the content. Rather
than extracting each region separately and passing
them to the model, we superimpose them to en-
sure the model perceives the context and relation-
ships between key region elements on the screen.
The grounded images I ′ are then paired with text

prompts and used to further fine-tune the percep-
tion model. The training continues with Next To-
ken Prediction (NTP) loss, ensuring that the model
generates reasoning-aware responses by integrating
perceptual understanding with semantic inference:

Lreasoning = −
∑

t

log p(yt|I ′, q, y<t)

where yt is the predicted token at timestep t, condi-
tioned on the grounded image I ′, query q, and previ-
ously generated tokens y<t. This stage emphasizes
reasoning over extracted entities and their relation-
ships within the UI context, refining the model’s
ability to answer complex UI-based queries.

5 Experiments

5.1 Training Configurations
We build upon existing Internvl architecture with
pre-trained InternViT-300M-448px (Chen et al.,
2024c) as vision encoder, Qwen 2.5 (Yang et al.,
2024) and IntenLM 2.5 (Cai et al., 2024) language
models and a 2-layer MLP projection layer. Unlike
existing opens source VLMs, Internvit employs
a dynamic high-resolution strategy that segments
images into 448×448 tiles which is essential ac-
commodating diverse image resolutions. For Stage
I training we use the perception data and for Stage
II training we use Complex QA and Short QA from
the training data mix 1. In both the stages, we
freeze the vision encoder and train both the projec-
tion layer and LLM. We train all our MoUI for one
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epoch in both the stages with InternVL 2.5 (Chen
et al., 2024b) as the base model. We set the training
batch size to 128, with a learning rate of 4e−5 and
a warmup ratio of 0.03. Training for both stages
takes 1b, 2b, 4b models take 60, 80, 160 minutes
each on 4-H100 GPUs. Instructions and prompts
used for each task in the training are given in the
sections D and C.

5.2 Evaluation

To tackle the deployment challenges that can arise
on edge devices, we use LMDeploy (Contributors,
2023) for efficient inference. To quantify its im-
pact on inference latency, we evaluated the model’s
performance on the ComplexQA test set with and
without LMDeploy. With LMDeploy, MoUI-4B
processes all 759 samples in approximately 193
seconds, whereas without it, the same task takes
around 573 seconds. To ensure reproducibility and
obtain more reliable results, all evaluations are con-
ducted using greedy decoding. Scores for reason-
ing tasks on Ferret-UI model are obtained using
the evaluation script provided in their repository.
For the perception tasks, we report the the max-
imum of the average scores achieved on the ele-
mentary tasks as mentioned in the Ferret-UI paper
and the scores achieved on our test set. This is
done for fair benchmarking as their test set is not
publicly available and the Ferret-UI model might
not be familiar with our icon/widgets. In any case
we have considered the maximum score obtained
on these tasks by Ferret-UI model. Results on
ScreenAI are reported from the paper (Baechler
et al., 2024) as their model is not released pub-
licly. BLIP-2-Finetuned results are reported from
the paper (Burns et al., 2022) where the model is
finetuned on each task separately (i.e. there are
two seperate models for Screen2Words and Widget
Captioning). The prompts for each task are detailed
in Appendix C.

6 Results and Analysis

We compare the MoUI models against the latest In-
ternVL 2.5 series, the Ferret UI-anyres model, and
the ScreenAI model. These selections are based on
each model’s unique strengths: among the open-
source VLMs; InternVL 2.5 models have excelled
in grounding and referring tasks, while the Ferret
UI-anyres and ScreenAI models are specifically
optimized for mobile UI understanding.

We present the detailed results for the perception

and reasoning tasks in Tables 2 and 3, respectively.

6.1 Results on Perception Tasks

Our elementary tasks (3.1.1) are designed to as-
sess the models’ capabilities in referring, ground-
ing, and spatial reasoning. As shown in Table
2, MoUI consistently improves upon all baseline
scores across perception tasks. For OCR-related
tasks (OCR and Find Text), our two-stage training
strategy yields a substantial performance gain of
over 26% compared to baselines. Additionally,
MoUI surpasses the Ferret-UI-anyres model by
10% on these tasks. For icon and widget grounding,
baseline models perform poorly due to their pre-
training mixtures, which lack mobile UI datasets.
However, after training on MoIT, a dataset specif-
ically designed for mobile UI understanding, we
observe significant improvements of 36.5% and
47% for icon and widget-related tasks, respectively,
compared to baseline scores. Moreover, MoUI out-
performs Ferret-UI-anyres by ≈10% on these tasks,
further demonstrating its effectiveness in mobile
UI perception.
Spotlight tasks, such as Screen2Words and Widget
Captioning, require a deeper understanding of the
various components and the functions on a mobile
screen. After training, our models exhibit signifi-
cantly improved screen comprehension, with an in-
crease of approximately 30 CIDEr points in screen
summarization and 75 CIDEr points in widget cap-
tioning. Notably, the MoUI-1B model achieves
competitive performance on these tasks, closely
matching the results of the much bigger FerretUI-
anyres-8B and ScreenAI-5B models. We further
observe a considerable improvement in spatial un-
derstanding task, with our models achieving around
98% accuracy on the spatial polar task, outperform-
ing the baseline across all models.
As shown in Table 10, MoUI models are trained
on substantially less data compared to ScreenAI
and FerretUI, yet they outperform on six percep-
tion tasks and achieve competitive results on the
remaining three. We attribute this performance to
the high quality of our training data, the majority of
which is generated from view hierarchies, ensuring
minimal errors.

6.2 Results on Reasoning Tasks

The reasoning tasks 3.2, including Complex QA,
Short QA, and MoIQ, evaluate the ability of mod-
els to perform complex inference over mobile UIs,
requiring multi-step reasoning and contextual un-
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Model Screen2 Widget OCR Icon Widget Find Find Find Spatial
Size Words Capt. Recog. Recog. Text Icon Widget Polar

InternVL2.5
1B 79.68 76.32 43.13 23.56 15.44 76.54 64.18 53.21 49.34
2B 75.06 69.31 52.21 37.31 29.11 79.18 71.07 49.56 58.10
4B 85.56 83.00 77.09 57.12 32.45 84.23 73.31 63.42 72.89

Ferret-UI-anyres
8B 115.6 140.3 82.4 82.4 82.4 76.5 76.5 76.5 42.50

ScreenAI
5B 120.8 156.4 — — — — — — —

BLIP-2 Finetuned
1.2B 127.9 128.0 — — — — — — —

MoUI (ours)
1B 108.48 147.76 89.25 86.37 80.81 86.32 73.64 82.01 98.44
2B 100.06 140.56 87.71 87.32 81.95 85.95 73.11 81.07 98.28
4B 123.2 151.25 90.63 87.15 81.33 89.14 75.75 83.51 98.81

Table 2: Results of MoUI and baseline models on perception tasks. For Screen2Words and Widget Captioning,
we report CIDEr scores. Exact match accuracy is used for referential elementary tasks (OCR, Icon Recognition,
Widget Recognition) and the spatial polar task. For grounding elementary tasks (Find Text, Icon, and Widget),
we report Acc@IoU=0.1 scores. MoUI models consistently outperform baseline models, surpassing existing
mobile UI understanding models (Ferret-UI-anyres and ScreenAI) on the Screen2Words benchmark while achieving
competitive results on other tasks.

derstanding. Across all tasks, MoUI consistently
outperforms baseline models like InternVL2.5 and
Ferret-UI-anyres, demonstrating the effectiveness
of our two-stage training approach. figure 1 shows
an example of MoUI-1B model’s performance com-
pared to 8x and 4x models.

For ComplexQA, MoUI achieves significant
gains, with MoUI-1B scoring 0.66 and MoUI-4B
reaching a state-of-the-art score of 0.78, far ex-
ceeding ScreenAI-5B at 0.43 and Ferret-UI-anyres-
8B at just 0.29. In Short QA, MoUI (1B) and
(2B) both achieve 0.86, while MoUI (4B) slightly
improves to 0.89, closely rivaling ScreenAI (5B),
which scores 0.95, and outperforming InternVL2.5
(4B) at 0.66 and Ferret-UI-anyres (8B) at 0.49. For
the challenging MoIQ benchmark, which combines
perception with logical inference, MoUI demon-
strates steady improvements across model sizes,
with both 1B and 2B scoring 0.43 and 4B achieving
the highest score of 0.49, compared to InternVL2.5
(4B) at 0.35 and Ferret-UI-anyres (8B) at just 0.29.
These results highlight MoUI’s superior ability to
leverage its enhanced perception capabilities for
robust reasoning, achieving state-of-the-art perfor-
mance in Complex QA and MoIQ while remaining
competitive in Short QA against larger models like
ScreenAI. Few, illustrations of generated bounding

boxes used for stage 2 are provided in Figure K. We
can observe that the bounding boxes are accurately
generated for all the extracted key entities.

Model Complex ScreenQA MoIQ
Size ScreenQA Short

InternVL2.5
1B 0.42 0.44 0.23
2B 0.49 0.52 0.26
4B 0.65 0.66 0.35

Ferret-UI-anyres
8B 0.29 0.49 0.29

ScreenAI
5B 0.43 0.95 _

MoUI (1-stage training)
4B 0.74 0.83 0.42

MoUI (2-stage training)
1B 0.66 0.86 0.43
2B 0.67 0.86 0.43
4B 0.78 0.89 0.49

Table 3: Results of MoUI and baseline models on rea-
soning tasks. We report the SQuAD F1 scores for all
three reasoning tasks. MoUI outperforms ScreenAI and
Ferret-UI-anyres (8B) on the complexQA benchmark
and achieves competitive scores on the Short ScreenQA
benchmark.
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6.3 Qualitative Error Analysis

For OCR-related tasks, the model occasionally con-
fuses text adjacent to the given bounding box with
the intended text. In icon-related tasks, errors arise
when distinguishing visually similar icon types,
such as menu vs. list or expand_more vs. ar-
row_downward. Additionally, in some cases, the
model incorrectly includes the red bounding box en-
closing the icon as part of the icon itself, leading to
misclassification. In widget recognition, the model
struggles with fine-grained distinctions, often con-
fusing text with text button or image with icon.
Furthermore, since many widgets contain illustra-
tions, they are sometimes misinterpreted as images.
For reasoning tasks, the model faces challenges
when multiple entities are involved, often failing to
infer relationships between them and struggles to
construct the logical reasoning necessary to answer
the question correctly. We have added a few error
cases in the Appendix G

6.4 Ablation Studies

Comparison with one stage training
In this setting, instead of training the model in two
different stages for perception and reasoning tasks
as shown in figure 4, we train the model only once
on the entire data. This experiment helps us to
establish the importance of perception guidance
during reasoning training stage. We observe that
in table 3 there is an increase in the accuracy of
≈ 4% on all the three reasoning tasks. We conclude
that integrating perception guidance enhances the
reasoning capabilities of MoUI. As shown in Ap-
pendix, Section 8 we find that Stage II training
not only improves the model’s reasoning abilities
but also enhances certain perception capabilities
acquired during Stage I, resulting in overall better
performance.
Comparison with other vision encoders
To enhance the perception and reasoning abilities
of VLMS in use-cases like Mobile UI understand-
ing, along with high quality instruction tuning data;
a strong vision encoder that can accommodate im-
ages of any aspect ratio is important. To empirically
verify this, we experimented with TinyLLaVA-3.1B
model with SigLIP (Zhai et al., 2023) as vision
encoder and Phi-2 (Li et al., 2023) as language de-
coder. As shown in Appendix E we can observe
that even though there is an increase in the accu-
racy after finetuning on MoUI data the models are
performing below par on perception tasks which

results in lower performance in reasoning tasks as
well.

7 Conclusion and Future Work

In this work, we introduce a series of lightweight
MoUI models, along with the MoIT instruction-
tuning dataset and the MoIQ reasoning benchmark.
We also propose a two-stage training pipeline
that first enhances the model’s perception capa-
bilities, and then leverages these improvements
to strengthen its reasoning abilities. Our results
demonstrate that the careful selection of a suitable
vision encoder, high-quality training data, and the
proposed training pipeline collectively contribute
to achieving state-of-the-art or competitive per-
formance on referring, grounding, and reasoning
tasks—all while using smaller models. Despite
these advances, the MoIQ benchmark remains chal-
lenging, with the current state-of-the-art model
reaching only 49% accuracy. This highlights the
need for more robust reasoning models in the UI
domain. Looking ahead, we aim to close this gap
by developing models capable of multi-command
grounding, spatial reasoning, and understanding
implicit user intent in complex UI contexts. This
will involve extending our current instruction tun-
ing paradigm to support multi-turn interactions
and compositional tasks, while incorporating richer
contextual cues from both visual and semantic
modalities. By pushing the boundaries of reason-
ing in multimodal UI understanding, we hope to
enable more intelligent and adaptable user inter-
faces. To foster continued research in this area, we
open-source our datasets, models, and code.

8 Limitations

Current models are designed to process instruc-
tions in a single language. Extending them to
support multiple languages would significantly en-
hance their applicability, enabling deployment to a
broader, global audience. This multilingual capabil-
ity would not only improve accessibility for users
in non-English-speaking regions but also facilitate
cross-lingual knowledge transfer, especially bene-
fiting low-resource languages. Our dataset gener-
ation pipeline currently relies on view hierarchies
or similar metadata about UI screens to construct
meaningful instruction-response pairs. This struc-
tural information is crucial for grounding instruc-
tions to specific interface elements and understand-
ing the semantic layout of the screen. At present,
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we use spaCy for entity extraction; however, more
advanced models are available that offer improved
accuracy, albeit at the cost of higher computational
requirements.
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A Annotation Details

For MoUI we employed five annotators for writ-
ing QAs on MobileUI screens. They are experts
in writing reasoning based datasets and have anno-
tated several such datasets before. Three annotators
are tasked for writing QA and two annotators are
tasked for verification in a double-blinded manner.
Each annotator is tasked to write 2-3 questions per
screen. Each question will is verified by two other
annotators. A question will be considered only if
both the verifiers mark it as valid. A total of 4.5k
questions were written out of which 3k are retained.
The annotators were compensated as per the laws
of the geographical location.

B Evaluation Metrics

We use the below evaluation metrics for evaluating
our models on various tasks.

Task Metric Used
Spotlight Tasks

Screen Summarization CIDEr
Widget Captioning CIDEr

Elementary Tasks
OCR Exact Match
Icon Recognition Exact Match
Widget Recognition Exact Match
Find Text Acc@IoU=0.1
Find Icon Acc@IoU=0.1
Find Widget Acc@IoU=0.1
Spatial Polar Exact Match

Reasoning Tasks
Complex ScreenQA SQuAD F1
ScreenQA Short SQuAD F1
MoIQ SQuAD F1

Table 4: Evaluation Metrics Used

C Prompts for Data Generation and
Zero-Shot Inference

C.1 Spotlight Tasks Data Generation
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Prompt 1: Screen Summarization Dataset
Generation Prompt

Design a question-answer pair where a user
asks the assistant to provide a summary of
the screen. Keep in mind that the interaction
should be between a mobile user and a vi-
sual AI assistant. You are given a screenshot
of the mobile screen where the user is and
a short summary describing the contents of
the screen. Use the provided summary as a
starting point to describe the screen for the
user and keep it short and concise.
Format the output in the following form:
USER: "<question for providing summary>"
AI ASSISTANT: "<generated summary out-
put>"
Provided Summary: "Discussion forum app
for anime and K-dramas"

Prompt 2: Widget Captioning Dataset Gen-
eration Prompt

Design a question-answer pair where a user
asks the assistant to provide a phrase that best
describes the functionality of the interactive
element [bbox]. Keep in mind that the inter-
action should be between a mobile user and
a visual AI assistant. You are given a screen-
shot of the mobile screen where the user is
with a bbox in red colour around the widget
and its location in the form of [x1, y1, x2, y2]
normalised to the size of the screen. You will
also receive a sample caption that describes
the widget enclosed in the bbox at the pro-
vided location. Use the provided caption as a
starting point to describe the functionality of
the widget for the user and keep it short and
concise.
Format the output in the following form:
USER: "<question for describing the func-
tionality of the widget at [bbox]>"
AI ASSISTANT: "<generated caption for the
functionality of the widget>"
Provided inputs:
bbox location: [0, 320, 840, 189]
caption: "advertisement"

C.2 Ferret-UI-anyres Prompts

Prompt 1: Complex ScreenQA Base
Prompt

Answer only the question asked in text and
if the query is counting or arithmetic based
only output the numerical value as the an-
swer. Here is the question you shall answer:
{user_query}

Prompt 2: ScreenQA Short Base Prompt

If the question is about counting, only answer
in a single number. Here is the question you
shall answer: {user_query}

Prompt 3: Spatial Polar Task Base Prompt

Please make sure that the answer is only
Yes/No. Here is the question you shall an-
swer: {user_query}

C.3 Zero-Shot Inference Prompts

Prompt 1: OCR Task Base Prompt

You are an AI visual assistant designed to
help users with questions regarding content
on a UI screen.
You will be provided with an image of the UI
screen with a red bounding box surrounding
a region.
Please extract the text inside the bounding
box region from the given image.
Only output the text and nothing else.
Here is the question you shall answer:
{user_query}
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Prompt 2: Screen Summarization Task
Base Prompt

You are an AI visual assistant designed to
help users with questions regarding content
on a UI screen.
You will be provided with an image of the UI
screen. Your task is to very briefly summa-
rize the mobile screen given. Only output the
screen summary and nothing else.
Here is the question you shall answer:
{user_query}

Prompt 3: Widget Captioning Base
Prompt

You are a digital assistant that needs to an-
swer queries from the user about a mobile UI
screen. You will be given a query from user
and the screen as inputs. Carefully focus on
the screen and the red bounding box given.
Keep your answers short and concise.
Please only use the following format: AN-
SWER: <answer> User: {user_query}

Prompt 4: ScreenQA Short Base Prompt

Answer user queries about the mobile screen.
The answer should be as short as possible.
User: {user_query}

Prompt 5: Grounding Tasks Base Prompt

Please provide the bounding box coordi-
nates of the region this sentence describes:
<ref>user_query</ref>

Prompt 6: ScreenQA Short Base Prompt

You are a digital assistant that needs to an-
swer queries from the user about a mobile UI
screen. You will be given a query from user
and the screen as inpouts. Carefully focus on
the screen and the red bounding box given.
Your task is to predict the icon type of the
icon given in the red bounding box.
The icon type can only be of the types:
expand_less, redo, follow, bluetooth, add,
notifications, avatar, edit, arrow_backward,
call, lock, font, microphone, menu, globe,
thumbs_down, skip_previous, folder,
playlist, filter, settings, close, emoji, delete,
build, wallpaper, thumbs_up, explore,
swap, refresh, star, search, volume, slid-
ers, time, photo, zoom_out, weather,
date_range, send, videocam, more, info,
national_flag, bookmark, gift, power,
reply, launch, email, dialpad, copy, group,
filter_list, home, repeat, warning, minus,
cart, compare, music, arrow_downward,
arrow_forward, visibility, expand_more,
book, shop, help, save, dashboard,
share, favorite, facebook, pause, list,
location_crosshair, location, check, de-
scription, skip_next, label, undo, fullscreen,
file_download, play, attach_file, nav-
igation, network_wifi, flash, twitter,
av_rewind, history, chat, arrow_upward,
layers, switcher, av_forward, flight.
Please only answer from the given icon types.
Keep your answers short and concise.
Please only use the following format:
ANSWER: <answer>
User: {user_query}
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Prompt 7: Widget Recognition Base
Prompt

You are a digital assistant that needs to an-
swer queries from the user about a mobile UI
screen.
You will be given a query from user and the
screen as inputs.
Carefully focus on the screen and the red
bounding box given.
Your task is to predict the widget type of the
widget given in the red bounding box.
The widget type can only be of the types:
Image, Web View, Text, Icon, List Item,
Drawer, Video, On/Off Switch, Input, Check-
box, Slider, Background Image, Pager Indica-
tor, Advertisement, Text Button, Card, Radio
Button, Map View.
Please only answer from the given widget
types and print nothing else other than the
widget type. Keep your answers short and
concise.
Please only use the following format:
ANSWER: <answer>
User: {user_query}
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D Instruction Templates

Task Instruction Template
Screen Summarization <image>{Question}
Widget Captioning <image>{Question}
OCR <image>Given the screenshot image, extract the text in bounding box:

{Question}
Icon Recognition <image>Given the screenshot image, output the icon type for element in

bounding box: {Question}
Widget Recognition <image>Given the screenshot image, output the widget type for element in

bounding box: {Question}
Find Text <image>Please give the bounding box coordinates for the question: {Ques-

tion}
Find Icon <image>Please give the bounding box coordinates for the question: {Ques-

tion}
Find Widget <image>Please give the bounding box coordinates for the question: {Ques-

tion}
Spatial Polar <image>Given the image and two bounding boxes,

answer Yes/No for the question: {Question}
Complex ScreenQA Given the image, answer the following question with no more than five

words. {Question}
ScreenQA Short Based on the image, respond to this question with a short answer: {Ques-

tion}

Table 5: Instruction Templates Used for MoIT dataset

E TinyLLava-Gemma Results

Setting Screen2 Widget OCR Icon Widget Complex Short Spatial
Words Capt. Recog. Recog. QA QA Polar

Zero-Shot 34.23 25.66 4.20 0 8.29 34.76 5.26 54.8
Finetuned TinyLLava 78.9 117.32 21.6 36.03 41.58 41.23 4.64 92.68

Table 6: TinyLLava-Gemma results for perception tasks before and after training on our MoIT dataset

F MoIT Dataset Statistics

UI Task Method Count of QA pairs
Screen Summarization InternVL2 10000
Widget Captioning InternVL2 19475
Find Icon Template 16796
Widget Classification Template 19299
Icon Recognition Template 16796
Find Widget Template 19299
OCR Template 18871
Spatial Polar Template 19261

Table 7: MoIT dataset statistics

G Error Cases
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OCR-Related Error

User Query

What does the text inside the red bounding box
on the given screen say?

Model Output

Underworld: Blood Wars

Error Analysis

Here, the ground truth answer is "Dec 1, 2016.".
However, the model misinterprets the adjacent
text as the intended text within the bounding box
and outputs "Underworld: Blood Wars" instead.
We hypothesize that this occurs because the
adjacent text is significantly larger, leading the
model to prioritize it over the smaller text inside
the bounding box.

Icon Recognition Error

User Query

Can you identify the icon type of the element
enclosed by the red bounding box in the pro-
vided screen?

Model Output

play

Error Analysis

Here, the correct answer is "arrow_forward".
Since the bounding box is tightly wrapped
around the icon, the model mistakenly inter-
prets it as part of the icon itself, leading it to
incorrectly classify the icon as play.
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Reasoning-Based Error

User Query

How many more actors are in the movie’s cast
than actresses?

Model Output

2

Error Analysis

Here, the ground truth answer is 1. However,
the model misidentifies the actress count, likely
due to incomplete cast images on the screen,
resulting in an incorrect output of 2.

Reasoning-Based Error

User Query

Which option is selected: Login or Sign Up?

Model Output

Login

Error Analysis

Since the "Sign Up" button is highlighted, the
correct answer is Sign Up. But, the model
misidentifies the active button as Login which is
not highlighted, likely due to varying UI styles
across applications.
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H Stage I vs Stage II Comparison for
Perception Tasks

Screen2
Words

Widget
Capt.

OCR
Icon

Recog.
Widget
Recog.

Find
Text

Find
Icon

Find
Widget

Spatial
Polar

After Stage I 123.15 133.41 90.53 83.33 79.67 89.25 75.96 79.16 98.85
After Stage II 123.2 151.25 90.63 87.15 81.33 89.14 75.75 83.51 98.81

Table 8: Stage I vs Stage II performance comparison on the various perception tasks.

I Performance on the ScreenSpot
Benchmark

LVLMs
Model
Size

Training
Data Size

Mobile
(Text)

Mobile
(Icon/Widget)

MoUI 1B 150K 53.43% 33.56%
MoUI 4B 150K 71.85% 47.65%
SeeClick 9.6B 1M 78.0% 52.0%

Table 9: Comparison of LVLMs across model size, train-
ing data, and mobile performance

J Comparison with other Mobile UI
datasets

Data Size Task Coverage Dataset Generation Method
Referring Grounding Spatial Perception Reasoning

ScreenAI >400M ✓ ✗ ✗ Model generated Model generated
FerretUI 250K ✓ ✓ ✗ Model generated Model generated

MoUI (ours) 150K ✓ ✓ ✓ Template based generation Human written

Table 10: Comparison of Mobile UI datasets
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K Annotated Bounding Boxes after Stage
I Training

Figure 5: Examples of bounding box annotations of the extracted key entities from the user query by the perception
aware model after the Stage I training.
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