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Abstract

Self-consistency improves reasoning by ag-
gregating diverse stochastic samples, yet the
dynamics behind its efficacy remain underex-
plored. We reframe self-consistency as a dy-
namic distributional alignment problem, reveal-
ing that decoding temperature not only gov-
erns sampling randomness but also actively
shapes the latent answer distribution. Given
that high temperatures require prohibitively
large sample sizes to stabilize, while low tem-
peratures risk amplifying biases, we propose
a confidence-driven mechanism that dynami-
cally calibrates temperature: sharpening the
sampling distribution under uncertainty to align
with high-probability modes, and promoting
exploration when confidence is high. Experi-
ments on mathematical reasoning tasks show
this approach outperforms fixed-diversity base-
lines under limited samples, improving both av-
erage and best-case performance across varying
initial temperatures without additional data or
modules. This establishes self-consistency as
a synchronization challenge between sampling
dynamics and evolving answer distributions.

1 Introduction

Self-consistency (Wei et al., 2022) is a well-
established decoding method that enhances model
performance by aggregating multiple stochastic
samples via majority voting. It has been demon-
strated to be highly effective across a variety of
tasks (Chen et al., 2023; Wang et al., 2024b),
particularly in improving reasoning abilities (Wei
et al., 2022). Despite its empirical success, the
underlying mechanisms behind self-consistency
remain underexplored. In this work, we revisit
self-consistency from a distributional perspective,
reframing it as a dynamic alignment problem, to
achieve more robust and effective performance in
answer aggregation.

*Equal contribution.
†Corresponding author.
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Figure 1: (a) Multiple stochastic sampling for fitting
the true distribution. As the sample size increases, the
noise gradually diminishes, and ultimately, the top-1
sampled answer aligns with the true distribution. (b)
As the temperature decreases, the confidence in the true
distribution increases, allowing alignment with the true
distribution to be achieved with fewer samples.

Recent work (Wu et al., 2024; Li et al., 2024c)
argue that by combining different reasoning traces
via majority voting, self-consistency can avoid lo-
cal optima and reduce the high variance associated
with single-sample outputs, ultimately converging
to the model’s true answer distribution (see Fig-
ure 1 (a)). Building on this insight, our work pro-
vides a formal definition of its convergence and de-
rives practical criteria for the assessment. Through
our convergence analysis, we reveal that this con-
ventional view is limited to a fixed true distribu-
tion, overlooking the crucial impact that parameter-
controlled decoding (typically the temperature) has
on the true distribution (see Figure 1 (b)). More-
over, practical applications are often constrained
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by the sampling. Therefore, we raise two key ques-
tions: (1) Alignment under Constraints: How does
decoding diversity affect the alignment between
the sampling distribution and the true answer dis-
tribution when only a limited number of samples
is available? (2) Dynamic Alignment: Can we ac-
tively calibrate the diversity in practice to acceler-
ate and stabilize convergence, rather than passively
waiting for asymptotic convergence?

To explore these issues, we analyze the impact
of diversity on self-consistency. The temperature
parameter not only governs the randomness of sam-
pling but also directly shapes the true answer dis-
tributions. Our findings reveal that as the number
of samples approaches infinity, a higher tempera-
ture yields a more ideal true answer distribution.
However, when the sample size is finite, the opti-
mal sampling temperature decreases as the number
of samples diminishes. This leads to a trade-off:
low-diversity sampling quickly concentrates the
answers and suppresses noise but risks amplify-
ing model biases, whereas high-diversity sampling
disperses the answers, requiring more samples to
stabilize, yet it enables the exploration of a poten-
tially superior true distribution.

In summary, our comprehensive analysis in-
dicates that the effectiveness of self-consistency
hinges on a dynamic alignment between the confi-
dence of the sampling distribution and the intrinsic
uncertainty of the true answer distribution—a rela-
tionship that is influenced by the number of sam-
ples. Ideally, the sampling distribution should be
controlled such that the majority voting outcomes
closely match the true distribution, and on this ba-
sis, explores toward an improved true distribution.

Based on this insight, we propose a confidence-
driven diversity optimization mechanism that dy-
namically adjusts the temperature based on real-
time confidence values derived from the answer dis-
tribution. When early samples show only a small
probability gap between the top two most-voted
answers, our mechanism sharps the sampling dis-
tribution to better align it with the true distribution.
Conversely, when confidence is high, the temper-
ature is increased to explore potentially superior
distributions. We derive a confidence threshold to
determine the direction of temperature adjustment,
providing theoretical support for this process. This
closed-loop control dynamically synchronizes the
sampling distribution with the latent answer dis-
tribution, ensuring efficient convergence while ac-
tively pursuing a better distribution. Experimental

results across various model types and size indi-
cate that it can achieve simultaneous improvements
in both average and best performance across dif-
ferent initial temperatures, without requiring any
additional training, valid data, reward models, or
external modules.

2 Fundamental Analysis of
Self-Consistency

In this section, we first present a distribution align-
ment perspective on how self-consistency works
with specific true answer distributions, supported
by experimental evidence to substantiate this view-
point. Building upon this foundation, we proceed to
provide both a formal definition of self-consistency
convergence and practical criteria for assessment.

2.1 Why Self-Consistency Works: A
Distributional Perspective

Self-Consistency is a widely-used decoding
method for improving reasoning performance by
aggregating multiple stochastic samples. By apply-
ing a majority voting scheme, it mitigates issues
such as local optima and high variance that arise
from relying on a single sample. Formally, it can
be expressed as:

ŷSC = argmax
y

(
1

n

n∑

i=1

I(yi = y)

)
(1)

where yi is the i-th sampled answer, and I(yi = y)
is the indicator function that equals 1 if yi matches
the candidate answer y, and 0 otherwise. The result,
ŷSC , is the answer with the highest number of votes
(the top-1 answer).

From a probabilistic perspective, self-
consistency can be seen as a Monte Carlo
estimator of the true answer distribution p(y | x).
As the number of samples increases, the empirical
distribution formed by the samples approximates
the true distribution, and the most frequent answer
aligns with the true distribution:

p̂SC(y) =
1

n

n∑

i=1

I(yi = y)

→ p(y | x), as n → ∞
(2)

As the number of samples increases, the estimation
becomes more reliable, and the voting mechanism
converges towards the true answer.
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Figure 2: Top-1 answer matching probability (a) and
accuracy (b) both improve as the sampling number in-
creases.

Experimental Analysis To validate this view-
point, we analyzed the top-1 answer match rate
as a function of the sample size. The true top-1
answer is simulated by drawing from a large sam-
ple to approximate the true distribution. Results
from Figure 2 reveals Findings 1: As the sample
size increased, the top-1 answer match rate grad-
ually approaches 100% with the accuracy consis-
tently improves. Based the observation, we derive
the following insight: Insights 1: The improve-
ment in self-consistency performance stems from
the fact that, the top-1 answer in the sampling dis-
tribution gradually aligns with the true distribution,
ultimately enhancing accuracy to match the true
distribution’s level.

2.2 Convergence Analysis of Answer
Aggregation

According to Insights 1, since the accuracy of the
true distribution is fixed, the performance of self-
consistency is guaranteed to converge. To further
investigate it, we provide the following definition
according to the Cauchy convergence criterion:
Definition 2.1. Let fM (i) =

∑M
l=1 I(ŷl = i),

where ŷl represents the set of answers generated by
the model, and M is the number of samples. For
any given ϵ > 0, there exists a positive integer L
such that for N,M > L, if the following holds:
∣∣∣∣ argmax

i
fM (i)− argmax

i
fN (i)

∣∣∣∣ < ϵ (3)

we can conclude that self-consistency has con-
verged.

Based on Definition 2.1, we prove that self-
consistency also converges in terms of the accuracy
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Figure 3: Self-consistency convergence plots under dif-
ferent temperature (0.4 and 0.8) settings.

on the dataset:

Theorem 2.2. Let AccMD =
1
|D|
∑

j∈D I[argmax
i

fM (i) = gtj ] denote

the accuracy of self-consistency when a single
question is sampled M times on dataset D, where
gtj represents the correct answer to the j-th
question. If Definition 1 holds, then for any given
ϵ > 0, there exists a positive integer L such that
when N,M > L, the following holds:

∣∣ AccMD −AccND
∣∣ < ϵ (4)

The Proof of Theorem 2.2 is in Appendix A. By
setting ϵ to 1

|D| , the following definition is estab-
lished:

Definition 2.3. If the following holds on dataset
D:

∣∣∣ AccMD −AccM−5
D

∣∣∣ < 1

|D| (5)

we can consider self-consistency to have converged
at a sample size of M .

Experimental Analysis Figure 3 depicts the con-
vergence behavior of various models, with the ac-
curacy curves plotted up to the convergence point
according to Definition 2.3, from where we can get:
Findings 2: The convergence speed exhibits a pos-
itive correlation with accuracy. Findings 3: The
convergence speed is inversely correlated with tem-
perature. Findings 4: The final converged accuracy
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Figure 4: The accuracy curve with varying temperature
under convergence.

varies across different temperature settings. Based
on them, we derive Insights 2: Sampling diversity
will affect the true distribution, impacting both the
convergence accuracy and the convergence speed
of self-consistency.

3 Diversity Trade-offs for
Self-Consistency

3.1 Sampling Diversity Affection

According to Insight 2, to gain a deeper understand-
ing of the impact of diversity on self-consistency,
we investigate how accuracy varies with temper-
ature changes in increments of 0.1. The study is
divided into two parts: convergence analysis and
finite-sample analysis.

Converge Condition Figure 4 indicates Find-
ings 5: As the temperature increases, the accuracy
of single samples exhibits a declining trend, while
the accuracy of self-consistency after convergence
shows an increasing trend (the optimal point is
often near 1.01). Please refer to Appendix B for
more results. The disagreement resolution theorem
in ensemble learning provides a potential explana-
tion, suggesting that the overall performance of an
ensemble is determined by the trade-off between
the accuracy of individual models and the diver-
sity among them. From this trend and Insights 1,
we gain Insights 3: When the sample size is suffi-
cient, the temperature should be increased to better
explore the true distribution with higher accuracy.

Finite-Sample Condition Figure 5 indicates
Findings 6: When the sample size is limited, the
optimal temperature gradually shifts toward lower
values as the sample size decreases. Please refer

1We speculate that this may be related to the training tem-
perature being typically set to 1.0. We leave the study of the
optimal temperature as future work.
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Figure 6: FSD (Equation 7) (Lyu et al., 2024) is em-
ployed as the confidence metric to quantify the gap
between top two candidates.

to Appendix B for more results. This findings and
Insights 1 leads us to Insights 4: Sample size de-
termines the maximum top-1 confidence level that
can be reliably modeled. True distributions with
lower confidence require larger data volumes to
ensure that the sampled top-1 answer aligns with
the converged result.

By combining Insights 3 and 4, we can derive
Insights 5: The effectiveness of self-consistency
depends on dynamically aligning the confidence of
the sampling distribution with the inherent uncer-
tainty of the true answer distribution.

3.2 Chain-of-thought Affection

Besides the sampling diversity decided by temper-
ature, Chain-of-Thought (Wei et al., 2022) is also a
key factor. From Figure 6 we can get Findings 7:
Using CoT prompt leads to higher confidence com-
pared to not using it. A deeper Insight 6 emerges:
Chain-of-thought (CoT) reasoning narrows the out-
put space and reduces diversity, thereby increasing
answer confidence. However, investigating this
phenomenon is not the focus of this paper, and we
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leave it for future work.

4 From Static to Adaptive:
Confidence-Driven Optimization of
Self-Consistency Distributions

4.1 Motivation

Traditional self-consistency methods rely on static
sampling strategies with fixed sample sizes and
temperatures, which face limitations: When the
confidence of the sampling distribution is too low,
a limited sample size struggles to accurately cap-
ture the true top-1 answer, restricting the perfor-
mance gains of self-consistency (Insight 4). Con-
versely, when the confidence is too high, the model
fails to explore potentially better distributions at
higher temperatures (Insight 3). Our method ad-
dresses these issues through adaptive confidence-
distribution alignment (Insight 5). By dynami-
cally adjusting the sampling distribution’s diversity
based on real-time confidence levels, we optimize
alignment by proactively adapting to the evolving
gap between model confidence and true distribu-
tion uncertainty. This dynamic mechanism enables
efficient convergence to the correct answer even
under limited sample sizes while facilitating ex-
ploration of better true distributions when needed.
Through this approach, we enhance both the ac-
curacy and robustness of self-consistency across
diverse conditions.

4.2 Diversity Control Strategy

Dynamic Temperature Adjustment We intro-
duce a confidence-driven diversity optimization
mechanism to dynamically align the sampling dis-
tribution with the latent answer distribution. First-
Second Distance (FSD) (Lyu et al., 2024) is em-
ployed as the confidence metric to quantify the gap
between top candidates. Formally, at decoding step
t:

FSD(t) = p1
(t) − p2

(t) (6)

where p1
(t) and p2

(t) are the probabilities of the
top two answers from the first t samples. This
metric directly reflects the model’s uncertainty in
distinguishing between the dominant candidates.

To ensure stable optimization, we design a con-
servative adjustment rule with a dead zone around
confidence threshold τ . The temperature T is up-

dated based on the FSD metric:

T (t+1) =





T (t) − 0.1 if FSD(t) < τ − ϵ,

T (t) + 0.1 if FSD(t) > τ + ϵ,

T (t) otherwise,

(7)

where ϵ is a stability margin, which we set to 0.05
for simplicity. Temperature T is clamped to [0.1,
1.0] to avoid extreme values.

Phased Sampling Strategy To balance explo-
ration and efficiency, we employ a three-phase sam-
pling protocol:

• Exploration Phase: Collect small number of
samples (n1 = 5) with preset T (1) as a win-
dow to estimate initial FSD(1).

• Adaptive Phase: Adjust T (2) through Equa-
tion 7, then generate n2 = 0.5N − n1 (N :
total budget) additional samples.

• Exploitation Phase: Finalize T (3) and gener-
ate the remaining n3 = 0.5N samples.

The phased approach progressively shifts from
broad exploration to focused exploitation. Finally,
the accuracy is calculated by majority voting from
the total of N samples.

In summary, our method dynamically adjusts the
sampling diversity by monitoring the confidence
levels, allowing for more efficient exploration and
convergence. This adaptive mechanism ensures
better alignment with the true answer distribution
under sampling constraints to improve accuracy.

4.3 Theoretical Analysis

To ensure a rational and effective selection of the
FSD threshold τ , we construct a one-sided z-test
for analysis. The test employs the null hypothesis
as follows:
H0: The current sampled top-1 answer is not the

true answer for the given question under infinite
sampling.

To simplify this problem, we assume that only
the current top-2 answer could potentially become
the true answer under infinite sampling. Conse-
quently, it is natural to focus on the relationship
between FSD and confidence. Therefore, this hy-
pothesis can be described as:

z =
d̂− dµ
SE

(8)
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where d̂ represents the observed FSD from actual
sampling, dµ denotes the FSD under the true dis-
tribution of the model, and SE stands for the stan-
dard error. Based on the null hypothesis H0, it is
clear that dµ < 0. We adopt the critical condition
dµ = 0:

z ≥ d̂− 0

SE
=

p̂1 − p̂2
SE

(9)

Assuming that the current sample size ap-
proaches infinity and that the sampling between
the two categories can be considered indepen-
dent, according to the multinomial distribution and
Jensen’s inequality (in the case of a concave func-
tion), we have:

SE =

√
p̂1(1− p̂1)

N
+

p̂2(1− p̂2)

N

≤
√

2p(1− p)

N
(10)

where p = p̂1+p̂2
2 ∈ (0, 0.5], substituting Equation

10 into Equation 9, we can derive the theoretical
lower bound of z:

z ≥ p̂1 − p̂2√
2p(1−p)

N

≥ d̂
√
2N (11)

Setting z = 1.64, the corresponding p-value is
approximately 0.05, indicating strong statistical
evidence that the current top-1 answer is indeed
the top-1 answer under the true model distribution.
Therefore, the FSD threshold can be set as:

τ =
1.16√
N

(12)

5 Experiments

5.1 Experiment Setup
Datasets and Models We evaluate our method
on two widely-used mathematical reasoning bench-
marks: GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021). Experiments span multi-
ple model families to assess generalizability, includ-
ing Qwen (Yang et al., 2024), Llama (Dubey et al.,
2024), Mistral(Jiang et al., 2023), DeepSeek(Shao
et al., 2024), Gemma(Rivière et al., 2024) and
Phi(Li et al., 2023b).

Implementation Details To systematically com-
pare dynamic versus static temperature strategies,
we test initial temperatures T0 ∈ {0.1, 0.2, ..., 1.0}
with sampling budgets N ∈ {10, 20, 40}.

Metric To provide an intuitive and efficient eval-
uation of the differences between methods, we
calculate both the average and maximum accu-
racy for fixed-temperature sampling and dynamic-
temperature sampling across all temperatures. The
evaluation is conducted from the perspectives of
robustness and effectiveness. Formally:

Mean =
1

NT

∑

t∈T0

Acct (13)

Max = max
t∈T0

Acct (14)

5.2 Results
From the results presented in Table 1 through 15
models, we can find:

Dynamic temperature sampling mitigates the
performance degradation associated with fixed-
temperature sampling. We find that the aver-
age accuracy across different temperatures for dy-
namic temperature sampling outperforms fixed-
temperature sampling in the majority of models.
This suggests that our method is not constrained by
the temperature range and can identify samples that
are more effective for self-consistency performance
across various temperatures. To some extent, this
approach mitigates the performance loss caused by
ineffective sampling at a single fixed temperature.

For different samples, dynamic temperature
sampling searches for a more suitable tem-
perature for each sample. Similarly, we ob-
serve that dynamic temperature sampling also pro-
vides a certain improvement in terms of the max-
imum accuracy. This can be attributed to the fact
that different samples require different tempera-
ture ranges. Fixed-temperature sampling can only
achieve the desired accuracy for the dataset as a
whole, whereas dynamic temperature sampling
automatically searches for a more optimal tem-
perature for each individual sample, maximizing
the performance of self-consistency optimization
across various temperatures.

5.3 Analysis
Visualization We provide a detailed analysis of
the model’s accuracy at different temperatures. Fig-
ure 7 presents the accuracy and temperature curve
for the Qwen2.5-Math-7B model. We observe that,
with sampling sizes of 20 and 40, both low temper-
ature ranges (0.1-0.4) and high temperature ranges
(0.7-1.0) exhibit notable improvements. This sug-
gests that dynamic temperature sampling yields
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Models Strategy
GSM8K MATH

N=10 N=20 N=40 N=10 N=20 N=40

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

Qwen2.5-1.5B Fix 65.4 67.6 67.2 69.6 68.2 70.9 31.4 36.1 34.5 38.6 36.5 40.8
Dynamic 65.7 67.7 67.8 69.8 68.9 70.9 32.4 36.0 36.5 38.9 38.7 41.0

Qwen2.5-1.5B-Instruct Fix 79.0 80.7 80.3 82.2 81.1 83.2 51.9 53.8 53.3 55.0 54.1 55.8
Dynamic 79.2 80.7 80.8 82.4 81.6 83.5 52.3 53.6 53.9 55.2 54.6 55.9

Qwen2.5-7B Fix 84.6 86.1 85.7 87.7 86.3 88.9 48.7 52.0 50.7 53.8 51.8 54.9
Dynamic 84.7 86.3 86.1 88.1 86.8 89.0 49.6 52.3 51.9 53.9 53.2 55.1

Qwen2.5-7B-Instruct Fix 90.8 91.9 91.2 92.2 91.4 92.4 65.9 66.6 66.6 67.3 66.9 67.7
Dynamic 90.8 92.0 91.4 92.3 91.7 92.4 66.1 66.7 66.8 67.3 67.2 67.6

Qwen2.5-Math-1.5B Fix 80.1 83.3 82.0 84.6 82.9 85.6 41.5 44.1 43.1 46.0 44.2 47.1
Dynamic 80.7 83.2 82.9 84.7 83.9 85.6 41.9 44.2 44.1 46.0 45.2 47.2

Qwen2.5-Math-1.5B-Instruct Fix 87.1 88.2 87.7 88.8 87.9 89.0 64.2 65.1 64.7 65.8 64.9 66.1
Dynamic 87.2 88.4 87.9 88.8 88.2 89.2 64.3 65.2 64.8 65.6 65.1 65.9

Qwen2.5-Math-7B Fix 82.2 85.0 84.6 87.1 85.8 88.2 52.7 56.1 54.9 57.9 56.3 59.4
Dynamic 83.0 85.4 85.5 87.4 86.8 88.5 53.4 56.2 56.2 58.4 57.7 59.7

Qwen2.5-Math-7B-Instruct Fix 94.9 95.8 95.2 96.0 95.4 96.2 68.8 70.1 69.5 70.9 69.7 70.9
Dynamic 95.1 95.9 95.4 96.0 95.6 96.2 69.3 70.4 70.0 70.7 70.2 70.9

Llama-3-8B Fix 58.2 63.0 60.9 65.8 62.5 67.4 18.6 21.5 20.3 23.5 21.7 25.1
Dynamic 59.3 63.4 62.6 66.1 64.3 67.6 19.3 21.9 22.1 24.2 23.6 25.5

Llama-3-8B-Instruct Fix 66.6 72.0 70.2 76.1 72.2 78.6 20.1 24.4 21.3 26.8 22.1 28.7
Dynamic 67.1 72.7 71.6 76.9 74.1 79.5 20.1 25.0 21.4 26.9 22.3 28.8

Gemma-2-2B Fix 29.1 32.2 31.0 33.9 32.3 34.9 14.6 16.5 16.1 18.2 16.8 18.2
Dynamic 29.7 32.3 32.3 34.2 33.5 34.7 15.1 16.7 16.8 17.9 17.6 18.4

Phi-1.5 Fix 35.1 37.6 37.0 39.5 38.1 40.7 4.0 4.7 4.6 5.0 5.0 5.5
Dynamic 35.6 37.7 37.8 39.6 39.0 40.8 4.2 5.0 4.8 5.2 5.3 5.7

DeepSeek-Math-7B-Instruct Fix 87.4 88.6 88.1 89.5 88.5 90.1 44.4 45.8 46.2 48.2 47.1 49.5
Dynamic 87.4 88.6 88.3 89.8 88.7 90.1 44.8 46.1 46.6 48.2 47.8 49.5

Llama-3.2-3B-Instruct Fix 86.2 87.4 87.2 88.4 87.7 88.9 48.7 49.8 50.2 51.4 51.2 52.4
Dynamic 86.2 87.3 87.5 88.6 88.1 89.2 49.0 50.1 50.6 51.6 51.7 52.7

Mistral-7B-Instruct-v0.3 Fix 46.1 48.9 49.3 53.3 51.5 57.2 17.1 18.3 19.2 20.8 20.8 22.4
Dynamic 46.6 49.7 50.4 55.0 52.8 58.9 17.6 19.0 20.2 21.0 22.2 23.5

Table 1: Evaluation results by using 15 models from different base architectures on GSM8K(Cobbe et al., 2021)
and MATH(Hendrycks et al., 2021). Dynamic temperature sampling achieves superior average and maximum
performance across a wide range of settings.

more robust results. However, with a sampling size
of 10, the performance in the low temperature range
is almost identical to that of fixed-temperature sam-
pling, primarily due to the constraints of the sam-
ple size. In the more optimal temperature range
(0.4-0.7), the performance of dynamic and fixed-
temperature sampling is similar, which aligns with
our expectations and indicates that the intermedi-
ate temperature has already achieved a balanced
trade-off.

Direction Analysis of Temperature Variation
Taking the sample level into account, we first ana-
lyzed the proportions of samples that experienced
temperature increases, decreases, or remained con-
stant throughout the dynamic temperature sampling

process, as illustrated in Figure 8. We observed that
in the low temperature range, at least 80% of the
samples experienced an increase in temperature.
This observation is consistent with our hypothesis
derived from dataset-level considerations, which
suggests that increasing the temperature tends to
result in higher expected accuracies. As the temper-
ature rises, the proportion of samples experiencing
temperature increases gradually declines, indicat-
ing that for some samples at the current sampling
size, excessive temperatures are insufficient to con-
fidently select the correct answer. Consequently,
lowering the temperature becomes necessary to
enhance FSD. Additionally, we noticed that with
higher sampling sizes, the proportion of samples
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Figure 7: A detailed results of the model’s accuracy across different temperatures. Our method achieves better
performance under both lower and higher initial temperatures.
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Figure 8: Proportions of samples with temperature increases, decreases, or stability during dynamic temperature
sampling.
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Figure 9: Proportion of FSD instances reaching the dead zone, where dynamic temperature sampling results in a
higher proportion.

undergoing temperature increases is higher com-
pared to low sampling sizes, which aligns with our
analysis presented in Section 3.

Proportion of Optimal Temperature Range
We analyze the proportion of FSD instances that
ultimately reach the dead zone. We consider reach-
ing the dead zone as an indication that the sample
operates within an optimal temperature range. As
shown in Figure 9, dynamic temperature sampling
results in a higher proportion of FSD instances en-
tering the dead zone compared to fixed-temperature
sampling, suggesting that our method enables bet-

ter alignment for a larger number of samples.

6 Related Work

Self-Consistency Self-consistency (Wang et al.,
2023), also known as majority voting, is a signifi-
cant method for effectively enhancing the reason-
ing performance of large language models (LLMs)
within the context of chain-of-thought (Wei et al.,
2022) settings. Research on this method primarily
focuses on two aspects: First, the effectiveness
of self-consistency is further improved through
weighted majority voting (Li et al., 2023a, 2024b)
or input diversity (Sathe et al., 2024). Addition-
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ally, some have extended self-consistency to open-
domain generation (Wang et al., 2024b; Jain et al.,
2023), allowing its application beyond reasoning
tasks. Second, some studies aim to reduce the cost
of self-consistency without compromising perfor-
mance, according to early stopping criteria about
answer distributions (Li et al., 2024c; Aggarwal
et al., 2023), difficulty (Wang et al., 2024a), quality
(Wan et al., 2024) or consistency of reasoning paths
(Zhu et al., 2024a). Chen et al. (2024) have em-
ployed a hybrid strategy combining sampling and
greedy algorithms to reduce computational costs.
Recently, theoretical analyses of voting strategies
(Wu et al., 2024; Li et al., 2024c) were provided, of-
fering a theoretical foundation for the study of self-
consistency. Our method offers a deeper viewpoint,
revisiting self-consistency from the perspective of
distributional dynamic alignment.

Diversity Control for Language Models De-
coding strategy is a critical factor in controlling the
diversity of language models. From the perspective
of the probability distribution of generated tokens,
temperature sampling (Ackley et al., 1985) con-
trols the sharpness of the distribution by adjusting
the temperature. Existing research primarily fo-
cuses on diversity control within a single sampling
process (Zhang et al., 2024; Zhu et al., 2024b; Dhu-
liawala et al., 2024; Li et al., 2024a). At the task
level, Renze (2024) have examined the impact of
temperature on the model’s problem-solving capa-
bilities. However, the influence of diversity control
on self-consistency and the underlying mechanisms
remain unexplored.

7 Conclusion

This work revisits self-consistency through the lens
of dynamic distributional alignment, challenging
the conventional view of passive convergence to
a fixed answer distribution. We demonstrate that
decoding temperature critically shapes both sam-
pling behavior and the latent answer distribution it-
self, revealing a trade-off between diversity-driven
exploration and finite-sample convergence. By in-
troducing a confidence-aware mechanism that dy-
namically adjusts temperature based on real-time
alignment with the distribution, we bridge this gap,
enabling efficient synchronization between sam-
pling dynamics and evolving answer distributions.
Empirical results validate that this approach out-
performs static strategies, achieving robust perfor-
mance improvements without external resources.

Our findings position self-consistency as an active
alignment challenge, opening avenues for adaptive
aggregation frameworks in reasoning tasks.

Limitations

While our approach advances the understanding
and application of self-consistency, several limita-
tions remain:

• Task Scope: Experiments focus on mathemat-
ical reasoning tasks, thus generalization to
broader domains (e.g., open-ended generation
or multi-step decision-making) requires fur-
ther validation.

• Optimal Temperature: The specific value of
the optimal temperature when the sample size
approaches infinity, and how it varies with
factors such as the model and dataset, remains
unexplored.

• Decoding Strategy Interactions: The interplay
between temperature modulation and other
decoding techniques (e.g., top-k or top-p sam-
pling) remains unexplored, potentially affect-
ing broader applicability.
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A Proof of Theorem 2.2

Proof A.1. Firstly, we need to introduce true la-
bels into Definition 2.1. As we are not concerned
with the specific numerical values of the predicted
and true answers, we map the set of predicted an-
swers onto a sequence of natural numbers (in sim-
ple terms, we only need to know which of the i-th
answers is the correct one). Consequently, we can
establish the following partial order relation:

∣∣∣∣ argmax
i

fM (i)− argmax
i

fN (i)

∣∣∣∣

=

∣∣∣∣ [argmax
i

fM (i)− gtj ]

−[argmax
i

fN (i)− gtj ]

∣∣∣∣

≥
∣∣∣∣ I[argmax

i
fM (i) = gtj ]

−I[argmax
i

fN (i) = gtj ]

∣∣∣∣ (15)

Based on Definition 2.1, we have:
∣∣∣∣ I[argmax

i
fM (i) = gtj ]

−I[argmax
i

fN (i) = gtj ]

∣∣∣∣ < ϵ (16)

Next, we introduce the dataset D into Equation 16:

1

|D|
∑

j∈D

∣∣∣∣ I[argmax
i

fM (i) = gtj ]

−I[argmax
i

fN (i) = gtj ]

∣∣∣∣ < ϵ (17)

According to |a+ b| ≤ |a|+ |b|, we have:
∣∣∣∣∣∣

1

|D|
∑

j∈D
I[argmax

i
fM (i) = gtj ]

− 1

|D|
∑

j∈D
I[argmax

i
fN (i) = gtj ]

∣∣∣∣∣∣
< ϵ (18)

Finally, we can derive Theorem 2.2:
∣∣ AccMD −AccND

∣∣ < ϵ (19)
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B Additional Results of Section 3
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C Justification of the Top-2 Assumption

To validate the correctness of the assumption in
Section 4.3 that the final answer can only appear
among the top-2 answers, we conducted an analy-
sis to measure how often the final self-consistency
answer overlaps with the top-2 answers observed
in early samples.

Model N = 10 N = 20

Qwen2.5-Math-7B-Instruct 99.44% 99.73%
Qwen2.5-Math-7B 96.79% 98.39%
Qwen2.5-7B 97.74% 98.82%
Qwen2.5-1.5B-Instruct 95.38% 97.53%
Qwen2.5-7B-Instruct 99.21% 99.58%
LLaMA-3-8B-Instruct 87.85% 93.65%
LLaMA-3.2-3B-Instruct 96.86% 98.31%

Table 2: Overlap Rate Between Top-2 and Final Answer.

The results in Table 2 suggest that the final
majority-vote answer is overwhelmingly likely to
appear among the top-2 candidates, even with a
small number of samples. This supports the practi-
cal validity of the assumption.

D Additional Results of Section 5.2

The results in Table 3 demonstrate that our method
performs well across reasoning tasks in different
domains.

E Additional Analysis of Section 5.3

E.1 Influence of Model Architecture and
Calibration Properties

The underlying model architecture can influence
the effectiveness of self-consistency, particularly
due to differences in reasoning ability, calibration
behavior, and sensitivity to temperature. To ex-
plore this, we conducted a comparative analysis
across different backbone models, using several
indicators: (1) Confidence is measured via an-
swer entropy and FSD. (2) Stability is measured
via the variance (Var) of accuracy under different
fixed temperatures. (3) Effectiveness is reflected by
both the absolute accuracy under fixed-temperature
self-consistency (Acc fix@N) and the performance
gains brought by our adaptive method (Gain@N).

According to Table 4, our key observation is that
higher confidence models (lower entropy, higher
FSD) tend to: (1) achieve higher base accuracy
under fixed temperature, and (2) exhibit lower sen-
sitivity to temperature (i.e. lower variance), result-
ing in smaller performance gains from adaptive

strategies. These trends align well with our un-
derstanding of model behavior: stronger models
tend to produce more confident predictions, making
them inherently less reliant on temperature-based
sampling adjustments. Conversely, less confident
models benefit more from dynamic temperature cal-
ibration, as their sampling distributions are more
sensitive to the choice of temperature.

E.2 Relationship Between Sample Difficulty
and Temperature Variation

To better understand the reasons behind the differ-
ing behavior of the observed temperature variation
between samples, we hypothesize that sample diffi-
culty is a key prior factor. Intuitively, harder ques-
tions tend to result in lower model confidence and
may require lower initial temperatures to guide con-
vergence, whereas easier questions are more stable
and better explored with higher temperatures.

To examine this hypothesis, we conducted fur-
ther analysis using samples with known or esti-
mated difficulty levels. For the MATH dataset, we
use its ground-truth difficulty labels (1–5). For
GSM8K, we used an LLM-based difficulty estima-
tion strategy, where we applied repeated batch-wise
comparisons to assign continuous difficulty scores
(1–8).

For each initial temperature T0, we group the
samples based on whether the final temperature
increases, decreases, or remains the same, and then
calculate the average difficulty score within each
group.

The results in Table 5 show a clear and consistent
pattern: (1) More difficult questions tend to lead to
temperature decreases, while easier questions often
allow for temperature increases. (2) Higher ini-
tial temperatures generally result in more samples
decreasing their temperature during the adaptive
process. This aligns well with our intuition and
further supports the idea that the final temperature
T3 is implicitly influenced by sample difficulty.
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Model Strategy
Last Letter Concatenation StrategyQA

N=10 N=20 N=40 N=10 N=20 N=40

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

Qwen2.5-1.5B-Instruct Fix 12.7 16.6 15.6 19.5 18.4 22.2 55.1 58.9 57.4 60.5 58.7 61.2
Dynamic 13.7 16.8 18.5 20.9 21.5 23.3 55.8 59.1 58.2 60.7 59.5 61.4

LLaMA-3.2-3B-Instruct Fix 72.8 76.1 75.7 78.9 76.7 80.2 67.1 70.5 67.9 71.3 68.3 71.5
Dynamic 73.4 76.5 76.6 79.4 78.2 81.0 68.2 70.5 68.8 71.3 68.9 71.5

Mistral-7B-Instruct-v0.3 Fix 4.8 5.7 6.0 7.9 6.8 9.5 52.3 55.0 55.2 59.9 56.6 62.3
Dynamic 5.1 6.1 6.2 8.9 6.8 10.3 52.6 55.9 55.8 60.7 57.5 62.9

Table 3: Evaluation results on Last Letter Concatenation and StrategyQA tasks.

Model Entropy FSD Var Acc@10 Gain@10 Acc@20 Gain@20 Acc@40 Gain@40

Qwen2.5-1.5B-Instruct 1.97 0.483 4.089 79.0 +0.2 80.3 +0.5 81.1 +0.5
Qwen2.5-7B-Instruct 1.17 0.656 2.120 90.8 +0.0 91.2 +0.2 91.4 +0.3
LLaMA-3.2-3B-Instruct 1.96 0.526 2.146 86.2 +0.0 87.2 +0.3 87.7 +0.4
LLaMA-3-8B-Instruct 2.61 0.349 52.387 66.6 +0.5 70.2 +1.4 76.1 +1.9

Table 4: Comparison of model uncertainty, stability, and effectiveness under fixed-temperature and adaptive method.

T0
GSM8K MATH

↑ T3 Avg Level → T3 Avg Level ↓ T3 Avg Level ↑ T3 Avg Level → T3 Avg Level ↓ T3 Avg Level

0.2 4.41 5.27 6.06 3.29 4.08 4.21
0.3 4.43 5.34 5.90 3.19 4.05 4.16
0.4 4.24 5.44 5.63 3.03 3.95 4.10
0.5 4.22 5.27 5.67 3.00 3.86 4.10
0.6 4.20 5.25 5.70 2.99 3.81 4.10
0.7 4.20 5.24 5.65 2.98 3.78 4.09
0.8 4.16 5.20 5.61 2.94 3.71 4.10
0.9 4.12 5.09 5.66 2.91 3.73 4.04

Table 5: Average sample difficulty levels by temperature adaptation results across different initial temperatures for
GSM8K and MATH.
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