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Abstract

Large language models (LLMs) can exhibit ad-
vanced reasoning yet still generate incorrect
answers. We hypothesize that such errors fre-
quently stem from spurious beliefs, which are
propositions the model internally considers true
but are incorrect. To address this, we propose a
method to rectify the belief space by suppress-
ing these spurious beliefs while simultaneously
enhancing true ones, thus enabling more reli-
able inferences. Our approach first identifies
the beliefs that lead to incorrect or correct an-
swers by prompting the model to generate tex-
tual explanations, using our Forward-Backward
Beam Search (FBBS). We then apply unlearn-
ing to suppress the identified spurious beliefs
and enhance the true ones, effectively rectify-
ing the model’s belief space. Empirical results
on multiple QA datasets and LLMs show that
our method corrects previously misanswered
questions without harming overall model per-
formance. Furthermore, our approach yields
improved generalization on unseen data, sug-
gesting that rectifying a model’s belief space is
a promising direction for mitigating errors and
enhancing overall reliability.

1 Introduction

Large Language Models (LLMs) trained on mas-
sive corpora have demonstrated remarkable reason-
ing capabilities, even on complex tasks (Brown
et al., 2020; Hartmann et al., 2023; Ruis et al.,
2024). However, they still generate logically
flawed or factually incorrect answers. One funda-
mental question is: why do they generate erroneous
outputs, and how can we mitigate such errors?

We hypothesize that many of these mistakes
arise from spurious beliefs embedded in the model.
“Belief” is defined by any proposition the model in-
ternally considers true, whereas “knowledge” is re-
quired to be factually correct (Kassner et al., 2021;
Richardson et al., 2022; Kassner et al., 2023). Cru-
cially, LLMs do not merely acquire factual knowl-
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Figure 1: Example of a QA task: The model combines
multiple beliefs from its training data to form new ones.
If it references the spurious belief “Swallows are fish
and ... €@” during its reasoning, it may generate an
incorrect answer. This study aims to suppress such
spurious beliefs (€), thereby allowing the model to
draw on the true belief “Swallows are birds @ and
ultimately avoid erroneous reasoning.

edge from training data; rather, they integrate and
generalize multiple pieces of knowledge to form
new beliefs, resulting in the belief space.

It is important to emphasize that beliefs are
formed regardless of whether they are factually cor-
rect. Consider a conceptual example in Figure 1:
a model might mistakenly combine the true belief
“fish have gills @ with “swallows fly as if swim-
ming @ and, could yield a spurious belief such as
“Swallows are fish and have gills €.” If the model
references this spurious belief, it may incorrectly
answer “Yes” to the question “Do swallows have
gills?” (Kassner et al., 2021). This example illus-
trates how an LLM could form incorrect implicit
beliefs that are not stated directly in the training cor-
pus. Our ultimate goal is to rectify the belief space
into a more trusted space by suppressing spurious
beliefs and enhancing true ones (e.g., Swallows are
birds” @), preventing incorrect inferences.

In this paper, we propose a framework to rec-
tify the belief space by identifying the beliefs used
for the reasoning, and then suppressing references
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to the spurious beliefs while enhancing references
to the true beliefs. To identify the beliefs refer-
enced by the model, we instruct it to explain the
information required to generate the answer y from
the given input text z. Specifically, we introduce
a Forward-Backward Beam Search (FBBS) that
maximizes both the forward likelihood (i.e., the
plausibility of the belief given x) and backward
likelihood (i.e., the probability of generating y from
x and these beliefs) (Section 3.1). Subsequently,
we apply unlearning based on gradient ascent (Yao
et al., 2024; Liu et al., 2024b) to the identified
beliefs to suppress references to spurious beliefs
while giving priority to the true ones (Section 3.3).
Through these steps, the model’s belief space is
more accurately reorganized, thereby reducing er-
roneous reasoning.

We demonstrate the effectiveness of our frame-
work on multiple QA tasks (HotpotQA (Yang
et al.,, 2018), SciQ (Welbl et al., 2017), and
OpenBookQA (Mihaylov et al., 2018)) using
three publicly available instruction-tuned LLMs
(OLMo (Groeneveld et al., 2024), Pythia (Bider-
man et al., 2023), and RedPajama (Weber et al.,
2024)). Compared to both the vanilla model (be-
fore our method) and baseline approaches that ei-
ther suppress the incorrect answers themselves or
knowledge in the training data, our method im-
proves accuracy by up to 6.4 points for OLMo, 5.2
points for Pythia, and 8.0 points for RedPajama.
Moreover, on unseen evaluation data, it achieves
gains of up to 9.6 points for OLMo, 7.1 points for
Pythia, and 8.4 points for RedPajama, underscoring
its strong generalization capability. These results
notably surpass the vanilla model’s performance,
indicating that rectifying the belief space can sub-
stantially enhance the model’s reasoning. Further-
more, suppressing or enhancing beliefs does more
than simply target individual beliefs; it effectively
reorganizes the entire belief space to reduce errors
and improve overall generalizability.

2 Beliefs in LLMs

2.1 Definition of Beliefs

Following prior work (Kassner et al., 2021;
Richardson et al., 2022; Kassner et al., 2023), we
define a belief in an LLM as a proposition that the
model considers to be true, regardless of whether
it is factually correct. Unlike knowledge, which
is generally treated as necessarily factual, beliefs
can be erroneous. We refer to the model’s entire

collection of such propositions as its belief space,
denoted by B.

Let S be the set of all propositions expressed
in natural language. We introduce a function I" :
S — {True, False} to determine whether an LLM
considers any proposition b € S to be true.

B={beS|T(b) = True}, (1)
T(b) = {True (if the LLM considers b true),
False (otherwise).
2

Any belief b € B defined in this way can be
categorized into the following two types:

(1) Explicit Beliefs These are propositions that
appear directly in the training data and are internal-
ized by the model as-is. Indeed, numerous studies
have shown that LLMs can memorize parts of their
training data (Wang et al., 2025; Chen et al., 2024),
and such memorized content is retained as explicit
beliefs within the model.

(2) Implicit Beliefs These are propositions that
the model internally reconstructs by combining
pieces of information or performing analogical rea-
soning. For instance, as shown in Figure 1, the
model might derive the belief “Swallows are fish
and ... @” by combining information such as “Fish
have gills @ and “Swallows fly as if swimming @.”
Previous work has demonstrated that LLMs are ca-
pable of integrating multiple pieces of knowledge
for the inference (Treutlein et al., 2024). Crucially,
even if the original training data is correct, the
model may arrive at an spurious belief, leading to
incorrect answers.

2.2 Reasoning Based on Beliefs

When given an input x (e.g., a question) and gen-
erating an output y (e.g., an answer), an LLM ref-
erences some subset 3, C B of the overall belief
space that it deems necessary to answer z. From
this subset, the model then chooses the most appro-
priate text y (i.e., performs inference). Formally:

y* = arg maxP(y | z, Bx). 3)

y
We denote by B, _,, C B, the set of beliefs that
actually contribute to generating the output y given
the input z. In many cases, if B,_,, is factually
correct, the model arrives at a correct answer; if
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B;—.y is spurious, it yields an incorrect answer.
Hence, to reduce erroneous reasoning, we seek to
suppress spurious beliefs that lead to mistakes,
and rectify the model’s belief space into a more
accurate trusted space.

3 Rectifying the Belief Space

We propose a two-phase procedure to rectify the
belief space B. First, we identify which beliefs the
model relies on when it generates answers (Sec-
tion 3.1 and 3.2). Second, we apply an unlearning
step to suppress references to spurious beliefs while
enhancing references to true ones (Section 3.3).

Here, we denote the spurious belief set as
Bg‘f’)ylm which leads to the incorrect answer Yy,
and the true belief set as ngeym which yields the
correct answer Ycor-

3.1 Identifying Beliefs

Consider a given input-output pair (x,y) and the
task of identifying the beliefs B,_,, used to derive
y from zx. Previous research has typically provided
candidate beliefs to the model and checked whether
the model deems these beliefs true (Kassner et al.,
2023). However, such an approach does not di-
rectly capture B,_,,, the set of beliefs specifically
used in the inference process from x to y.

To address this, we adopt an approach based on
explanations. That is, we prompt the model itself,
under parameters 6, to explain which beliefs are
necessary to derive y from z, thereby obtaining the
belief set B;_,,. Specifically, we adopt a prompt
that includes the input = and the output y, but leaves
a blank (represented as _____ ). By generating the
text that fills in this blank, we can acquire the be-
liefs B;_,, that the model itself deems necessary
to derive z to y. The prompt is as follows!':

{INPUT} The concise fact to solve the
problem is that _____ . Therefore, the
answer is {OUTPUT}.

We replace {INPUT} with x in the portion pre-
ceding the blank to form a prefix prompt ", and
replace {OUTPUT} with y in the portion following
the blank to form a suffix prompt y**f. To obtain
the spurious belief set Bfﬂiylnc, we use the prompt
by inserting the model’s actual incorrect answer
Ymne into the {OUTPUT} slot. Similarly, for the true
belief set B;Frjz(:m, we substitute the correct answer

Ycor into {OUTPUT? slot.

'As mentioned earlier, a belief does not necessarily corre-
spond to an actual fact, but since it is information the model
itself considers true, we use the term “fact” in the prompt.

3.2 Forward-Backward Beam Search (FBBS)
for Belief Generation

To generate the beliefs b € B;_,, that fills the
blank in the prompt (Section 3.1), we must con-
sider both aforward constraint (i.e., plausibility of
continuing from zP") and a backward constraint
(i.e., how likely y**f would be generated from P

and a given belief b). Formally, we consider:

arg max P (wa, b| zP; 9) @
b

= argmax P(b e 0) . P(ySUf | P, b; 9),
b

forward backward

where the first term assesses the plausibility of
generating b from 2P (forward), and the second
term assesses how well y**f is generated from given
2P and b (backward). We achieve this via our pro-
posed Forward-Backward Beam Search (FBBS),
an extended version of beam search (see Figure 2).

We consider the case of generating a belief
b € B;_,, of length 7', which is represented as
(b1, ba,...,br). For simplicity, here we denote
2P as x and ™" as y in this section.

In standard beam search, the next token b; is

chosen by maximizing:

by < arg max log P(bt | T, bey; 0), 5)
by

where b, is the partially generated token sequence
(b1,...,bi—1). However, standard beam search
does not explicitly account for whether the final
output y will be generated. FBBS overcomes this
limitation by looking ahead and evaluating the like-
lihood of ultimately generating .

Concretely, we repeat the following steps (1)—(4)
fort =1,...,T, thereby identifying sequences b
that lead to y from x with high probability.

¢ (1) Candidate Selection Based on Token Prob-
ability As in standard beam search, we obtain
the top n token candidates {bgi) i, for step t
by their local conditional probabilities Pfsfl)d =
P(bt | x,by; 0). We refer to log Pf(vf,)d as the
forward score.

* (2) Estimating the Probability of Generating
y*f via Lookahead For each candidate b,(f), we
concatenate it with (x,b<;) and greedily gener-
ate tokens until reaching the end of a sequence.
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Weighted sum

Forward + Backward —

Score Score

non- white president of ..... Therefore, the answer is America non-
0.10 0.6 1.4

Where is Obama from?
The concise facts to

solve the problem is Hawaii- born.... Therefore, the answer is America Hawaii-

that Obama is the first 0.09 0.7 -1.39
New Zealander to.... Therefore, the answer is America New
0.07 0.1 25X

Figure 2: Forward-Backward Beam Search (FBBS) for generating beliefs. Shown here is the process of determining
the next token among two candidates, “non-" and “Hawaii-", (i.e., m = 2) after partially generating the text “Obama

is the first.”

During this process, we measure the probabil-
ity Pé;)ck = P(y | x,b<t,b§1);9). We refer to

log Pé;)ck as the backward score.

* (3) Re-ranking Using a Weighted Score We

combine the forward score log Pfgfv)d and the back-

i)

ack as follows:

ward score log Pé

SO = \(t,7") -log PY
~——

fwd
forward
+ (1 - )‘(tht(i))) -log Pé?ck’
————
backward
(6)
0 1

AT = (7)

ECoe)
7@

where A(t, Tt(’) ) is a function that dynamically
shifts the weight from the forward score to the
backward score as generation progresses and
@(z) is the sequence length generated in step (2).
Specifically, early in the generation (small ¢),
we emphasize the next token probability Ppyq to
ensure coherent context; later in the generation
(large t), we emphasize the lookahead probabil-
ity Pyack to ensure that the final output y is likely
to be generated. The hyperparameter o controls
the smoothness of the sigmoid function.

* (4) Candidate Update Based on the re-ranked
scores St(z), we select the top m (< n) tokens

and proceed to generate by 1.

By applying the FBBS method to the input-
output pairs (z, Ycor) and (, Yimc ), we can identify

. ; s
the respective beliefs 51" and By sy,

3.3 Rectifying the Belief Space via Unlearning

Let 0 denote the parameters of a pretrained model
with belief space B. Suppose we aim to suppress
the influence of the spurious beliefs ngjylnc and to

enhance the influence of the true beliefs Bgr_“%m

within B. When we denote by B, = B\ B2y
the remaining set of beliefs, the ideal parameters
0; that only retain B, are obtained by:

6, = argmin L(y, B, | ;0), (®)
7]

where L(-) is a loss function. The goal of un-
learning in this context is to obtain parameters 0
by effectively suppressing the spurious belief set
Bgsﬁpjylm, so that it makes easier to reference the true
belief set B™¢, . .

Concretely, we apply gradient ascent (Liu et al.,
2024b) to the set of spurious beliefs Bglﬂymc. While
standard gradient descent updates 6 to minimize
L(6), gradient ascent updates 0 in the reverse di-
rection so as to maximize the loss. Generally, low-
ering the generation probability of a belief B, _,,
makes it more difficult for the model to reference
that belief during inference of y, as indicated by
Equation 3. Simultaneously, we explicitly enhance
reference to the true beliefs BI™e _ (the beliefs

T—YCoy
that lead to a correct answer). Formally:

0: =arg gIlaX (Ebiegilﬁylnc [L(ylnm b; | €T, 0)]

suppress
— BEyepme, [L(ycor, bi | o3 9)]), )
enhance

where [ balances suppressing Bg‘ﬂylm and en-
hancing Bgﬂey&)r. By performing this unlearning
step, the model is guided toward a rectified belief

space that avoids erroneous reasoning.
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4 Experiments

In this study, we demonstrate that rectifying the
belief space can reduce erroneous reasoning while
preserving overall model performance.

4.1 Experimental Settings

First, the model @ is executed on the task using the
training data described later. Next, we rectify the
belief space using our proposed method to obtain
0,.. Finally, we use 0, to perform inference and
analyze the results. During inference, we employ
standard beam search to generate the output text y
for a given input x, without using beliefs.

Models We experiment with the following three
instruction-tuned LLMs:

1. OLMo (7B)? (Groeneveld et al., 2024)
2. Pythia (6.9B)? (Biderman et al., 2023)

3. RedPajama (7B)* (Weber et al., 2024) (ab-
breviated as RPJ)

Datasets We focus on QA tasks that probe the
model’s belief, using HotpotQA (Yang et al., 2018)
(free-form QA), SciQ (Welbl et al., 2017) (multiple-
choice QA), and OpenBookQA (Mihaylov et al.,
2018) (multiple-choice QA).> The LLM must
have encountered each training instance from each
dataset during its pretraining in order to unlearn
them. Therefore, we first checked the pretrain-
ing corpus to verify that both the question and
answer fields of each instance were completely
included. Only those instances meeting this crite-
rion were selected for the training set Dy,in. The
remaining instances are randomly split in equal
proportions to create development Dgyey and evalu-
ation sets Dey,. Hence, for each dataset, the sizes
Of Drrain> Ddev, and Doy, are: HotpotQA: 70k, 4k,
4k; SciQ: 9k, 2k, 2k; OpenBookQA: 3k, 1k, 1k.

Baselines To mitigate erroneous reasoning, we
explore several approaches. In addition to assessing
the baseline performance (referred to as “Vanilla™)
before any modifications, we compare three distinct
methods. Each method employs the unlearning

2allenai/OLMo-7B-Instruct

3allenai/open-instruct-pythia-6.9b-tulu

4togetherc:ompu'cer/RedPajama—INCITE—7B—Instruct

In our experiments, we only use the question and
answer fields of these datasets, and we do not utilize the
evidence field, except for the TDA baseline method described
in the “Baseline” paragraph.

process described in Equation 9, utilizing unique
suppressing and enhancing sets:

* Answer space rectifying (Answer-SR): For
a given question, we directly suppress the
probability of generating an incorrect answer
while enhancing that of the correct answer.
This is the most straightforward approach to
mitigate erroneous reasoning.

* Knowledge space rectifying (Knowledge-
SR): For a given question, we suppress refer-
ences to irrelevant knowledge and enhance the
knowledge that supports the correct answer.
The knowledge is identified from the training
data. This method aims to prevent the model
from incorrectly referencing the knowledge.

* Belief space rectifying (Belief-SR) (Ours):
For a given question, we suppress references
to spurious beliefs while enhancing the true
beliefs that support the correct answer.

We now provide a more detailed account of
Knowledge-SR. In our experiment, we define
“knowledge” as the factually correct information
directly contained in the training data, which we
assume the model references as the basis for its
reasoning. When the model’s reasoning is incor-
rect, we assume that the training instances it re-
lied on were referenced in error; these instances
form our suppressing set in Equation 9. In con-
trast, our enhancing set represents the knowledge
that should have been referenced. We extract it
from the evidence field of each dataset, which is
part of the model’s pretraining corpus. To iden-
tify which pieces of knowledge the model uses, we
apply a Training Data Attribution (TDA) method
that finds the training instances most influential
to the final outputs. Among several TDA tech-
niques (Pruthi et al., 2020; Koh and Liang, 2017;
Isonuma and Titov, 2024), we focus primarily on
UnTrac-Inv (Isonuma and Titov, 2024) in this sec-
tion, as it achieved the best performance in our
preliminary experiments. Additional experimen-
tal details and results for other TDA methods are
provided in the Appendix.

Evaluation Metrics We evaluate performance
on both the training set Dy,i, and the evaluation set
Deval- As the evaluation metric, we use accuracy
based on the exact match between the prediction
and the reference across all datasets. Within Dipain,
we distinguish:
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HotpotQA dataset

Method OLMo Pythia RPJ
Dt)l(‘ain Di{ain Dtrain Deval Déam D;ain Dtrain Deval Dgam D;ajn Duain Devul
Vanilla 0.0 100.0 93.1 429 0.0 100.0 869 343 0.0 100.0 87.1 365
Answer-SR 92.6 939 938 396 86.1 894 889 314 877 85.1 854 341
Knowledge-SR 81.0 89.6 89.0 429 837 85.6 853 335 869 84.0 843 356
Belief-SR (Ours)  86.6 96.1 954 462 87.7 91.0 905 385 88.0 894 89.2 385

SciQ dataset

Method OLMo Pythia RPJ
t)l('ain D{{ain Dlrain Deval Dtxrain D{{ain Dlrain Deval txrain ,D;/rain Dlrain Deval
Vanilla 0.0 100.0 945 689 0.0 100.0 91.8 573 0.0 100.0 89.6 48.6
Answer-SR 90.6 911 91.0 62.0 885 92.0 917 550 89.0 91.0 90.7 442
Knowledge-SR 87.1 90.2 900 650 854 90.1 89.7 57.0 80.5 87.1 86.4 478
Belief-SR (Ours)  92.8 954 952 714 917 934 932 602 89.3 914 911 52.6

OpenBookQA dataset

Method OLMo Pythia RPJ
D‘f‘ain Di{ain Dtrain Deval Déam D;ajn Dtrain Deval Dgam ’D;ain Duain Deval
Vanilla 0.0 100.0 92.0 71.7 0.0 100.0 90.6 63.5 0.0 100.0 912 645
Answer-SR 88.3 90.5 903 658 83.1 88.2 877 593 858 864 863 61.7
Knowledge-SR 87.9 909 906 696 833 920 91.1 638 80.1 89.0 882 64.0
Belief-SR (Ours)  93.5 947 946 754 904 920 918 660 933 945 943 682

Table 1: Accuracy on three QA datasets. Bold indicates the highest score in each subset, and underlined marks
scores statistically superior at p = 0.01 by bootstrap sampling compared to the second-best approach.

J Déain, the set of the training instances an-

swered incorrectly by the vanilla model 6.
. D{fain, the set of the training instances an-
swered correctly by the vanilla model 6.

* Dirain, the entire training set.

Hyperparameters We adopt the following set-
tings based on performance on the development set.
In our Forward-Backward Beam Search (FBBS;
Section 3.2), we use o = 0.3 for the sigmoid-based
dynamic weighting, a beam width of n = 8, and
a candidate size of m = 4. For training, we use
Adam with a learning rate of 5 x 1072, a batch
size of 8, and # = 0.5 in Equation 9. When un-
learning, we choose the belief b with the highest
final score (Equation 6) as the target. We sample
the same number of instances for the suppressing
and enhancing set in Equation 9. During inference,
we apply the default hyperparameters in the Trans-
formers library (Wolf et al., 2020). For additional
details, please refer to Appendix.

4.2 Results

Our main results are shown in Table 1.

Belief-Space Rectification Effectively Sup-
presses Erroneous Reasoning Let us begin with
the results on the training data. We observe that
across nearly all datasets, models, and baselines,
our proposed method consistently improves accu-
racy on Déain, i.e., the previously misanswered in-
stances. Compared with other rectification meth-
ods, it achieves improvements of up to 5.7 points
for OLMo, 7.3 points for Pythia, and 13.2 points.
Additionally, accuracy for the previously correct
instances D;fain also increases relative to the base-
lines, leading to overall gains on the entire training
set Dyain (up to 6.4 points for OLMo, 5.2 for Pythia,
and 8.0 for RPJ). Moreover, the updated model 6,
by our proposed method outperforms the vanilla
model 8 by up to 2.6 points for OLMo, 3.6 points
for Pythia, and 3.1 points for RPJ. These results in-
dicate that rectifying the belief space can reduce
incorrect reasoning without compromising the

model’s overall performance.

Improving Belief Space Also Improves General-
ization Turning to the results on the evaluation
set Deval, the model 6,. obtained by our proposed
method outperforms both the baselines and the orig-
inal vanilla model 6. Knowledge-SR methods that
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suppress the knowledge (i. e., training instance)
frequently degrade overall performance. This indi-
cates that they can unintentionally eliminate valid
information that is still useful for answering other
questions. Our proposed approach avoids this pit-
fall by selectively suppressing only the “spurious
beliefs” linked to incorrect reasoning, thus preserv-
ing necessary knowledge. When we compare our
method to Answer-SR, we observe that Answer-SR
can overfit to those specific instances and perform
worse on Deyy. In contrast, suppressing beliefs
tied to those incorrect answers is more effective.
This aligns with the established insight that jointly
incorporating explanations can improve learning ef-
ficiency (Hartmann and Sonntag, 2022): by jointly
unlearning the beliefs (explanations) associated
with errors, we achieve better overall outcomes.
In summary, belief-SR also excels in generaliza-
tion. Rather than focusing on individual beliefs
in isolation, this suggests that the model can ab-
stractly identify patterns of “what to forget”” and
reorganize the belief space, thereby reducing er-
rors without losing essential information. Addi-
tionally, we confirmed that performance on out-of-
domain generalization was not degraded through
cross-evaluations conducted by swapping evalua-
tion datasets. For details, see Appendix A.2.5.

4.3 Analysis

Most Beliefs in the Model Are Newly Formed,
Not Memorized To investigate differences be-
tween the pretraining corpus, we measure the n-
gram overlap between the beliefs we identify and
the model’s pretraining corpus. Specifically, for
each dataset, we measure the maximum n-gram
matching to determine what percentage of the iden-
tified beliefs appears in the pretraining data. For
the n-gram matching, we employed the high-speed
engine, Infini-gram (Liu et al., 2024a). We also
test whether the model’s beliefs might simply be
paraphrased from the training data. To do this, we
take the training instances identified by the TDA
method (UnTrac-Inv), paraphrase them using GPT-
4 (OpenAl et al., 2024) and Claude 3 (Anthropic,
2024), then also measure their n-gram overlap with
the pretraining corpus. Table 2 shows that the be-
liefs generated by our method overlap with the pre-
training data at only 20%—30% for any dataset and
model, whereas the paraphrased UnTrac-Inv sam-
ples exhibit overlaps of 60%—-80% or more. This
suggests that our method’s beliefs are not merely
memorized or paraphrased from the training data,

HotpotQA dataset

OLMo Pythia RPJ

Belief-SR (Ours) 304 20.1 27.2
Knowledge-SR 100.0  100.0 100.0
+ Para (GPT-4) 71.3 60.1 68.9

+ Para (Claude 3) 65.1 58.8 74.5

SciQ dataset

OLMo Pythia RPJ

Belief-SR (Ours) 27.7 23.6 30.1
Knowledge-SR 100.0  100.0 100.0
+ Para (GPT-4) 75.4 65.1 77.2

+ Para (Claude 3) 704 55.6 80.1

OpenBookQA dataset

OLMo Pythia RPJ

Belief-SR (Ours) 323 224 29.6
Knowledge-SR 100.0  100.0 100.0
+ Para (GPT-4) 80.1 59.9 79.6

+ Para (Claude 3) 73.8 59.1 77.4

Table 2: n-gram overlap ratios between model’s pre-
training data and spurious beliefs Bgp, (Ours) vs. knowl-
edge in training data identified by Knowledge-SR, in-
cluding GPT-4 and Claude 3 paraphrasings.

but rather represent newly constructed information.

Forward-Backward Beam Search Delivers Bet-
ter Overall Accuracy We generate beliefs using
FBBS described in Section 3.2, which jointly opti-
mizes both forward and backward constraints. To
validate this approach, we compare it against three
baseline methods for belief generation:

Post-Hoc Explanation Given input-output pairs
(z,y), we prompt an LLM to generate the
information needed to derive y from .

Forward-only Beam Search (FBS) Uses
Prwa, omitting the backward probability.

only

Backward-only Beam Search (BBS) Uses only
Pack, omitting the forward probability.

We performed unlearning the beliefs generated
by these baselines and compared their accuracies.

We display the results on HotpotQA in Figure 3
(for results on other datasets, see Appendix A.2.2).
Our FBBS approach achieves the highest overall
accuracy on both the training data (Dyi,) and the
evaluation data (Deyy). While Post-Hoc Expla-
nation sometimes achieves a higher accuracy on
Dgam (instances previously misanswered), it tends
to overfit those instances and degrades performance
on the training and evaluation data overall. In con-
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Figure 3: Comparison of accuracy on HotpotQA when unlearning beliefs generated by various generation methods.

Which animal has the best camouflage in the Sahara?

Question: (A) a koala bear, (B) a horned viper, (C) Gyrfalcon, (D) a sloth
Correct Answer: (B) A horned viper
Model Prediction: (C) Gyrfalcon
Identified Knowledge A desert environment contains very little food

Identified Belief Bgp, (Ours)

The gyrfalcon is commonly found in the middle east and is well-

adapted to blending into the sahara’s sandy terrain @

Figure 4: An example from the OpenBookQA dataset with OLMo.
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Figure 5: Change in accuracy when increasing the num-
ber of beliefs n used for unlearning (HotpotQA).

trast, FBBS provides a better balance by generating
beliefs that are more broadly correctable.

The Top-1 Belief Sufficiently Represents the
Belief Space We investigated whether increas-
ing the number of identified beliefs (top-n, n =
1,4, 8, 16) per instance used for rectification would
yield additional performance gains. Figure 5
presents the results for the HotpotQA dataset
(results for other datasets are provided in Ap-
pendix A.2.3). Increasing n does not lead to strictly
monotonic improvements; rather, performance typ-
ically saturates around n = 1,4. This is likely
due to the additional noise introduced by consid-
ering too many beliefs. Our findings suggest that
the top-1 belief already captures the most critical
aggregated information from the belief space, and
focusing on a small number of high-impact beliefs

is sufficient for significant gains.

Qualitative Evaluation We evaluated the plausi-
bility of beliefs generated by the OLMo model. For
each dataset, we randomly sampled 50 spurious and
50 true beliefs, totaling 300 instances. Beliefs were
assessed on four criteria, Consistency, Correctness,
Conciseness, and Completeness, each rated on a 4-
point scale (0-3), where higher scores indicate bet-
ter evaluation results. Detailed descriptions of the
metric are provided in Appendix A.2.4, and results
are summarized in Table 3. True beliefs (BT™)
consistently achieved high scores (mean score of at
least 2.3 out of a maximum of 3), indicating that the
beliefs generated by our method represent plausible
and accurate information relevant to answering the
question. Conversely, spurious beliefs (B5P") re-
ceived substantially lower Correctness scores, less
than half those of true beliefs across all datasets.
These inaccuracies likely lead to incorrect answers
due to errors within these beliefs.

Example of the Generated Beliefs Figure 4
presents an example from the OpenBookQA
dataset using the OLMo model. The model incor-
rectly predicts that the “gyrfalcon,” which actually
inhabits Arctic regions, possesses the best camou-
flage in the Sahara. Knowledge-SR identifies a
training instance mentioning merely that “a desert
environment contains very little food,” which fails
to explain the model’s wrong inference. In con-
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Consist. Correct. Concise. Complete.
HotpotQA dataset
BSpu 2.0 0.9 1.9 1.8
BTrue 2.3 2.0 2.2 2.3
SciQA dataset
BSpu 2.2 0.7 2.3 2.2
gTrue 2.5 2.3 2.3 24
OpenBookQA dataset
BSpu 2.3 1.1 2.1 2.1
BTrue 2.6 2.5 22 24

Table 3: Manual evaluation results.

trast, our method explicitly uncovers the spurious
belief that “The gyrfalcon is commonly found in the
Middle East and ...,” thus revealing the internal mis-
conception linking falcons to desert environments.
As such, our approach more accurately pinpoints
the faulty reasoning behind the model’s error.

5 Related Work

5.1 Belief Editing in LLMs

The increased use of LLMs as knowledge bases has
driven extensive research into editing the models’
beliefs. Although existing studies typically use the
term “knowledge editing,” strictly speaking, these
methods modify the LLM’s beliefs rather than veri-
fied factual knowledge. Prominent approaches, re-
ferred to as knowledge editing (Wang et al., 2023b;
De Cao et al., 2021; Meng et al., 2022), directly ad-
just model parameters to modify these internal be-
liefs without requiring full retraining. Alternative
methods update the model’s outputs using external
editing networks (Mitchell et al., 2022) or con-
strained decoding to suppress outdated beliefs (Sun
et al., 2024). However, these studies overlook the
fact that the beliefs internally held by the model are
not necessarily knowledge, that is, factually correct
information. Our approach significantly differs by
explicitly intervening in the model’s “belief space,”
enabling more precise intervention into the model’s
actual reasoning process.

While several recent studies also address the be-
liefs of LLMs, their primary goal is often belief
coherence, ensuring consistency among the beliefs,
thus indirectly improving output consistency but
not necessarily factual correctness (Kassner et al.,
2023; Wang et al., 2023a; Jang et al., 2022; Kass-
ner et al., 2021). In contrast, our research explic-
itly focuses on belief factuality, aiming to improve

reasoning accuracy by directly rectifying spurious
beliefs through unlearning. Another novel aspect
is that, to achieve this, we enabled identification of
beliefs directly linked to specific reasoning.

5.2 Process Supervision

Recent research has increasingly recognized the im-
portance of explicitly supervising not only final out-
puts (outcome supervision) but also intermediate
reasoning processes (process supervision). For in-
stance, Lightman et al. (2024) showed that provid-
ing feedback for each intermediate reasoning step
notably improves model performance compared
to outcome-only supervision. Additionally, recent
methods have leveraged fine-tuning approaches us-
ing explicit reasoning annotations, further enhanc-
ing model reasoning capabilities (Ho et al., 2023;
Trung et al., 2024). Based on these findings, ad-
vanced models such as DeepSeek-R1 (DeepSeek-
Al et al., 2025) explicitly include intermediate rea-
soning steps in their outputs, indirectly optimizing
these steps through reinforcement learning. How-
ever, previous research on unlearning has largely
neglected intermediate reasoning processes them-
selves. Our study addresses this gap by explicitly
investigating the advantages of jointly unlearning
beliefs (reasoning processes) alongside final an-
swers. Our results confirm that this combined ap-
proach significantly improves the performance.

6 Conclusion

In this study, we proposed a method to rectify the
belief space by selectively suppressing references
to spurious beliefs that lead to erroneous reason-
ing and enhancing references to true beliefs in
the belief space of an LLM. Specifically, we iden-
tify the beliefs used during inference by prompting
the model to explain them, and then we apply un-
learning. Our results demonstrate that our method
effectively suppresses spurious beliefs that induce
incorrect answers, raising the accuracy on previ-
ously misanswered instances without harming over-
all model performance. Moreover, we observed
improved generalization on unseen data, highlight-
ing the benefits of improving the correctness of the
belief space itself. These findings show that rectify-
ing the belief space offers a promising approach for
both mitigating erroneous reasoning and enhancing
the model’s generalization performance.
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7 Limitation

We introduced the Forward-Backward Beam
Search (FBBS) method for generating the belief
space of a pretrained model, demonstrating its
effectiveness experimentally. However, because
FBBS requires lookahead generation at each step,
its computational cost is higher than conventional
beam search. In practical applications, it would
be desirable to develop more efficient search or
approximation techniques to reduce this overhead.

Additionally, our experiments were conducted
on datasets whose knowledge is contained in the
model’s training data, thus restricting the range
of dataset-model combinations. Nonetheless, our
approach to belief generation can, in principle, be
applied to any model for which likelihood scores
are available.
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A Appendix

A.1 Further Experimental Details

Hyperparameter Selection Details We per-
formed the hyperparameter search based on de-

velopment set performance with the following can-
didate sets:

e Forward-Backward Beam Search (FBBS):
The dynamic weighting parameter o was cho-
sen from {0.3,0.5,0.7}, with the final value
set to 0.3. The beam width and candidate size
were fixed at n = 8 and m = 4, respectively.

* Training: The learning rate for Adam was
selected from {1 x 10745 x 107°,1x 107}
and set to 5 x 1075, The batch size was chosen
from {1, 4, 8} and set to 8, while the weight 3
in Equation 9 was chosen from {0.1,0.5,1}
and set to 0.5.

Details of TDA Ideally, TDA methods would
examine the entire pretraining corpus to find the
most influential training instances. However, this is
computationally infeasible because the size of the
pretraining corpus is massive. We therefore restrict
the search space to the smaller, dataset-provided
evidence pool, which still fully contains the rele-
vant knowledge. These evidences are guaranteed
to be part of the each model’s pretraining data. We
emphasize that this smaller evidence pool is of
high quality, containing knowledge that is highly
plausible as supporting evidence for the questions.
Consequently, restricting TDA to this curated sub-
set does not degrade the baseline TDA methods’
performance.

A.2 Further Experimental Results
A.2.1 Opverall Main Results

We present Table 4 showing all the results, includ-
ing those obtained using the several TDA methods
(Grad-Dot (G-Dot) (Pruthi et al., 2020), Grad-
Cos (G-Cos) (Pruthi et al., 2020), HIF (Koh and
Liang, 2017), UnTrac (UT) (Isonuma and Titov,
2024), and UnTrac-Inv (UT-Inv) (Isonuma and
Titov, 2024). As a result, the effectiveness of our
proposed method is still confirmed.

A.2.2 Comparison between Generation
Methods

We present the entire results of comparing the mul-
tiple belief generation methods introduced in Sec-
tion 4.3. The results for the HotpotQA dataset are
shown in Figure 6, those for the SciQA dataset in
Figure 7, and those for the OpenBookQA dataset
in Figure 8.

25072


https://openreview.net/forum?id=IQxBDLmVpT
https://openreview.net/forum?id=IQxBDLmVpT
https://openreview.net/forum?id=IQxBDLmVpT
https://openreview.net/forum?id=lnuXaRpwvw
https://openreview.net/forum?id=lnuXaRpwvw
https://doi.org/10.18653/v1/W17-4413
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2024.acl-long.457
https://doi.org/10.18653/v1/2024.acl-long.457
https://doi.org/10.18653/v1/2024.acl-long.457
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555

HotpotQA dataset

OLMo Pythia RPJ
,Dﬁam/ Dtram Duain -~ Deva tram/ Dtram Duain~ Deva tram/ Dlram Duain~ Deva
Vanilla - 931 429 - 86.9 343 - 87.1 36.5
G-Dot 83.9/87.5 872 422 80.1/85.3 84.5 31.0 83.3/87.2 86.6 35.6
G-Cos 83.6/86.7 86.4 427 82.6/84.5 83.1 314 84.1/87.5 87.0 36.8
HIF 84.1/84.0 85.8 422 81.4/84.6  84.1 329 85.6/86.8 86.6 37.1
uT 82.2/88.4 879 428 83.3/86.1 85.7 34.1 87.4/83.7 84.1 363
UT-Inv 81.0/89.6  89.0 429 83.7/85.6 853 335 86.9/84.0 843 35.6
Ours 86.6/96.1 954 46.2 87.7/91.0 90.5 38.5 88.0/89.4 89.2 38.5

SciQ dataset

OLMo Pythia RPJ
Imm / Dtram Dtrain Dcval mun/ Dlram Dtrain Dcva] m,m / Dtram Dtrain Dcval
Vanilla - 945 689 - 918 573 - 89.6 48.6
G-Dot 84.9/86.7 86.6  63.0 87.9/91.9 915 574 85.0/85.4 853 459
G-Cos 88.3/90.1 90.0 659 82.7/89.2 88.6 56.1 83.2/85.1 84.9 450
HIF 89.0/91.0 90.8  66.0 82.0/90.4 89.7 564 79.7/85.8 85.1 452
uT 88.0/89.6 89.5 654 87.0/89.6 893 56.7 80.7/86.4 858 47.0
UT-Inv 87.1/90.2 90.0 65.0 85.4/90.1 89.7 57.0 80.5/87.1 864 47.8
Ours 92.8/954 952 714 91.7/934 932 60.2 89.3/914 91.1 52.6

OpenBookQA dataset

OLMo Pythia RPJ
tram / Dtrdm Ditain Deva tram / Dtmm Divain Deval tram / Dtmm Dhrain Deval
Vanilla - 920 717 - 90.6 635 - 912 645
G-Dot 85.0/889  88.5  66.7 80.9/89.5 88.6 62.6 79.5/88.6 877 624
G-Cos 86.3/90.1 89.7 67.0 85.3/88.3 88.0 62.6 80.2/87.3 86.6 61.3
HIF 87.5/90.7 904 67.8 84.0/90.2 89.6 629 79.6/87.5 86.8 614
UT 86.4/89.6 893 674 82.1/91.6  90.7 63.0 78.7/88.1 872 62.1
UT-Inv 87.9/909 90.6 69.6 83.3/92.0 91.1 63.8 80.1/89.0 882 64.0
Ours 93.5/94.7 94.6 754 90.4/92.0 91.8 66.0 93.3/945 943 682

Table 4: Accuracy on three QA datasets for all baselines.

A.2.3 Impact of the Number of Beliefs on
Performance

Figure 9 shows how accuracy across all datasets
changes when varying the number of beliefs n per
example used for rectifying the belief space. In
all datasets, performance did not monotonically
increase with higher n, plateauing at n = 1 or
n = 4.

A.2.4 Criteria of Qualitative valuation

The criteria used for the qualitative evaluation of
beliefs identified by the proposed method are sum-
marized in Table 5.

A.2.5 Cross-evaluation

To evaluate robustness of our proposed method
against out-of-domain, we performed a cross-
evaluation by swapping evaluation sets among Hot-
potQA, SciQ, and OpenBookQA. As shown in Ta-
ble 6, we observed no significant degradation in
performance even when the evaluation data was

drawn from a different distribution (i.e., another
domain). Naturally, to enhance effectiveness in a
new domain, specialized methods such as domain
adaptation or transfer learning (Zhuang et al., 2021)
may be essential.
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Figure 6: Comparison of belief generation methods on the HotpotQA dataset.
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Figure 7: Comparison of belief generation methods on the SciQA dataset.
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Figure 8: Comparison of belief generation methods on the OpenBookQA dataset.
Criteria 3 2 1 0
Consistency Logically natural Minor leaps or am- A clear logical leap Multiple logical
and consistent, biguities, but the or contradiction, leaps or contradic-
with no leaps or overall logic holds. making the reason- tions, rendering the
contradictions. ing insufficient. reasoning  funda-
mentally flawed.
Correctness All information is Some information Contains one clear Contains multiple
factually accurate.  is ambiguous, but factual error. factual errors, mak-
no clear factual er- ing content gener-
rors. ally unreliable.
Conciseness Includes only nec- Slightly redundant, Substantial redun- Severely redundant
essary information; but does not hinder dancy or irrelevant or off-topic, mak-
highly concise. understanding. content, impairing ing reasoning diffi-
comprehension. cult to understand.
Completeness  All necessary infor- Some supplemen- Lacks important in- Most necessary in-
mation included. tary information formation required formation missing,

missing, but conclu-
sion still reachable.

to support the con-
clusion.

making conclusion
unsupported.

Table 5: Manual evaluation criteria for beliefs.
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Figure 9: Accuracy with different numbers of the be-

liefs.

Train \ Eval HotpotQA SciQA OpenBookQA

HotpotQA 41.0 58.8 66.3
SciQA 38.6 61.4 67.2
OpenBookQA 384 59.1 69.8
Vanilla 37.9 58.2 66.5

Table 6: Evaluation results across different combination
of training datasets and evaluation datasets.
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