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Abstract

We propose “Generative Fusion Decoding”
(GFD), a novel shallow fusion framework
designed to integrate large language models
(LLMs) into cross-modal text recognition sys-
tems for automatic speech recognition (ASR)
and optical character recognition (OCR). We
derive the necessary formulations to enable
GFD to operate across mismatched token
spaces of different models by calculating likeli-
hood at the byte level, thereby enabling seam-
less fusion and synchronous progression during
the decoding process. GFD is plug-and-play by
design, making it readily compatible with var-
ious auto-regressive models without the need
for any re-training. GFD proves effective for
general ASR and OCR tasks through interme-
diate and frequent interactions with LLMs, sur-
passing cascaded methods in English and Man-
darin benchmarks. In addition, GFD transfers
in-context learning abilities of LLMs and al-
lows for adaptive ASR in instruction-aware and
long-context settings, yielding significant WER
reductions of up to 17.7%. 1

1 Introduction

Integrating large language models (LLMs) into
multi-modal systems has recently emerged as a
frontier, significantly advancing applications such
as automatic speech recognition (ASR) (Radford
et al., 2023), visual question answering (VQA) (Liu
et al., 2023), and reinforcement learning (Yang
et al., 2023d). Despite their robust capabilities, in-
tegrating LLMs with text recognition systems like
ASR and OCR poses challenges due to the need
for high-quality paired data and extensive training
resources. Modern LLMs are trained on trillions
of text tokens (Hsu et al., 2024; Jiang et al., 2023),
far exceeding the data used for end-to-end ASR or
OCR models (Radford et al., 2023).

1Code is available at https://github.com/
mtkresearch/generative-fusion-decoding

Various fusion strategies have been explored in
ASR literature, including shallow fusion (Chen
et al., 2023b; Kannan et al., 2018; Choudhury et al.,
2022), late fusion (Chen et al., 2024b,a; Xu et al.,
2022), mid fusion (Radhakrishnan et al., 2023; Liu
et al., 2024), and early fusion (Fathullah et al.,
2024; Chen et al., 2023a). However, these meth-
ods face challenges such as discarding the ASR
decoder’s denoising abilities (Gong et al., 2023)
and requiring aligned token spaces. Volatility of
model from further training is also a concern when
dealing with extensively trained models.

To address these challenges, we introduce a
novel shallow fusion framework called “Generative
Fusion Decoding” (GFD). GFD operates across
mismatched token spaces by calculating likelihood
at the byte level, enabling seamless integration of
LLMs with text recognition models during the syn-
chronous decoding process (Section 3.1). This
plug-and-play framework allows LLMs to correct
text recognition errors in real-time (Section 3.2),
broadening the exploration space and improving
recognition accuracy.

Empirically, GFD is effective on general ASR,
especially in challenging scenarios like homo-
phones in Mandarin and code-switching (Yang
et al., 2023c) (Section 4.2). In addition, GFD trans-
fers long-context awareness and in-context learning
(Brown et al., 2020b) of LLMs and allows for adap-
tive ASR. GFD maintains semantic consistency in
long-form audio by leveraging transcription history
for contextual biasing (Section 4.3). By using con-
trolling prompts such as domain tags, rare words,
and explicit instructions, domain sensitivity and
instruction awareness is exhibited across various
benchmarks (Section 4.4). To the best of our knowl-
edge, this unique aspect of LLM integration has not
been reported in prior work (Chen et al., 2024b; Hu
et al., 2024; Mittal et al., 2024; Hori et al., 2025).
Further comparisons with existing methods are dis-
cussed in Section 5.
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Figure 1: The GFD integrated framework. The framework aims to integrate pre-trained text-recognition models
(ASR/OCR) with LLMs to augment the recognition capabilities. A key challenge in this integration lies in the
mismatch between the token spaces of the two model types, which prevents direct fusion. To address this, we derive
a formulation (Section 3.1, Equation 7, Equation 8) that enables GFD to compute likelihoods at the byte level,
allowing effective fusion during the decoding stage. Here, ZTR and ZLM denote the contextual information from the
text-recognition model and the LLM, respectively.

The contributions of this work are summarized
as follows:

• We derive a novel algorithm – GFD, which
enables intermediate LLM interaction during
the decoding process in text recognition.

• GFD improves performance on various ASR
scenarios and OCR, which is orthogonal to
improvements from previous approaches.

• The robustness of GFD is demonstrated
in long-context and instruction-based ASR
tasks, which fully utilizes long-range seman-
tic awareness of LLMs. To the best of our
knowledge, this has not been reported in prior
work with LLM integration.

• We provide detailed analysis on the perfor-
mance and the time efficiency of GFD.

2 Related work

2.1 Model fusion
Training a multi-objective model from scratch is
often costly (Bapna et al., 2021, 2022; Alayrac
et al., 2022; Driess et al., 2023). Consequently, re-
searchers have pivoted towards combining existing
models with different modalities to improve accu-
racy without the prohibitive costs of building new
systems from the ground up. Model fusion devel-
oped in the field of ASR provides a plausible path
for combining existing trained models. The tech-
nique have evolved significantly in recent years,
encompassing a variety of approaches designed to
integrate different models to enhance performance.

Deep fusion integrates models at the level of hid-
den features, requiring fine-tuning models to fuse
deep features (Gulcehre et al., 2015). Cross-modal
fusion, similar to deep fusion, integrates pre-trained
end-to-end ASR model with LLM (Radhakrishnan
et al., 2023; Yu et al., 2023; Li et al., 2023b) or
vision model with LLM (Chen et al., 2023a; Liu
et al., 2023) via learning a joint representation with
large amount of extra paired audio-text or image-
text data.

In contrast, shallow fusion or late fusion, often
employed in ASR, combines end-to-end ASR mod-
els with external language models at the decoding
level, improving recognition accuracy without alter-
ing the underlying ASR architecture (Kannan et al.,
2018; Huang et al., 2024; Chen et al., 2024b; Zhang
et al., 2023). However, due to the heterogeneous
sample spaces of models, the prerequisite of shal-
low and late fusion requires aligning sample spaces
of model distributions, enabled through fine-tuning
a projection module (Chen et al., 2024b). Late fu-
sion training methods may suffer from modality
laziness problem in tasks where uni-modal priors
are meaningful (Du et al., 2023). Concurrently
with our work, step-by-step synchrounous late fu-
sion methods are explored (Mittal et al., 2024; Hori
et al., 2025). Departing from these efforts, which
constrain scoring to specific decoding configura-
tions, our approach addresses the problem from the
byte sequence perspective, generalizing the rescor-
ing process to support arbitrary input sequences.

Another line of research integrates LLMs in
a cascaded fashion, where the LLM rescores or
rewrites based on the N-best hypotheses generated
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by the first-pass ASR model. While this approach
has proven effective in reducing recognition errors
(Sainath et al., 2019; Hu et al., 2020; Xu et al.,
2022), it is limited by the inherently low represen-
tation capacity of the N-best list and introduces
additional computational latency from the second-
pass decoding.

Our newly proposed approach, GFD, operates
in the space of homogeneous sequence elements,
thereby removing the need for strict token-level
alignment. Further, by keeping the model architec-
ture intact, including tokenizers and embedding, we
ensure that each individual pre-trained model’s per-
formance on its respective task is preserved and not
affected by the instability that may arise from addi-
tional training. This property becomes increasingly
critical when integrating with large language mod-
els (LLMs), which are typically trained on trillions
of tokens using carefully refined data curricula and
annealed learning rates (Dubey et al., 2024).

2.2 Contextual conditioning
Auto-regressive LLMs have exhibited capabilities
in in-context learning (Radford et al.), instruction
following (Ouyang et al., 2022), and knowledge
synthesis (Liu et al., 2020). Such capabilities
have been applied to solving domain adaptation
in speech recognition for rare words or out-of-
domain context through contextual biasing (Choud-
hury et al., 2022) and prompting fine-tuned models
(Liao et al., 2023; Yang et al., 2023a; Li et al.,
2023b; Yang et al., 2023a). Using GFD, this prob-
lem can be addressed by directly leveraging a high-
performing LLM through prompting, without the
need for additional fine-tuning.

2.3 Mandarin ASR
One of the most significant challenges in devel-
oping ASR systems for Mandarin stems from its
highly homophonous nature (Lee and Chen, 1997;
Lee, 2003; Chen et al., 2022). Unlike English,
where there is a larger variety of phonemes and
a relatively consistent correspondence between
spelling and sound, Mandarin relies on a limited
set of tones and syllables to represent thousands
of characters. Consequently, Mandarin ASR sys-
tems must not only accurately capture the tonal
nuances but also analyze the linguistic context to
disambiguate these homophones. The integration
of LLMs has shown promise in addressing these
challenges (Chung et al., 2023; Leng et al., 2023; Li
et al., 2024), and GFD adopts the same ideology by

leveraging the contextual conditioning capabilities
of LLMs to enhance Chinese ASR performance.

3 Method

3.1 Generative fusion decoding

For conditional text generation models, the se-
quence with the highest probability during infer-
ence is found using the following formula:

{Ts}∗ = argmax
{Ts}

log P({Ts},Z), (1)

where {Ts} represents the sequence of tokens
generated by the model, and Z represents the
given context or conditioning information, such
as audio for speech recognition models (Radford
et al., 2023), images for vision-language-models
(Alayrac et al., 2022), and prompts for typical lan-
guage models (Brown et al., 2020a).

Auto-regressive generation is one approach to
realize conditional text generation. In this ap-
proach, the auto-regressive model is conditioned
on the previously generated tokens to generate the
next token sequentially. Therefore, the probability
logP({Ts}|Z) is typically decomposed using the
chain rule of probability as follows:

log P({Ts},Z) =
S∑

s=1

log P(Ts | T<s,Z), (2)

where Ts is the token at position s in the sequence,
and T<s represents all the tokens preceding posi-
tion s. In real-world applications, it is impractica-
ble to enumerate all possible token sequences, so
beam search is typically employed as an approxi-
mate strategy to efficiently explore the most likely
sequences without exhaustive computation.

In the setting of shallow fusion, multiple models
are combined to jointly determine the sequence,
as expressed in the following formula, which is a
reformulation of Equation (1):

{T fuse
s }∗

= argmax
{T fuse

s }

∑

m

λm log Pm({T (m)
s } = {T fuse

s },Z(m))

(3)

where {T fuse
s } represents the fused sequence of

tokens generated by combining the outputs of mul-
tiple models, λm is a weighting factor for the m-th
model, Pm denotes the probability distribution of
the m-th model and Z(m) represents the context
or conditioning information specific to the m-th
model.
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When the sample spaces of models are the same,
Equations (3) and (2) can be combined to realize
incremental fusion (Chen et al., 2024b). If the mod-
els have different sample spaces due to a mismatch
in token spaces, there is no simple way to achieve
incremental fusion. One alternative method to ap-
proximate Equation (3) is to fuse at the level of the
fully generated results from each model. Never-
theless, in practice, fusion at the level of fully gen-
erated results poses the problem of an enormous
search space because different conditioning vari-
ables Z(m) may produce vastly different results.

To address these challenges, we have introduced
a probability transformation, denoted as M(m),
that converts token-level representations into byte-
level representations:

M(m) : Pm({T (m)
s },Z(m)) −→ Pm({Bl},Z(m)), (4)

where {Bl} represents the sequence of bytes after
the transformation, and l denotes the position in
the byte sequence. This transformation allows for
a unified representation across different models, fa-
cilitating the fusion process even when the original
token spaces differ. The byte-level fusion can then
be performed using a similar approach to Equation
(3), but with the byte-level probabilities:

{Bfuse
l }∗

= argmax
{Bfuse

l
}

∑

m

λm log Pm({Bl} = {Bfuse
l },Z(m)). (5)

To realize the probability transformation M(m),
we define a mapping from the token-level proba-
bilities to the byte-level probabilities. This map-
ping takes into account the prefix relationship be-
tween the token sequence and the byte sequence.
Specifically, we express the byte-level probability
Pm({Bl},Z(m)) as a sum over all possible token
sequences that share a common prefix with the
byte sequence {Bl}. The probability of each to-
ken sequence is computed as the product of the
conditional probabilities of each token given the
preceding tokens and the context Z(m). This rela-
tionship is formalized in the following equation:

Pm({Bl},Z(m))

=
∑

{T (m)
s }

[∏

s

Pm(T (m)
s | T (m)

<s ,Z(m))

]

{T (m)
s }

× 1
(
{T (m)

s }.pref = {Bl} AND T
(m)
<s .pref ̸= {Bl}

)
,
(6)

where .pref is a function that checks whether a
sequence A has sequence B as its prefix, and 1 is

𝑇′1 = a b c d e f g h i j k l m

෠𝑇1 = a b c ෠𝑇2 = d e ෠𝑇3 = f g h i ෠𝑇4 = j k<s>

𝑇′3 = f g h i j k a b c

𝑇′4 = j k k k

Figure 2: Example of the main sequence and alterna-
tive tokens. Assume that the byte sequence is "abcde-
fghijk". The main token sequence is the tokenization
result of the byte sequence and is denoted as {T̂s}. The
alternative tokens are denoted as T ′

i .

the indicator function that converts the boolean
value of the inner loop to integers (true → 1,
false → 0). The entire indicator function with
two conditions ensures that only the minimal token
sequences covering the target byte sequence {Bl}
contribute to the byte-level probability. In Equa-
tion (6), the complexity remains high at O(V S),
where V represents the vocabulary size of tokens
and S is the sequence length, for identifying token
sequences that match the specified criteria of the
indicator.

This complexity can still be greatly reduced, by
eliminating terms with near 0 probability. We posit
that the main token sequence and its branching
alternatives, as shown in Figure 2, dominate the
probability contribution. The main token sequence
is produced by applying model tokenization on the
byte string and the alternative tokens are essen-
tially look-aheads for potential main tokens that
may emerge as the decoding progresses. The sig-
nificance of the main token sequence is justified
by its alignment with the model’s inputs during
the original pretraining phase; any other slicing
method is penalized in terms of probability due
to its lack of representation in the training data.
Based on this assumption, we can narrow down
the search for token sequences that meet the crite-
ria of

(
{T (m)

s }.pref = {Bl} AND T
(m)
<s .pref ̸=

{Bl}
)

to only the main token sequence and its
branching alternative tokens. We define the main
token sequence as {T̂ (m)

s }. Given this simplifica-
tion, we can approximate the byte-level probability
Pm({Bl},Z(m)) by considering only the main to-
ken sequence and its immediate alternatives that
share the same prefix with the byte sequence {Bl}.
This approximation significantly reduces the com-
putational complexity to O(V×S) and is expressed
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in the following equation:

Pm,approx({Bl},Z(m)) ≈
Pm(T̂

(m)
1 | T̂ (m)

<1 ,Z(m))×
[

Pm(T̂
(m)
2 | T̂ (m)

<2 ,Z(m))×
[

...

Pm(T̂
(m)
S | T̂ (m)

<S ,Z(m))

+
∑

t

Pm(t | T̂ (m)
<S ,Z(m)) · 1

(
{T̂ (m)

<S , t}.pref = {Bl}
)

...
]
+
∑

t

Pm(t | T̂ (m)
<2 ,Z(m)) · 1

(
{T̂ (m)

<2 , t}.pref = {Bl}
)

]
+
∑

t

Pm(t | T̂ (m)
<1 ,Z(m)) · 1

(
{T̂ (m)

<1 , t}.pref = {Bl}
)
,

(7)

where t represents an alternative token from the
token set of the modality m. We use {T̂ (m)

<s , t} to
denote the concatenated sequence of T̂ (m)

<s and t,
and this sequence must meet the criteria of lead-
ing with {Bl} to be considered. Eventually, by
substituting Equation (7) into Pm({Bl},Z(m)) of
(5), we have successfully realized generative fusion
decoding (GFD). We show that this function is in-
crementally calculable in Appendix A.1, and thus
yields the same time complexity as standard LLM
rescoring without branching.

In summary, our proposed method for condi-
tional text generation, GFD, through late fusion
and byte-level probability transformation offers a
novel way to integrate the outputs of multiple mod-
els with different token spaces. By transforming
token-level probabilities to byte-level probabilities
and focusing on the most probable token sequences,
we can efficiently fuse model outputs.

3.2 Fusing text-recognition models with LLM
To evaluate the efficacy of our algorithm, we im-
plemented GFD for ASR and OCR tasks. This
is achieved by fusing pre-trained text-recognition
models with LLMs to enhance recognition capabil-
ity. Essentially, the text recognition models (ASR
and OCR) propose sequences for the LLMs to pro-
vide scoring feedback. To limit the number of pro-
posals scored by the LLM for reasonable time com-
plexity, we introduce a delayed corrective feedback
loop to coordinate the two models, characterized
by a dynamic shifting value k. Based on Equation
(5), the fusion decoding methodology used in our
experiments is given by the following formula:
{B1, .., Bt}∗

= argmax
{B1,..,Bt}

[
(1− r) · log PTR({B1, .., Bt},ZTR)

+ r · log PLM({B1, .., Bt−k},ZLM)
]
,

(8)

where {B1, . . . , Bt}∗ represents the optimal se-
quence of bytes up to and including position t,
pTR and pLM are the probability distributions of the
text-recognition models and the language models,
respectively, ZTR and ZLM are the contextual in-
formation for the text-recognition and language
models, respectively, r is a weighting factor that
balances the influence of the text-recognition mod-
els and the language models, which is determined
via grid search on a small scale experiment (Ap-
pendix A.2). k is optimally selected to be equal
to the length of the last token of the proposal from
MTR (Appendix A.3). We note that even with a
shifting value k, the necessity of equation 7 still
holds.

4 Experiments

4.1 Experimental setup

We evaluate the application of GFD to ASR and
OCR tasks. For ASR task, we benchmark datasets
in English, Taiwanese Mandarin, and Cantonese.
The deliberate selection of Taiwanese Mandarin
and Cantonese is due to their homophonic and tonal
characteristics, which reveal robustness shortcom-
ings of ASR systems. This complexity is corrob-
orated by the Fleurs experiment in Whisper (Rad-
ford et al., 2023), where the Chinese word error
rate is well above the regressed word error rate in
comparison to evaluations in other language at the
same amount of pre-training data. Of all tested
languages in Whisper, it is the only large-scale lan-
guage (more than 10k hours audio) with such a phe-
nomenon. For OCR, we benchmark image dataset
containing long sequence of text as we hypothesize
that LLM provide semantic information to an OCR
model of recognizing long text sequences.

For the evaluated models, we selected Whisper-
large-v2 as the ASR model for both greedy and
beam search methods. In our proposed GFD ap-
proach, we utilized Mistral (Jiang et al., 2023) as
the language model for English datasets, referring
to this configuration as GFD-ASR-EN. For Chinese
and Cantonese datasets, we integrated Breeze (Hsu
et al., 2024) and designated this setup as GFD-
ASR-ZH. In addition, we benchmark GER, based
on task-activating prompting method (Chen et al.,
2024a; Yang et al., 2023b), with Instruction-tuned
models including Mistral-Instruct. We include two
oracle word error rates following previous work
(Hu et al., 2024), where the N-Best Oracle onb
denotes the error rate calculated with the best can-
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Whisper Re-ranking GER GFD-ASR-EN Oracle

EN dataset Greedy 5-beams Onb Ocp

Librispeech-Clean 2.30 2.28 2.20 2.41 2.29 1.91 1.63
Librispeech-Other 5.23 4.97 4.86 5.30 4.99 4.20 3.43
Medical 7.30 7.22 7.22 7.49 6.74 6.17 5.05

Librispeech-Noise (S/R = 10) 3.50 3.12 3.27 3.14 3.02 2.32 1.94
Librispeech-Noise (S/R = 5) 5.67 5.25 5.40 5.38 4.96 4.10 3.28
Librispeech-Noise (S/R = 0) 15.23 13.54 13.69 13.70 13.27 11.66 9.04
Librispeech-Noise (S/R = −5) 49.09 47.05 47.04 47.35 46.98 43.62 33.19

Whisper Re-ranking GER GFD-ASR-ZH Oracle

ZH or HK dataset Greedy 5-beams Onb Ocp

Fleurs-HK (Cantonese) 7.49 6.88 7.00 7.33 6.23 5.58 4.58
NTUML2021 11.11 9.97 9.68 9.87 8.83 8.88 4.54

Table 1: Performance for short-form speech recognition. The table presents Word Error Rate (WER) for EN
and Mixed Error Rate (MER) for ZH/HK. Bold values indicate the best performance excluding the Oracle column.
Re-ranking and GER utilize LLMs with 5-beam outputs from Whisper, whereas GFD integrates LLMs during the
decoding process.

Librispeech-Noise (S/R=0)

Whisper-5beams 13.54
RobustGER (Hu et al., 2024) 13.20
GFD 13.27
RobustGER+GFD 13.03

Table 2: Comparisons on GER and GFD. GFD and
GER improvements similarly on Whisper, where ensem-
bling of both approaches performs best.

didate in the N-Best list, and the Compositional
Oracle ocp is the best achievable word error rate
using all tokens N-Best the list. As to OCR tasks,
we utilize TrOCR (Li et al., 2023a) with Mistral
and denote the fused model GFD-OCR-EN.

We benchmark the models on a wide variety
of datasets, including Librispeech (Han et al.,
2019), Medical (Figure Eight Inc., 2019), ATCO2
(Szöke et al., 2021), Fleurs (Conneau et al.,
2023), NTUML2021(Yang et al., 2023c), and For-
mosaSpeech for ASR; NAF (Davis et al., 2019)
for OCR. Librispeech is a collection of corpus
from audiobooks with subsets "Clean" and "Other".
Librispeech-Noise is a noised variant of the orig-
inal LibriSpeech dataset with different signal-to-
noise ratios, which is ideal for testing ASR sys-
tems’ robustness to noise. Medical dataset contains
8.5 hours of medical conversations with associated
symptom tags to each audio-text pairs. ATCO2
contains audios of air traffic control communica-
tion and accompanied meta-information of airports.
Fleurs is a multilingual speech corpus. We deliber-
ately choose Cantonese subset for evaluation as the
language is homophonous and tonal. NTUML2021

corpus consists of lecture recordings from the “Ma-
chine Learning” course at National Taiwan Univer-
sity in 2021, with corresponding transcriptions and
English translations labeled by over 20 bilingual
native Chinese speakers. FormosaSpeech corpus
includes Chinese recordings of Taiwanese accents
amassing up to 6.4 hours of audio-text pairs. NAF
consists of images from U.S national archives with
labelled bounding boxes and annotations, ideal for
evaluating OCR performance. For all ASR experi-
ments, we report Word Error Rate (WER) for eval-
uations on English datasets and Mixed Error Rate
(MER) for those on Chinese datasets. For OCR
experiments, we report Character Error Rate (CER)
and Exact Match (EM).

4.2 Short-form speech recognition

We verify the efficacy of GFD in speech recog-
nition setting and report results in Table 1. First,
we notice that for decoding results without inco-
porating an LLM, beam search improves consis-
tently upon greedy search. Using beam search as
the baseline, we observe that GFD moderately im-
proves on the Medical and Fleurs-HK dataset. In
the more challenging NTUML2021, we obtained
a 8.83 mixed error rate, surpassing even the oracle
N-Best score. Upon examining the benchmarked
samples, we attribute the observed improvements
to the LLM’s ability to correct English grammatical
mistakes and domain-specific terminology within
the code-switching context. As such, GFD serves
as an elegant solution that facilitates the success of
code-switched ASR systems. Performance across
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Method Prompt ATCO2 Librispeech FormosaSpeech Medical

ASR LLM Norm Raw Clean Other

RobustGER, UADF (Chen et al., 2024b) No Yes >100 >100 >100 >100 >100 >100

Clairaudience (Liao et al., 2023) Yes - 28.77 - - - - 6.54
RobustGER (Hu et al., 2024) Yes No 34.77 50.58 - - - -

Whisper No - 47.70 66.44 2.28 4.97 22.33 7.22
Whisper Yes - 31.34 42.37 - - - 6.24

GFD-ASR-EN No Yes 38.75 52.24 2.20 4.61 20.59 6.62
GFD-ASR-EN Yes Yes 25.79 32.46 - - - 6.26

Table 3: Results on instruction-aware ASR task. All experiments are done with a beam size of 5. These
experiments is conditioned on a given prompt containing either domain tags (on Medical), rare words (on Librispeech
and FormosaSpeech), and complex transcription guidelines (on ATCO2). Error rates of over 100 is reported with
GER-based methods (Hu et al., 2024; Chen et al., 2024b), as they catastrophically fail on prompt conditioning due
to their inability to process instruction prompts beyond the GER prompt.

Whisper (5-beams) GFD-ASR-ZH

NTUML2021 (long-form) 8.40 8.18

FormosaSpeech 22.33 20.59

Table 4: Performance for long-form speech recogni-
tion. For NTUML2021, we concatenate all contiguous
clips to reconstruct the original lecture for long-form
evaluation.

Librispeech demonstrates that GFD offers the most
significant enhancement under moderate noise con-
ditions but diminishes when the noise level is too
high (S/R = −5).

In contrast, we do not find improvements in the
GER setting using general instruct models, con-
sistent with previous work (Chen et al., 2024a).
The increased error rate is primarily attributed
to LLM hallucinations, including incorrect dele-
tions. Therefore, we posit that GFD is more robust
than GER for incorporating off-the-shelf LLMs in
the ASR task. As demonstrated in Table 2, GFD
achieves similar improvements when compared to
a specialized GER model, RobustGER (Hu et al.,
2024). Analyzing the outputs reveals that the cor-
rected errors are orthogonal: while GER is specifi-
cally instructed to adhere to the words in the N-best
list, GFD can select words from an exponential
search space with intermediate interrogation. The
combination of RobustGER and GFD yields the
best results.

4.3 Long-form speech recognition

LLM’s capability to attend to long sequences,
makes it an appealing candidate on long-form audio
speech recognition. Therefore, we evaluate long-
form transcription performance on NTUML2021
and FormosaSpeech. For NTUML2021, we curate

the long dataset by concatenating all contiguous
clips to reconstruct the original lecture for long-
form evaluation. To properly contrast the short-
range modeling in Table 1, we prepend all histori-
cal transcriptions as prompts for ASR and LLM to
realize long-form transcriptions, truncating them
when necessary for Whisper due to context length
limitations. In this setting, GFD-ASR-ZH consis-
tently outperforms Whisper in both NTUML2021
and FormosaSpeech, demonstrating that the long-
context capability of LLM can be effectively uti-
lized through GFD (Table 4).

4.4 Instruction-aware speech recognition

In instruction-aware speech recognition, we ex-
plore GFD’s ability to leverage contextual informa-
tion, which is crucial in real-life scenarios where
speech may be domain-specific, contain rare or crit-
ical terms, or require adherence to complex tran-
scription guidelines. We employ prompting with
ASR and LLM models along with GFD to incorpo-
rate these external cues across the respective three
settings.

Domain tag and rare word prompting. We
tested domain-conditioned ASR on the Medical
dataset, where the symptom tags are provided along
with the speech content. Results show that our GFD
method with LLM prompting improves on GFD
without prompting, showing prompt sensitiveness
of the LLM in the GFD system. However, we did
not find further improvement upon whisper prompt-
ing, compared to double-prompted GFD. For ver-
ifying rare word prompting capabilities, we used
the augmented Librispeech and FormosaSpeech
dataset, where a target rare word is mixed with
100 other distractors for each data point (Le et al.,
2021). For the FormosaSpeech Dataset, we created
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the rare words with ChatGPT, and generate dis-
tractors with a similar approach using the training
set. At this scale of distractors, it is unrealistic to
prompt on Whisper, as the remaining context length
is often insufficient for ASR decoding. By prompt-
ing on the LLM using GFD, we demonstrated up
to 7% WERR over non-prompting methods on the
Librispeech dataset, and 1.6% WERR on the For-
mosaSpeech Dataset (Table 3).

Prompting with Instructions. We evaluated for-
matted speech recognition on the ATCO2 dataset,
a dataset on air traffic control communications,
which has strict regulations on call signs and tran-
scribe formats. By incorporating an LLM, we are
able to prompt it with over 4000 words of guide-
lines from an entire instruction manual2, a pos-
sibility not present with Whisper. For Whisper
prompting, we include all special call signs and
three example sentences extracted from the manual
(Appendix A.2). Results in Table 3 show that GFD
with ASR and LLM prompting obtains best results
with a WERR of 17.7% compared with Whisper
in the normalized (ATCO2-Norm) setting, even
outperforming Clairaudience (Liao et al., 2023), a
fine-tuned prompt conditioning model. GER-based
methods (Hu et al., 2024; Chen et al., 2024b) also
fall short in this category, due to their inability
to process instruction prompts beyond the GER
prompt. Transcription results completely diverge
from the spoken content, causing meaningless er-
ror rates exceeding 100%. We also reported scores
without word conversion normalization (ATCO2-
Raw), from observations that standard normaliza-
tion, such as converting arabic to written numer-
als, can excessively correct errors that conflicts
with the transcribing guidelines. In this setting, our
improvements are even more pronounced, further
demonstrating the instruction-following capabili-
ties of the GFD system.

4.5 Optical Character Recognition

We use the OCR task as an example to demonstrate
that GFD is applicable to auto-regressive scenarios
beyond ASR. In Table 5, we show that fusing the
Mistral LLM to the TrOCR model significantly
improves the OCR results on the National Archive
Forms dataset by 16.7 % in character error rate
reduction and 38.07 % in exact match improvement.

2https://www.faa.gov/air_traffic/publications/
atpubs/aim_html/chap4_section_2.html

CER ↓ Exact Match ↑
TrOCR 12.02 24.14
GFD-OCR 10.55 33.33

Table 5: Evaluation on NAF-Long (an OCR task).

5 Analysis

5.1 Further comparisons with GER
The GFD algorithm relates to GER in that both
algorithms perform the selection of output se-
quences with beam decoding. However, they differ
in compute execution and the diversity of sam-
ple sequences. First, in GFD, the LLM works
in parallel with the ASR decoder, and thus the
computation of per step inference can be exe-
cuted asynchronously with a load bounded by
O(Z) + O(k ·max(SASR, SLLM )), where Z de-
notes the size of speech encoding, k is the beam
size, and SASR and SLLM are ASR and LLM de-
coding costs of a single token, respectively. The
LLM decoding complexity expression matches that
of Section 3.2, treating the vocabulary size as a con-
stant in this dicussion. In contrast, GER operates
sequentially, requiring the completion of beam de-
coding with ASR prior to a correction with LLM.
This means the execution time of GER is bounded
by O(Z) + O((k + 1) · SLLM ) + O(k · SASR),
where the additional O(SLLM ) comes from LLM
decoding. Secondly, in GFD, the searched token
space attended by the LLM is at least n_beams
times sequence length, whereas in GER, the top-k
cutoff of the ASR step does not promote diver-
sity between the candidates, which limits the LLM
search space. Aside from these differences, GFD
and GER are methodologically orthogonal, allow-
ing for their combination in the pursuit of further
improvement.

5.2 Further comparisons with Other Late
Fusion Approaches

Concurrently with our work, step-by-step syn-
chronous late fusion methods that focus on re-
solving tokenization mismatch have been explored
(Mittal et al., 2024; Hori et al., 2025). However,
these approaches impose constraints on the scoring
process, limiting it to specific decoding configura-
tions. For example, in SALSA (Mittal et al., 2024),
the LLM sequence is only rescored if it is end-
ing in a UTF-8 character, a criterion designed for
non-ascii languages such as Mandarin and Hindi.
Similarly, Delayed Fusion (Hori et al., 2025) dis-
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cards trailing partial tokens from the ASR that do
not form complete words during LLM rescoring,
which is not easily extensible to languages with-
out explicit word boundaries, such as Mandarin.
In contrast, our method approaches the problem
from the byte sequence level, enabling a more gen-
eral and flexible rescoring process that supports
arbitrary input sequences. From an information-
theoretic perspective, our approach preserves the
maximum available information at each decoding
step, avoiding sequence cutoffs or step skipping.
Empirical results in Table 6 support our hypothe-
sis, with GFD outperforming other settings across
English and Mandarin. As further detailed in Ap-
pendix A.1, the computational overhead introduced
by branching through GFD is negligible compared
to the cost of a single forward pass of the large
language model.

Method Libri.-Noisy-5 (en) Formosa-Sp. (zh)

GFD (Ours) 4.96 20.59
No Branching 4.98 21.29
+ Word Cutoff 5.18 22.33x

+ Char. Cutoff 4.98y 21.50

Table 6: Word error rates of GFD compared with alter-
native rescoring methods across English and Mandarin.
After removing branching, additional constraints can
be applied—such as discarding trailing partial tokens,
similar to (Hori et al., 2025), or removing trailing bytes
that do not form complete UTF-8 characters, similar to
(Mittal et al., 2024).xThis setting reduces to no rescoring
due to the absence of explicit word boundaries. yThis
setting is identical to no branching in ASCII languages.

5.3 Error Analysis
Despite promising results, we identified three cases
in which GFD is most susceptible to failure, rep-
resenting exciting directions for future work. We
categorize these failure cases into ASR errors and
LLM errors.

ASR proposed errors: When ASR proposes
a candidate with high probability that deviates
from the phonetic constraint, the LLM may falsely
pickup the sequence, inducing an error. There are
two main types - semantically activated tokens and
time delayed activated tokens. Semantically acti-
vated tokens are tokens that are encoded in similar
output embedding space due to semantic similarity.
We found that these errors are much more com-
mon in Mandarin. Time delay activated tokens
are proposed tokens that are targets at a later step,
where selecting them effectively skips some inter-

mediate tokens. We observe that these tokens are
much more likely to be present at the start of the
sequence.

LLM probability estimation errors: LLM
probability estimates are generally aligned with the
logical coherence of a sequence. However, a major
discrepancy arises with repeating sequences. Due
to the in-context learning abilities of LLMs, they
tend to significantly overestimate the likelihood of
ever-repeating sequences. This could lead to mode
collapse during the entire decoding process.

6 Conclusion

In summary, we propose Generative Fusion De-
coding (GFD), a simple yet effective framework
for integrating large language models into ASR
and OCR systems through byte-level shallow fu-
sion. Our theoretical derivations provide a foun-
dation for this integration, while empirical results
demonstrate consistent gains across diverse con-
ditions—including noisy audio, long-form inputs,
and instruction-following tasks. GFD also com-
pares favorably with prior fusion methods, high-
lighting its potential as a general-purpose solution.
These results establish a foundation for future ex-
ploration of fusion methods that further exploit the
strengths of pre-trained language models.

Limitations

The effectiveness of GFD is hindered when LLM
selects an ASR token candidate that deviate from
the correct phonetic content, leading to hallucina-
tions. We provide in our analysis general categories
of these errors, for practitioners to be aware of such
a risk. We also advise users to carefully select the
LLM, as the LLM itself may have limitations in
its understanding or biases present in its training
data. If the LLM misinterprets context or generates
incorrect predictions, these errors can propagate
through the GFD framework, affecting the overall
performance.
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A Appendix

A.1 Recursive Calculation of the GFD
formula

We have shown the efficient calculation
of Pm,approx({Bl},Z(m)) with equation
(7). We now show that the incremental
calculation of Pm,approx({Bl},Z(m)) from
Pm,approx({Bl−1},Z(m)) is O(1) in terms of the
costly decoder forward.

Since the model forwarding is only dependent
on T̂s, and not on alternative tokens, we first derive
how the main sequence differs between Bl and
Bl−1. We denote the main sequence of Bl as T̂s,
and let the main sequence of Bl−1 as T̂ ′

s. In most
scenarios, T̂s is one of the two:

• T̂ ′
s plus one additional byte token.

• The additional byte token merges with pre-
vious tokens in T̂ ′

s, a new token appends a
truncated T̂ ′

s .

In either of the cases, there will only be one addi-
tional token on the main path. Calculating alterna-
tive tokens only requires indexed selection through
operations like "mask-select", which is inexpensive
compared to the model forward operation. 3 There-
fore, with proper kv-caching on results of Bl−1, we
can efficiently calculate Bl to realize GFD.

A.2 Experimental Details on selecting r in
Equation 8

All GFD fused models are run on a single A6000
GPU. For the parameter of r in Equation 8, we
conduct grid search of among [0.1, 0.2, 0.3, 0.4] on
noisy-librispeech, and selected r = 0.2. We keep
r = 0.2 across all our experiments; while setting
the number of beams equal to 5 or 10 for ASR and
OCR experiments, respectively.

3The total FLOPs for the byte algorithm remain under 105,
which is negligible compared to model forwarding (> 1010)

A.3 Experimental Details on selecting k in
Equation 8

To maintain reasonable time complexity, we aim
to limit the number of rescoring samples to match
the number of beams, i.e., num_beams. Assume
num_beams=5. During the expansion phase of
beam search, when k = 0, the text recognition
modality generates up to 5 × 5 = 25 candidates,
which is excessive. By strategically selecting k
such that the resulting sequence consists only of to-
kens from sequences prior to the expansion phase,
the number of candidates will naturally be capped
at the beam size. Thus, the optimal value of k cor-
responds to the length of the last token proposed by
the text recognition modality, varying across differ-
ent beam hypotheses. Choosing a larger k results
in a loss of information, which is suboptimal.

A.4 Prompting Details
Here we list the prompting details of benchmark-
ing.

Librispeech and noisy-librispeech
ASR Prompt: (None)
LLM Prompt:

The following is a transcription of a spoken
sentence:

Medical
ASR Prompt: (None)
LLM Prompt:

The following is a transcription of a spoken
sentence:

Fleurs-HK
ASR Prompt:

(In Chinese) The following is a Traditional
Chinese Transcription:

LLM Prompt:

(In Chinese) The following is a Traditional
Chinese Transcription:

ML Lecture
ASR Prompt:

(In Chinese) Traditional Chinese

LLM Prompt:

(In Chinese) The following is a Traditional
Chinese Transcription, there exists code-
switching, and some of the vocabulary is in
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English.

Formosa
ASR Prompt:

(In Chinese) The following is a Traditional
Chinese Transcription

LLM Prompt:

(In Chinese) The following is a Traditional
Chinese Transcription:

ATCO2
ASR Prompt:

Alfa Bravo Charlie Delta Echo Foxtrot Golf
Hotel India Juliett Kilo Lima Mike November
Oscar Papa Quebec Romeo Sierra Tango Uni-
form Victor Whiskey Xray Yankee Zulu One
Two Three Four Five Six Seven Eight Nine
Zero
Dayton radio, November One Two Three Four
Five on one two two point two, over Spring-
field V-O-R, over.
New York Radio, Mooney Three One One
Echo. Columbia Ground, Cessna Three One
Six Zero Foxtrot, south ramp, I-F-R Memphis.

LLM Prompt:

Section 2. Radio Communications Phraseol-
ogy and Techniques
1. General
...(4000 words on call signs and regulations)...

Generative Error Correction
We follow Task-Activating Prompting method in
(Chen et al., 2024a) to create the prompt for Gener-
ative Error Correction.

User: Do you know Automatic Speech Recog-
nition?
Assistant: Yes, I do! ...
User: Do you know language model restor-
ing...
Assistant: Language model restoring is ...
User: Can you generate an example with 5-
best list?
Assistant: Sure! ...
User: Please do the same thing on the follow-
ing n-best list...
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