When Benchmarks Talk: Re-Evaluating Code LLMs with
Interactive Feedback

Jane Pan'* Ryan Shar?** Jacob Pfau!

Ameet Talwalkar 2

He He ! Valerie Chen 27

'New York University >Carnegie Mellon University
jane.pan@nyu.edu

Abstract

Programming is a fundamentally interactive
process, yet coding assistants are often evalu-
ated using static benchmarks that fail to mea-
sure how well models collaborate with users.
We introduce an interactive evaluation pipeline
to examine how LLMs incorporate different
types of feedback in a collaborative setting.
Specifically, we perturb static coding bench-
marks so that the code model must interact
with a simulated user to retrieve key informa-
tion about the problem. We find that interaction
significantly affects model performance, as the
relative rankings of 10 models across 3 datasets
often vary between static and interactive set-
tings, despite models being fairly robust to feed-
back that contains errors. We also observe that
even when different feedback types are equally
effective with respect to performance, they can
impact model behaviors such as (1) how models
respond to higher- vs. lower-quality feedback
and (2) whether models prioritize aesthetic vs.
functional edits. Our work aims to “re-evaluate”
model coding capabilities through an interac-
tive lens toward bridging the gap between ex-
isting evaluations and real-world usage.

1 Introduction

Programming with a language model is a highly
collaborative process, where developers interact
with code models to provide updated information
about initially underspecified requests or critique
the output of the code model. Thus, giving and
receiving feedback are critical elements of the pro-
cess in which programmers use code models (Chi-
dambaram et al., 2024). For example, chat inter-
faces like ChatGPT (OpenAl, 2022) or the chat
panel of Github Copilot (Github, 2022) facilitate
multi-turn conversations in which programmers
can iteratively refine a piece of code by providing

“Equal Contribution.
fCo-senior Authors.

"EE

-
I o o | I o o | (o o h
wf (oo aw
3
000 000 Sentence
(=] (=]
S S

2
2

- 71
£ | commazag -
o \\ //
\
S
Qwenz.5-Coder” .
/
Q < : 9
{ X =
Reka <. N BN N -
7SNl N \ R
R . W \
o 3% pre
Llama-78, S TR P
o "9 (] s)
A

Static Code Feedback Query Rephrasing Paragraph Sentence

Figure 1: While most existing benchmarks statically
evaluate LLM coding capabilities, code LLMs are used
interactively in practice. We introduce an evaluation
pipeline that evaluates code models in an interactive
setting (top). Across three datasets, such as Live-
CodeBench (bottom), we find that interactively eval-
uating models with different feedback types (CODE
FEEDBACK, QUERY REPHRASING, PARAGRAPH, and
SENTENCE) leads to different rankings when compared
to static evaluation.

additional context and details to the LLM (Kalla
et al., 2023; Xiao et al., 2023).

Despite the popularity of these tools, existing
static benchmarks that measure task performance
often rely on a simple input-output configuration,
where the question is well defined and the model
is asked to generate the whole completion in one
shot (Chen et al., 2021; Austin et al., 2021; Jain
et al., 2024; White et al., 2024). While this rela-
tively simplistic setting is scalable and enables effi-

24672

Findings of the Association for Computational Linguistics: ACL 2025, pages 24672-24700
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

mailto:jane.pan@nyu.edu

(A) Input Obfuscation

Full Question Code Feedback

You are given a binary string
s. Find the number of distinct
cyclical binary strings of
length n which contain s as a
substring. The cyclical string
t contains s if there is...

The following line is wrong:

if s in t:

It should be replaced with...

Query Rephrasing

Rephrased Question: Given a

string s and an integer

n <4 ,I[s/ <n), count
of...

binar)
n(1
the number

(B) Feedback Types

Paragraph

The current solution doesn't
account for the cyclic nature
of the strings.

The current solution is not
counting distinct cyclic strings
correctly. It doesn't consider
all possible binary strings, and
should handle cases where s
can appear both at the [...]

' | \

You are an expert
programmer who
will be asked to solve
programming

problems...

Summarization Model
(°°[
amo

1 Given the feedback,
: rewrite your solution

for this question:

HE

Underspecified
Question

Underspecified
Count unique cyclical binary Question
strings of length n containing
a given substring s,
considering all possible
rotations.

<°>‘;é r?g

J

=4
f 66 ﬁ
Code Model

=
N~

ap
feedback

(1 (D) Prompt to Simulated User

You are an expert

programmer who will
provide feedback on
code solutions...

Full Question
Ground Truth
Solution

Give feedback on this
attempted solution.

User

o0
&

Iterative

Refinement
Loop

<> S

J

Figure 2: Overview of our interactive pipeline for coding evaluation. (A) We obfuscate the input of existing
fully specified datasets to reflect how programmers tend to underspecify requests to LLMs (e.g., via docstrings or
comments) in practice. (B) As developers may interact with models in a variety of ways, we explore 4 different
feedback types and introduce a pipeline that mimics the iterative refinement loop that programmers often use with
chat models, (C) where the code model generates a solution using feedback on its previous solution, (D) and the

user provides updated feedback to the code model.

cient evaluation, it does not capture how developers
realistically use models to write code (Mozannar
et al., 2024). While recent benchmarks have be-
gun to explore how interactive settings can lead to
performance gains in coding applications (Wang
et al., 2023b), they assume a single form of nat-
ural language feedback. In practice, developers
provide many forms of feedback when implement-
ing code (Chidambaram et al., 2024), which can
range from binary feedback on the correctness of
the code to suggesting direct changes to the code.

Building evaluations of programming assistants
that more closely mimic this setting enables a bet-
ter understanding of model behavior and potential
pitfalls in the interactive setting, such as model ca-
pability with respect to processing feedback, the
effects of different feedback types, or model ro-
bustness. We bridge the gap between existing eval-
uations and real-world use cases by benchmark-
ing how different feedback types impact model
behavior in a simulated interactive setting (Fig-
ure 1, top). We propose an evaluation method that
transforms a static coding benchmark into an inter-
active, collaborative one (Figure 2). The pipeline
components include input obfuscation to create un-
derspecified problems to induce collaboration, a
simulated user for scalability, and multiple types of

feedback (CODE FEEDBACK, QUERY REPHRAS-
ING, PARAGRAPH, and SENTENCE).

Across 10 coding models (6 open and 4 closed)
and 3 coding benchmarks, we find that relative per-
formance between models often changes between
static and interactive settings (Figure 1, bottom),
suggesting that models perform differently in the
static vs. interactive settings. Beyond performance-
based metrics, we analyze important components
of model-user interactions, including feedback
quality and code model steerability. We use these
insights to investigate the effects of different feed-
back types. For example, we find that PARAGRAPH
and CODE FEEDBACK tend to lead to the high-
est performance boost compared to other feedback
types (€.g., SENTENCE or QUERY REPHRASING).
However, when considering the effect of feedback
quality on performance, we find that unlike PARA-
GRAPH, CODE FEEDBACK'’s higher-quality feed-
back makes output worse more frequently than its
lower-quality counterpart for stronger models. Fur-
thermore, PARAGRAPH leads to more surface-level
edits than CODE FEEDBACK, whereas users may
prefer variation in model behavior to be robust to
changes in feedback type.

Our work provides a new approach to investi-
gating the downstream ramifications of different

24673

interactive programming settings and their effects
on model behavior. We open-source our evaluation
pipeline!, which makes it easy to add static bench-
marks and turn them into interactive ones, to facili-
tate the evaluation of more models and datasets.

2 Methodology

Figure 2 provides an overview of our pipeline for
interactive evalution, which is driven by an itera-
tive refinement loop in which the user model and
code model interact. At each step of the loop, the
code model is given the obfuscated programming
question in natural language, the code from the
previous attempt, and the user model’s feedback
on the previous attempt. Each iterative refinement
loop lasts 5 steps for each question, terminating
early if a correct solution is reached in less than 5
steps.

2.1 Dataset Transformation

Our pipeline is designed to transform static coding
questions into interactive ones. We describe our se-
lection criteria for the datasets used in this work, as
well as the input obfuscation protocol that enables
collaboration between the user and code model.

Input obfuscation. To ensure that the user and
code model collaborate, we obfuscate the input
given to the code model to remove critical informa-
tion from the input (Figure 2A). This induces an in-
formation asymmetry, akin to that which might ex-
ist in practice, that forces the code model to rely on
feedback from the user to recover key details about
the full problem specification. We underspecify
the input to the code model by using Sonnet-3.5
to summarize the original questions, which often
contain significant detail about desired behaviors
and potential edge cases, into one-sentence sum-
maries. Appendix A.4 includes additional details
on the design of our input obfuscation method, and
Appendix A.9 compares the effects of input obfus-
cation on the SELF-CRITIQUE BASELINE setting.

To illustrate input obfuscation, consider a ques-
tion from APPS (Interview) which asks how long
it will take for two flight attendants to serve lunch
to a customer in a given seat. The original question
includes details about the flight attendant’s serving
speed, the order they traverse the rows of the plane,
and the serving order of seats in the row. The sum-
marized form of this question might be “Calculate

'Our code is publicly available at https://github.com/
janepan9917/WhenBenchmarksTalk/.

the time it takes for a passenger in a specific seat to
receive their lunch on an airplane with an infinite
number of rows, given the serving pattern of two
flight attendants moving from front to back,” omit-
ting some of the key details required to fully solve
the question (e.g., row and seat order). We use this
as a running example in the following section.

Datasets. We select challenging datasets with
lengthy problem descriptions and available ground-
truth solutions. We use the Interview and Introduc-
tory levels of APPS (Hendrycks et al., 2021), Clas-
sEval (Du et al., 2023), and the Easy, Medium, and
Hard levels of LiveCodeBench (Jain et al., 2024).
We randomly sample 200 examples from APPS
Interview, 200 examples from APPS Introductory,
and 75 examples from ClassEval. We use 70 ex-
amples from LiveCodeBench (across all three diffi-
culty levels). More details on the datasets can be
found in Appendix A.1.

2.2 Feedback Types

Existing work on developer-code model inter-
actions shows that programmer feedback is di-
verse (Chidambaram et al., 2024). Following their
results, we explore multiple variants of feedback
types outside of generic natural language feedback
and investigate four categories” of feedback: PARA-
GRAPH, SENTENCE, QUERY REPHRASING, and
CoDE FEEDBACK (Figure 2B). For each interac-
tion, we fix the feedback type so that the user model
always responds with the same kind of feedback>.

The SENTENCE and PARAGRAPH feedback
types are ones where the user model provides feed-
back using natural language. These feedback styles
mimic the inputs used in chat-based interfaces,
where users respond to the model via a chat window.
In our setting, the user is prompted to only use a
sentence or paragraph for their response. An exam-
ple of SENTENCE feedback for the airplane ques-
tion might be “The current solution doesn’t follow
the seat serving order f-e-d-a-b-c,” while PARA-
GRAPH feedback tends to have specific critiques
of the algorithm with sentences like “If doesn’t
account for the two flight attendants serving si-
multaneously. It should first calculate the number
of complete 4-row blocks served, then handle the
remainder.”

2Appendix A.3 provides additional details on how we se-
lected these four categories.

3For additional experiments where interactions use multi-
ple kinds of feedback, see Appendix A.10.

24674

https://github.com/janepan9917/WhenBenchmarksTalk/
https://github.com/janepan9917/WhenBenchmarksTalk/

QUERY REPHRASING and CODE FEEDBACK
feedback aim to replicate common feedback styles
from developers (Chidambaram et al., 2024). In
QUERY REPHRASING, the user is prompted to
rewrite a similar-length version of the underspec-
ified question with additional details required for
the code model to find a solution. We constrain
the length to mimic how real users rephrase their
inputs when providing feedback and to prevent the
user from simply copying in the full question. An
example of QUERY REPHRASING in the airplane
question might be “Question: Calculate the time
for a passenger to receive lunch on a plane where
two flight attendants serve food. Attendants start at
rows 1 and 3, move forward by 2 rows after serving.
They serve right side (f to d) then left side (c to a)
of each row. Output the waiting time in seconds.”
CODE FEEDBACK prompts the user to directly in-
dicate which lines of code are incorrect and sug-
gest alternate code snippets. An example of CODE
FEEDBACK in the airplane question might be “The
function get_time_to_lunch(seat, num_attendants)
should be get_time_to_lunch(seat) as the number
of attendants is always 2.” Appendix A.2 provides
additional examples of each type of feedback.

2.3 Code Models

We select a total of 10 code models, span-
ning both open-source and closed models and
a wide range of capabilities and parameter
sizes. We selected the following open-source
models for their ability to follow user instruc-
tions, their range of parameter sizes, and over-
all coding capability: Deepseek-V3 (DeepSeek-
Al et al., 2024), Gemma-7B-it (Team et al.,
2024a), Gemma-2-27B-it (Team et al., 2024b),
Llama-3.1-8B-Instruct (Grattafiori et al., 2024),
Qwen2.5-Coder-7B-Instruct (Hui et al., 2024),
and Qwen2.5-Coder-32B-Instruct (Hui et al.,
2024). We select the following closed models for
their commercial adoption and performance on ex-
isting static benchmarks: Aya (Ustiin et al., 2024),,
GPT-40 (OpenAl et al., 2024), Reka (Team et al.,
2024c), and Sonnet-3.5 (Anthropic, 2023). The
parameters used to query each model are provided
in Appendix A.5.

Code model prompts. We prompt the code mod-
els with their previous solution and the user feed-
back on that solution. We do not provide a history
of all code model interactions with the user, only
the most recent code attempt and user feedback on

the most recent attempt. Specific instructions are
given for each dataset for varying input and output
formats. All prompts are in Appendix A.6.

2.4 User Models

Following prior work (Dubois et al., 2023; Zheng
et al., 2023; Mozannar et al., 2023), we use LLMs
to scalably simulate feedback given by users when
interacting with code models. To help close the
capability gap between real-world expert users and
LLMs, we give the user model access to the orig-
inal fully-specified question, as well as a ground-
truth solution. This allows the simulated user to
produce higher-quality feedback more often. The
user model prompt also includes instructions to
avoid leaking the exact solution in its responses to
the code model. We only constrain the formatting
style of the feedback, allowing the user to choose
the content of criticism (e.g. input/output format-
ting, algorithmic correctness, code style). We
choose Sonnet-3.5 due to its high performance
on static coding benchmarks and strong reason-
ing capabilities, but verify that other user models
(e.g., GPT-40-mini) are also able to improve per-
formance over SELF-CRITIQUE BASELINE (see
Section 3 for details). These results, along with
prompts for the user can be found in Appendix
A.6.

3 Static vs. Interactive Performance

We compare the performance of models in static
and interactive evaluation settings. To measure the
effectiveness of different feedback types, we com-
pare against the STATIC and the SELF-CRITIQUE
BASELINE settings. The STATIC setting of each
dataset evaluates the code model on the original,
fully specified questions. In this setting, the code
model is not given any feedback and the first at-
tempt is used as the final output. To match the
test-time compute of the interactive settings, the
SELF-CRITIQUE BASELINE setting uses five itera-
tions of self-critique to generate feedback using the
underspecified question and the output from the pre-
vious step (Madaan et al., 2023). For this setting,
no additional information of the original question
or solution is given and no user is involved.

3.1 Performance Metrics

We use test case accuracy (TCA) to evaluate
model performance. In ClassEval, we combine
the set of function tests and class tests to measure

24675

Dataset STATIC SELF-CRITIQUE BASELINE PARAGRAPH SENTENCE CODE FEEDBACK QUERY REPHRASING

APPS 0.335 (0.003) 0.034 (0.001) 0.381 (0.004) 0.271 (0.003) 0.428 (0.004) 0.289 (0.003)
LCB 0.699 (0.008) 0.274 (0.008) 0.655 (0.009) 0.611 (0.009) 0.631 (0.009) 0.183 (0.008)
ClassEval 0.714 (0.002) 0.483 (0.006) 0.679 (0.006) 0.642 (0.006) 0.759 (0.006) 0.693 (0.005)

Table 1: Test case accuracy and standard error of each setting in APPS, LiveCodeBench (LCB), and ClassEval,
averaged across all code models. We find that feedback can recover performance comparable to or even exceeding

the STATIC setting.

Rank Change Between Static vs. Interactive Settings

APPS LiveCodeBench ClassEval
0-0-90-0 @ 06 0 060 06 0 000
Deepseskichat -~ Quen2.5-Coder-328, 7 SN Sy~ Deepsesk-chdt, L7 | N o7
- g < P 30 >
009 0. © 0.0 © e e
0 . 9 {0 9.0-0 0
b ~ . N 7 N .
sonnet3s Y\ /' e /S ~o S Deepseek-chat % S cPTa < Soo”
\,/ ¢ 4 IRQERN R2aN N S
77:\L //\\ / ~, ’ N o L L, ~ _ . -’ ~,
7N 7 7 T T T
Quenzs-Codesfzs Y, | N7 e PealS Sonnet 3.5 Sonnet 3.5
~ N N
0 0 0o ¢ ©° o0 0 O 0 0O -0-0--0--0
N .
GPT-a GPT-4c ‘\v/’ & K o’ Qwen2.5-Coder-328
>
e ‘\ / PN
.| 00000 © o /06 0 @ 060 -0 -0
S | Gemmaz278 Gemma-2278 ’ Ny aya s/
5] \ g vy N
o« \ v N/
0 0 000 L /9. 000 || 060 0 0. 0
- / N v N N S P
Quenz. s.nm:rsvg,/ N7 Quenz.5.c a\s‘s, I Nse? A Quenz.5-Codgf 7B Y\ Sso S NS¢ H S
< - 23 > \ S <
S >, < - \ / < ~ -
2 < AN ’ \) N -
o 0.0 o0 o Q/ 0 09 0 o 0.0 o o
AY
N\, s / \ - 4
Llama-78 AN e RN R ka)(71N i \ N Gemma-2-278 :/\
Y2 e 7N 7 7/ 1 \ N’ ~.
\ >, - ~ \, \ Y / ~
/ 2 N
0 00,0 0 {0/ 0-0 ©0-0 0 0 000
\ N A
~ P4 \ - / - N &
CORRNUERRAN AL Uama7p Ny N N Rekat 7
N Ny - / \ - -
o ' o o0 -0 0 0 0 0 o 0"
} O — 0. 00
Gemrha-71 B4 Ay: Liama-78 > /,’ ‘\\
N, a
& 0 0 0 O L O 1 10 2] o © © © 0O
Reka Gemha-78 Gema-78
atic

static doack asing raph rence static dback
Code Fee query ReP™ paradf sent Code Fee a

2
3
ES
H
2
&
£
w
%
T
2
5
&
9
g

X ery Repe"Y poragae” gentence

Figure 3: Rank changes between static and interactive settings across 3 datasets— APPS, LiveCodeBench, and Clas-
sEval. We stratify interactive settings by feedback type (CODE FEEDBACK, QUERY REPHRASING, PARAGRAPH,
and SENTENCE), and observe changes in rankings across all datasets and interactive settings.

TCA. To measure the distances between two rank-
ings 04 and o of length n, we use a normalized
variant of Spearman’s Footrule (F': — [0, 1]):

2 2ic1|oa(i) — op(i)|

Ia —
(74:78) = e S, [00) — o/ (0]

where o, ¢’ are any ranking of length n. For a
perfectly correlated pair of rankings, F' = 0; for
uncorrelated rankings, F = 0.73; for perfectly
anti-correlated rankings, F =1. Appendix A.7
contains details on how we derive these metrics
and thresholds for correlation.

3.2 Results

Feedback can recover performance comparable
to or even exceeding the STATIC setting. Table
1 shows the performances averaged across all mod-
els for each dataset and feedback type. Comparing
STATIC to SELF-CRITIQUE BASELINE shows that
our input perturbation often obfuscates the prob-
lem, as SELF-CRITIQUE BASELINE usually un-
derperforms the STATIC setting, and feedback is

often required to achieve performance comparable
with the STATIC setting (as with LiveCodeBench).
Moreover, interacting with feedback may also al-
low code models to surpass STATIC performance
(as with APPS and ClassEval). This may be be-
cause the user may supply not only additional spec-
ifications about the problem, but also guidance with
respect to general problem-solving or programming
capabilities.

CoDE FEEDBACK and PARAGRAPH improve
performance the most. CODE FEEDBACK
and/or PARAGRAPH are consistently the most ef-
fective at improving model performance in the un-
derspecified setting (Table 1). Compared to others,
these feedback types tend to be longer and thus may
encapsulate more helpful information to the code
model. The weaker performing feedback types are
SENTENCE and QUERY REPHRASING, the latter of
which struggles the most on LiveCodeBench. This
may stem from the fact that LiveCodeBench is not
in the training sets of most models (due to its prob-
lem cut-off date); for popular datasets, the code

24676

Dataset PARAGRAPH SENTENCE CODE FEEDBACK
APPS 0.91 (0.01) 0.89 (0.01) 0.94 (0.01)
LCB 0.92 (0.01) 0.88 (0.02) 0.79 (0.03)

ClassEval ~ 0.96 (0.01) 0.91 (0.01) 0.77 (0.02)

Table 2: Average rate of directional correctness with
standard error for each dataset and setting.

model may sometimes recognize the full question
using the user’s QUERY REPHRASING, leading to
improved performance.

Models perform differently in static vs. interac-
tive settings. Figure 3 plots the relative rankings
(measured by TCA) across static and interactive
settings. While we generally observe permutations
in rankings when comparing STATIC and interac-
tive, LiveCodeBench demonstrates the most vari-
ance, with some models changing 4 ranks between
STATIC and interactive settings.

To understand how rank changes vary between
static vs. interactive settings, we calculate the nor-
malized Spearman’s Footrule distances between
the STATIC and interactive settings (Table 16). All
three datasets demonstrate relatively weak posi-
tive correlation in many interactive settings; for
instance, for CODE FEEDBACK, F ranges from
0.222 to 0.346 across the three datasets. Gener-
ally, top models tend to be consistently high across
feedback types, whereas weaker models tend to
demonstrate more variance in rank.

4 Feedback Quality

To understand whether the ranking changes in Sec-
tion 3 are due to variations in feedback quality
across models, we develop a proxy for feedback
quality and examine its effect on how code models
interact with feedback.

4.1 Quality Metrics

Previous works infer feedback quality by the feed-
back’s effect on performance (Zhang and Choi,
2023). Instead of relying only on performance, we
classify feedback by directional correctness, a bi-
nary value of whether it accurately claims that the
code solution was correct or incorrect. For instance,
if the solution is incorrect (i.e. has TCA < 1), but
the feedback claims that the solution is correct,
then we consider the feedback directionally incor-
rect. However, if the solution is correct (i.e. has
TCA = 1) and the feedback claims that it is cor-
rect, we consider it directionally correct.

We automate the classification via GPT-4o0
on SENTENCE, PARAGRAPH, and CODE FEED-
BACK.* Appendix A.8 discusses other feedback
quality metrics we considered, as well as additional
information on the classification protocol.

4.2 Results

Directional correctness is consistently high
across models and feedback types. Table 2 com-
pares average directional correctness by feedback
type, which does not vary greatly across models
or feedback types and often reaches above 0.8.
This suggests that the feedback is high enough
quality to compare across models and feedback
types. Although PARAGRAPH and CODE FEED-
BACK feedback induce the highest performances,
PARAGRAPH feedback tends to have the highest
directional correctness, whereas CODE FEEDBACK
tends to have the lowest.

Code models are generally robust to direction-
ally incorrect feedback. Figure 4 shows the
distribution of solutions whose performances im-
prove versus decrease when comparing direction-
ally correct feedback to directionally incorrect feed-
back. Although directionally correct feedback has
a higher rate of solutions whose performances im-
prove, the rate of directionally incorrect feedback
that results in improved performance is still sub-
stantial. For instance, Sonnet-3.5 has equal rates
of improved performance after either directionally
correct or directionally incorrect PARAGRAPH and
SENTENCE feedback.

For stronger models, directionally correct CODE
FEEDBACK tend to worsen post-feedback solu-
tions than directionally incorrect CODE FEED-
BACK. While all directionally correct feedback
have roughly similar effects on the rate of im-
proved post-feedback solutions, PARAGRAPH and
SENTENCE also decrease the proportion of worse
post-feedback solutions (Figure 4, center and
right). CODE FEEDBACK is the only feedback type
where stronger models (e.g., Sonnet-3.5, GPT-4o,
Qwen2.5-Coder-32B-Instruct) are more likely
to generate a worse solution when given direction-
ally correct feedback rather than directionally in-
correct (Figure 4, left).

*QUERY REPHRASING does not provide direct feedback
on the solution, so it is not eligible for our quality metric.

24677

Feedback Quality vs. Distribution of Solution Performance Change

Code Feedback

Paragraph Sentence

Sonnet 3.5 ey

Reka
Quen2.5-Coder-328 gy
Qwen2.5-Coder-78
Llama-7B
Gemma-78
Gemma-2-278
Deepseek-Chat

Aya

L~

L~

L~

0.0 0.2 0.4 0.6 0.8
Proportion of Solution Perf. Change

0.2 0.4 0.6 0.8
Proportion of Solution Perf. Change

0.4 0.6 0.8 1.0
Proportion of Solution Perf. Change

MW Perf T WM Perf | mmm Directionally Correct Feedback — wae Directionally Incorrect Feedback

Figure 4: Distribution of performance change across feedback types and directional correctness. We split solutions
into post-feedback performance gains (green) or losses (red) and observe that models can still benefit from
directionally incorrect feedback, and that directionally correct CODE FEEDBACK sometimes increases the rate of

post-feedback performance loss.

5 Model Steerability

We extend our analysis beyond performance to in-
vestigate steerability, or how much a code model
adjusts its previous solution in response to feed-
back. We show that drops in performance in in-
teractive settings are likely due to ineffectively in-
corporating feedback, rather than outright ignoring
feedback in the next iteration of the solution.

5.1 Steerability Metrics

We evaluate model steerability on APPS and Live-
CodeBench’ and consider two metrics of change
between solution iterations. Firstly, we use Lev-
enshtein edit distance to evaluate surface-level
changes between consecutive versions of code. Sec-
ondly, we count the number of changes in test-case
behavior — with respect to whether incorrect test
cases flip to correct or vice-versa — to evaluate
behavioral-level adjustments to the code. We refer
to the former as surface-level steerability and the
latter as behavioral steerability.

5.2 Results

PARAGRAPH feedback is associated with higher
behavioral-level and surface-level steerability
across all models. Figure 5 plots each feedback
type by the behavioral (top) or surface-level (bot-
tom) steerability it induces. PARAGRAPH and
CODE FEEDBACK score the highest in behavioral

SWe do not evaluate on ClassEval as their evaluation utili-
ties do not report exactly which test cases pass or fail.

steerability (changing 21.8% and 19.3% of test
cases on average), while PARAGRAPH score the
highest in surface-level steerability (with an aver-
age edit distance of 445.6 characters). Notably,
PARAGRAPH is also one of the highest-performing
feedback styles, suggesting that it induces effective
changes in the code solution on both the behavioral
and surface levels.

Weaker models tend to make surface-level
rather than effective behavioral-level changes.
Figure 6 shows how code models change their
previous solutions on all datasets across all feed-
back types. Weaker models (e.g. Gemma-7B-it
and Llama-3.1-8B-Instruct) tend to make
many surface-level changes that do not greatly
change the behavior of the code. However,
stronger models (e.g. GPT-40, Sonnet-3.5, and
Qwen2.5-Coder-32B-Instruct) may make rela-
tively small edits that highly affect code behavior.

6 Related Work

Code benchmarks. Static benchmarks, e.g., Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), largely focusing on interview-style
programming problems, have been the most com-
monly used to evaluate coding capabilities (Lu
et al., 2021; Nijkamp et al., 2023; Zhu et al., 2022;
Wang et al., 2023a; Liu et al., 2023; Jimenez et al.,
2023; Khan et al., 2023; Yan et al., 2023; Cas-
sano et al., 2023; Muennighoff et al., 2023; Dinh
et al., 2023; Yang et al., 2023; Du et al., 2023).

24678

Change Between Feedback Settings

Behavioral-Level Steerability

0.20 A

0.15 A

0.10 A

0.05 A

Change in Test Case Behavior

0.00 -

Code Feedback Query Rephrasing Paragraph Sentence

Surface-Level Steerability

Levenshtein Edit Distance

Code Feedback Query Rephrasing

Paragraph Sentence

Figure 5: Behavioral-level (top) and surface-level (bot-
tom) steerability by feedback type, averaged across all
models for APPS and LiveCodeBench. PARAGRAPH
feedback induces the most changes at both levels, while
CODE FEEDBACK leads to more behavioral changes
with less aesthetic changes.

Recent live benchmarks aim to reduce contamina-
tion risks (Jain et al., 2024; White et al., 2024).
Our evaluation pipeline can convert many of these
static benchmarks into an interactive one, evaluat-
ing model abilities to incorporate different types of
feedback; we demonstrate this with 3 datasets.

Interactive evaluation. As programmers are in-
creasingly writing code collaboratively with Al
chat assistants like ChatGPT (OpenAl, 2022) or
Claude (Anthropic, 2023), many user studies have
evaluated how programmers use chat assistants to
write code (Ross et al., 2023; Chopra et al., 2023;
Kazemitabaar et al., 2023; Xiao et al., 2023; Nam
et al., 2024; Mozannar et al., 2024; Chidambaram
et al., 2024), typically employing only a few mod-
els in the study (< 3). While new platforms eval-
uate model coding capabilities at scale by collect-
ing human preferences (Chiang et al., 2024; Chi
et al., 2024), it remains challenging to understand
the fine-grained effects of feedback. We create a
benchmark with simulated users to enable scalable
evaluation of the nuances of feedback in interac-
tive coding settings, while drawing from insights
of existing human studies (e.g., common types of
feedback (Chidambaram et al., 2024) and tenden-
cies to underspecify inputs (Xiao et al., 2023)).
Prior work has explored interactive benchmarks

with simulated users for various applications, such
as tool use (Yao et al., 2024), creative tasks (Jia
et al., 2024), coding (Wang et al., 2023c; Shao
et al., 2024), and other collaborative contexts (Wu
et al., 2023). Our benchmark extends them by in-
troducing diverse forms of user feedback and inves-
tigating their effect on feedback quality and model
steerability. We also enforce collaboration between
the simulated user and code model via input obfus-
cation, aligning with real-world use cases where the
user’s input to the model may be underspecified.

7 Conclusion

We propose a new approach to evaluating code
models by introducing an interactive pipeline
where the code model must collaborate with a simu-
lated user to solve underspecified coding problems
with different feedback types. We find that the
relative performances of models change radically
between static and interactive settings. We analyze
key elements of model-user interactions, such as
feedback quality and model steerability, to provide
insights into the downstream effects of feedback
type on model behavior and feedback effectiveness.
Our work bridges the gap between existing static
benchmarks and real-world usage, and we hope to
inspire future work on scalable methods for evalu-
ating models in a collaborative setting.

8 Limitations

In this work, the focus of our experiments is on
three diverse code benchmarks to demonstrate the
generality of our pipeline. However, given the ex-
pansive set of static benchmarks, our results may
not encompass the full set of observations one
might obtain from considering more varied datasets
(e.g., non-Python coding questions). On the eval-
uation front, since we do not explicitly compare
LLM responses to human-generated feedback on
the extensive set of modified questions, we focus
on trends of model behavior as a response to differ-
ent feedback types, rather than specific degrees of
change. We also focus the majority of our evalua-
tion on performance, but our benchmark is easily
extendable to other measures of code quality; Ap-
pendix A.11 provides sample experiments using
code readability instead of performance as the eval-
uation metric.

While we performed qualitative analysis on real
human interactions with LLMs (Appendix A.3),
the feedback types studied in this work are not

24679

Edit Distance vs. Change in Test Case Behavior: All Datasets (Step 1)

Aya

Qwen2.5-Coder-7B

0.0 0.0
200 400 600 800 200 400 600 800 1000 O 200
Levenshtein Edit Distance Levenshtein Edit Distance

Deepseek-Chat

Levenshtein Edit Distance

Gemma-2-27B

Gemma-7B

200 400 600 800 10

Sonnet 3.5

0.0
600 800 1000 0 200 400 600 800
Levenshtein Edit Distance

200 400 600
Levenshtein Edit Distance

800 1000

Figure 6: Distribution of surface-level steerability (x-axis) vs. behavioral steerability (y-axis) for all models during
the first step of iterative refinement, averaged across all datasets. While some models make only surface-level changes
that do not induce much behavioral change in code (e.g. Gemma-7B-it), others are also able to make highly effective
edits that induce large changes in the behavior of the solution (e.g., Sonnet-3.5, Qwen2.5-Coder-32B-Instruct,

GPT-40).

fully comprehensive, and we do not claim that the
user model’s feedback is necessarily representative
of actual human users. Rather, we use a simu-
lated user to scalably examine how LLMs react
to feedback in a collaborative setting, not to real-
istically imitate how expert humans use LLMs to
program. For instance, users may mix feedback
types within a single interaction, whereas we fix
the feedback type across rounds of iterative refine-
ment to isolate the effects of an individual feedback
type. Appendix A.10 provides additional experi-
ments where the user provides multiple types of
feedback in the same interaction. Recent works
also study whether LLMs can proactively seek user
feedback via clarification questions or other in-
teractions (Zhang and Choi, 2023; Zhang et al.,
2024), whereas we only consider settings where
the user initiates the feedback-giving process. This
work was not intended to exhaustively test feed-
back types but to highlight a new approach to un-
derstanding the downstream effects of interactive
programming settings.

8.1 Potential Risks

Our pipeline is intended to be used as a testbed to
examine model behavior in response to feedback,
rather than to realistically mimic actual human us-
age with models. As such, it should not be used
as an approximation of actual human users. Other

risks include overexposure to certain programming
languages and natural languages, as we only in-
clude Python programming questions and English
feedback.

9 Acknowledgements

We thank the members of the NYU ML? group for
their valuable advice, thoughts, and discussions.
We also thank Vishakh Padmakumar, Austin Wang,
Jens Tuyls, and Naman Jain for their feedback and
comments. This project has benefited from finan-
cial support from Eric and Wendy Schmidt (made
by recommendation of the Schmidt Futures pro-
gram) and Open Philanthropy, and from in-kind
support by the NYU High-Performance Computing
Center. This material is also partially supported by
the National Science Foundation under Award IIS-
2340345. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References

Anthropic. 2023. Meet claude.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.

24680

https://www.anthropic.com/claude

2021. Program synthesis with large language models.
ArXiv preprint, abs/2108.07732.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, et al. 2023. Multipl-e: a scal-
able and polyglot approach to benchmarking neural
code generation. IEEE Transactions on Software
Engineering.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large lan-
guage models trained on code. ArXiv preprint,
abs/2107.03374.

Wayne Chi, Valerie Chen, Anastasios N. Angelopoulos,
Wei-Lin Chiang, Naman Jain, Tianjun Zhang, Ion
Stoica, Chris Donahue, and Ameet Talwalkar. 2024.
Copilot arena: A platform for code llm evaluation in
the wild.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta-
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E
Gonzalez, et al. 2024. Chatbot arena: An open plat-
form for evaluating llms by human preference. ArXiv
preprint, abs/2403.04132.

Subramanian Chidambaram, Li Erran Li, Min Bai, Xi-
aopeng Li, Kaixiang Lin, Xiong Zhou, and Alex C
Williams. 2024. Socratic human feedback (sohf): Ex-
pert steering strategies for llm code generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 15491-15502.

Bhavya Chopra, Ananya Singha, Anna Fariha, Sumit
Gulwani, Chris Parnin, Ashish Tiwari, and Austin Z
Henley. 2023. Conversational challenges in ai-
powered data science: Obstacles, needs, and design
opportunities. ArXiv preprint, abs/2310.16164.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, and Chengda Lu et al.
2024. Deepseek-v3 technical report. ArXiv preprint,
abs/2412.19437.

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Ne-
grinho, Leonard Lausen, Sheng Zha, and George
Karypis. 2023. Large language models of code fail at
completing code with potential bugs. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classe-
val: A manually-crafted benchmark for evaluating
Ilms on class-level code generation. ArXiv preprint,
abs/2308.01861.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi
Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. 2023. Al-
pacafarm: A simulation framework for methods that
learn from human feedback. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Github. 2022. Github copilot - your ai pair programmer.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, and Ahmad Al-
Dabhle et al. 2024. The llama 3 herd of models. ArXiv
preprint, abs/2407.21783.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
ArXiv preprint, abs/2105.09938.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech-
nical report. ArXiv preprint, abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. ArXiv
preprint, abs/2403.07974.

Qi Jia, Xiang Yue, Tianyu Zheng, Jie Huang, and
Bill Yuchen Lin. 2024. Simulbench: Evaluating lan-
guage models with creative simulation tasks. ArXiv
preprint, abs/2409.07641.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Dinesh Kalla, Nathan Smith, Fnu Samaah, and Sivaraju
Kuraku. 2023. Study and analysis of chat gpt and its
impact on different fields of study. International jour-
nal of innovative science and research technology,
8(3).

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Bar-
bara J. Ericson, David Weintrop, and Tovi Grossman.
2023. Studying the effect of Al code generators on
supporting novice learners in introductory program-
ming. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems, CHI 2023,
Hamburg, Germany, April 23-28, 2023, pages 455:1—
455:23. ACM.

24681

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2310.16164
https://arxiv.org/abs/2310.16164
https://arxiv.org/abs/2310.16164
https://arxiv.org/abs/2412.19437
http://papers.nips.cc/paper_files/paper/2023/hash/819cebb05f993840e8a52d7564c5c282-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/819cebb05f993840e8a52d7564c5c282-Abstract-Conference.html
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
http://papers.nips.cc/paper_files/paper/2023/hash/5fc47800ee5b30b8777fdd30abcaaf3b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/5fc47800ee5b30b8777fdd30abcaaf3b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/5fc47800ee5b30b8777fdd30abcaaf3b-Abstract-Conference.html
https://github.com/features/copilot
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2409.07641
https://arxiv.org/abs/2409.07641
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3544548.3580919

Mohammad Abdullah Matin Khan, M Saiful Bari,
Xuan Long Do, Weishi Wang, Md Rizwan Parvez,
and Shafiq Joty. 2023. xcodeeval: A large scale multi-
lingual multitask benchmark for code understanding,
generation, translation and retrieval. ArXiv preprint,
abs/2303.03004.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, MING GONG, Ming Zhou, Nan Duan, Neel
Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-
jie LIU. 2021. CodeXGLUE: A machine learning
benchmark dataset for code understanding and gener-
ation. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 1).

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurlPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Hussein Mozannar, Valerie Chen, Mohammed Alsobay,
Subhro Das, Sebastian Zhao, Dennis Wei, Manish
Nagireddy, Prasanna Sattigeri, Ameet Talwalkar, and
David Sontag. 2024. The realhumaneval: Evaluating
large language models’ abilities to support program-
mers. ArXiv preprint, abs/2404.02806.

Hussein Mozannar, Valerie Chen, Dennis Wei, Prasanna
Sattigeri, Manish Nagireddy, Subhro Das, Ameet Tal-
walkar, and David Sontag. 2023. Simulating iterative
human-ai interaction in programming with llms. In
NeurlPS 2023 Workshop on Instruction Tuning and
Instruction Following.

Niklas Muennighoff, Qian Liu, Armel Randy Ze-
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra,
and Shayne Longpre. 2023. Octopack: Instruction
tuning code large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Daye Nam, Andrew Macvean, Vincent Hellendoorn,
Bogdan Vasilescu, and Brad Myers. 2024. Using an
lIm to help with code understanding. In Proceedings

of the IEEE/ACM 46th International Conference on
Software Engineering, pages 1-13.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, and Aidan Clark
et al. 2024. Gpt-4o system card. ArXiv preprint,
abs/2410.21276.

OpenAl 2022. Chatgpt: Optimizing language models
for dialogue.

Steven I Ross, Fernando Martinez, Stephanie Houde,
Michael Muller, and Justin D Weisz. 2023. The pro-
grammer’s assistant: Conversational interaction with
a large language model for software development. In
Proceedings of the 28th International Conference on
Intelligent User Interfaces, pages 491-514.

Yijia Shao, Vinay Samuel, Yucheng Jiang, John Yang,
and Diyi Yang. 2024. Collaborative gym: A frame-
work for enabling and evaluating human-agent col-
laboration. ArXiv preprint, abs/2412.15701.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, and
Shreya Pathak et al. 2024a. Gemma: Open
models based on gemini research and technology.
ArXiv preprint, abs/2403.08295.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, and
Bobak Shahriari et al. 2024b. Gemma 2: Improv-
ing open language models at a practical size. ArXiv
preprint, abs/2408.00118.

Reka Team, Aitor Ormazabal, Che Zheng, Cyprien
de Masson d’Autume, Dani Yogatama, Deyu Fu,
Donovan Ong, Eric Chen, Eugenie Lamprecht, Hai
Pham, Isaac Ong, Kaloyan Aleksiev, Lei Li, Matthew
Henderson, Max Bain, Mikel Artetxe, Nishant Relan,
Piotr Padlewski, Qi Liu, Ren Chen, Samuel Phua,
Yazheng Yang, Yi Tay, Yuqi Wang, Zhongkai Zhu,
and Zhihui Xie. 2024c. Reka core, flash, and edge:
A series of powerful multimodal language models.
ArXiv preprint, abs/2404.12387.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang,
Zijian Wang, Mingyue Shang, Varun Kumar, Sam-
son Tan, Baishakhi Ray, Parminder Bhatia, Ramesh
Nallapati, Murali Krishna Ramanathan, Dan Roth,
and Bing Xiang. 2023a. ReCode: Robustness eval-
uation of code generation models. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13818-13843, Toronto, Canada. Association
for Computational Linguistics.

24682

https://arxiv.org/abs/2303.03004
https://arxiv.org/abs/2303.03004
https://arxiv.org/abs/2303.03004
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://arxiv.org/abs/2410.21276
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://arxiv.org/abs/2412.15701
https://arxiv.org/abs/2412.15701
https://arxiv.org/abs/2412.15701
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2404.12387
https://arxiv.org/abs/2404.12387
https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2023.acl-long.773

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi
Chen, Lifan Yuan, Hao Peng, and Heng Ji. 2023b.
Mint: Evaluating llms in multi-turn interaction
with tools and language feedback. ArXiv preprint,
abs/2309.10691.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi
Chen, Lifan Yuan, Hao Peng, and Heng Ji. 2023c.
Mint: Evaluating llms in multi-turn interaction
with tools and language feedback. ArXiv preprint,
abs/2309.10691.

Colin White, Samuel Dooley, Manley Roberts, Arka
Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv,
Neel Jain, Khalid Saifullah, Siddartha Naidu, et al.
2024. Livebench: A challenging, contamination-free
Ilm benchmark. ArXiv preprint, abs/2406.19314.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal-
lah, Ryen W White, Doug Burger, and Chi Wang.
2023. Autogen: Enabling next-gen llm applica-
tions via multi-agent conversation. ArXiv preprint,
abs/2308.08155.

Tao Xiao, Christoph Treude, Hideaki Hata, and
Kenichi Matsumoto. 2023. Devgpt: Studying
developer-chatgpt conversations. ArXiv preprint,
abs/2309.03914.

Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi
Matsumoto. 2024. Devgpt: Studying developer-
chatgpt conversations. In Proceedings of the 21st
International Conference on Mining Software Repos-
itories, MSR 24, page 227-230. ACM.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe
Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan
Zhao, Li Zhu, Shuiguang Deng, et al. 2023. Code-
scope: An execution-based multilingual multitask
multidimensional benchmark for evaluating llms on
code understanding and generation. ArXiv preprint,
abs/2311.08588.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2023. Intercode: Standardizing
and benchmarking interactive coding with execution
feedback. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurlPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik
Narasimhan. 2024. 7-bench: A benchmark for tool-
agent-user interaction in real-world domains. ArXiv
preprint, abs/2406.12045.

Michael J. Q. Zhang and Eunsol Choi. 2023. Clarify
when necessary: Resolving ambiguity through inter-
action with Ims. ArXiv preprint, abs/2311.09469.

Michael J. Q. Zhang, W. Bradley Knox, and Eunsol
Choi. 2024. Modeling future conversation turns to
teach llms to ask clarifying questions. ArXiv preprint,
abs/2410.13788.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
IIm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurlPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K. Reddy. 2022.
Xlcost: A benchmark dataset for cross-lingual code
intelligence. ArXiv preprint, abs/2206.08474.

Ahmet Ustiin, Viraat Aryabumi, Zheng-Xin Yong, Wei-
Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel
Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid,
Freddie Vargus, Phil Blunsom, Shayne Longpre,
Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer,
and Sara Hooker. 2024. Aya model: An instruction
finetuned open-access multilingual language model.
ArXiv preprint, abs/2402.07827.

24683

https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2309.03914
https://arxiv.org/abs/2309.03914
https://doi.org/10.1145/3643991.3648400
https://doi.org/10.1145/3643991.3648400
https://arxiv.org/abs/2311.08588
https://arxiv.org/abs/2311.08588
https://arxiv.org/abs/2311.08588
https://arxiv.org/abs/2311.08588
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2311.09469
https://arxiv.org/abs/2311.09469
https://arxiv.org/abs/2311.09469
https://arxiv.org/abs/2410.13788
https://arxiv.org/abs/2410.13788
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2206.08474
https://arxiv.org/abs/2206.08474
https://arxiv.org/abs/2402.07827
https://arxiv.org/abs/2402.07827

A Appendix

A.1 Additional Details on Datasets

Our pipeline is designed to accommodate generic
static benchmarks with some modifications. For
instance, because ClassEval requires the model to
fill in the skeleton code of a class (rather than pro-
viding explicit programming questions), we under-
specify its problems by summarizing the docstrings
for each method. Likewise, LiveCodeBench does
not provide ground-truth solutions, so we generate
solutions for LiveCodeBench by sampling twice
from Sonnet-3.5; if a correct solution is gener-
ated, we use it as the ground-truth solution for the
question. (If not, we do not use the question as
our pipeline requires the presence of a ground-truth
solution in the user prompt.)

For evaluation of APPS and LiveCodeBench,
Table 1, Table 2, and Figure 3 average across diffi-
culty levels for brevity.

A.2 Example Feedback

We provide sample feedback from Sonnet-3.5 in
response to a proposed solution. All feedback types
are in response to the same question (Table 3).

A.3 Additional Details on the Design of
Feedback Types

We designed our four feedback types to reflect
these different forms of real-world feedback. To
further verify our choices of feedback types, we
manually inspected 100 conversations from De-
vGPT (Xiao et al., 2024), an open-source dataset of
ChatGPT interactions with developers. After filter-
ing for multi-turn interactions where the user first
asks the model to output code and then provides
feedback on a previous generation, we found that
almost all of the user feedback could be classified
as PARAGRAPH, SENTENCE, CODE FEEDBACK,
or QUERY REPHRASING. Our manual inspection
of the feedback shows that our chosen feedback
types are indeed representative of many real-world
interactions.

A.4 Designing the Input Obfuscation Protocol

When designing the input obfuscation protocol, we
tried to capture general features of underspecifi-
cation by looking at real-world examples. Specif-
ically, we analyzed how users document code in
the wild by manually inspecting randomly sampled
Github repos written in Python, primarily focusing

on how developers write docstrings and inline com-
ments. We found that users tended to write short
docstrings (65 characters on average) and com-
ments (55 characters on average). We also found
that users tended to write self-contained docstrings
that do not reference external classes or variables.
To align our input obfuscation with these insights,
we manually created short and self-contained ques-
tion summaries for our 11-shot prompt (Figure ?7?).
The handcrafted summaries were 85 characters on
average to reflect the terse user docstrings. In con-
trast, static benchmarks have significantly longer
input specification lengths (e.g., 1561 characters on
average for APPS and 1048 characters on average
for LiveCodeBench).

A.5 Additional Details on Models

We obtained the weights for google/gemma-7b-it
(Gemma-7B-it) from Hugging Face at https:
//huggingface.co/google/gemma-7b-1it,
meta-llama/Meta-Llama-3.1-8B-Instruct
(L1lama-3.1-8B-Instruct) from hug-
gingface at https://huggingface.co/
meta-1lama/Llama-3.1-8B-Instruct,

and Qwen/Qwen?2.5-Coder-7b-Instruct
(Qwen2.5-Coder-7B-Instruct) from Hug-
ging Face at https://huggingface.co/Qwen/
Qwen2.5-Coder-7B-Instruct. We run each
of the models on a single L40S GPU. We use
a temperature setting of 0.9, 4096 max tokens,
and the “do_sample” setting enabled. We use
(end_of_turn), (leot_idl), (lim_endl) as the EOS to-
ken for Gemma-7B-it, L1ama-3.1-8B-Instruct,
and Qwen2.5-Coder-7B-Instruct respectively.

We use Together Al (https://api.together.
xyz/) to run the large open-weight models
google/gemma-2-27b-it (Gemma-2-27B-it)
and Qwen/Qwen2.5-Coder-32B-Instruct
(Qwen2.5-Coder-32B-Instruct). We set
“n_sample” to 1 when generating code solutions
and limit the max number of tokens to 4096. The
weights for these models can be found at https:
//huggingface.co/google/gemma-2-27b-it
and https://huggingface.co/Qwen/Qwen2.
5-Coder-32B-Instruct respectively.

We access c4ai-aya-expanse-32b
(Aya) through the Cohere API at https:
//cohere.com/research/aya, reka-core-
20240501 (Reka) through the Reka API at
https://www.reka.ai/reka-api, and deepseek-
chat (Deepseek-V3) through the Deepseek API at
https://api-docs.deepseek.com/. We use the

24684

https://huggingface.co/google/gemma-7b-it
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct
https://api.together.xyz/
https://api.together.xyz/
https://huggingface.co/google/gemma-2-27b-it
https://huggingface.co/google/gemma-2-27b-it
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://cohere.com/research/aya
https://cohere.com/research/aya
https://www.reka.ai/reka-api
https://api-docs.deepseek.com/

Feedback Style

Generated Feedback on APPS (Interview)

SENTENCE

The current solution doesn’t account for the cyclic nature of the strings and may count duplicates,

so we need to implement a proper cyclic string comparison and ensure uniqueness in the count.

The current solution misunderstands the problem. It’s not counting distinct cyclic strings correctly,
as it doesn’t consider all possible binary strings of length n that contain s as a substring.
The solution should use a more sophisticated approach, possibly involving dynamic programming

PARAGRAPH

or KMP algorithm, to generate and count all valid cyclic strings. It needs to handle cases where s

can appear at any position in the cyclic string, not just at the beginning. The current implementation
also doesn’t account for the cyclical nature of the strings properly. A complete overhaul of the
algorithm is needed to correctly solve this problem.

The main issue is that this solution doesn’t correctly handle cyclic strings. The line:

“‘python
if sintorsin t+t:

e

should be replaced with:
CODE FEEDBACK
python
if sin (t * 2):

e

This change ensures that all possible cyclic shifts are checked. Additionally, the solution
doesn’t account for the fact that cyclic shifts of the same string should be counted as one distinct string.
A more fundamental restructuring of the algorithm is needed to correctly solve the problem as

described in the full problem statement.

Question: Calculate the number of unique cyclical binary strings of length n that include

QUERY REPHRASING

a given binary string s as a substring. A cyclical string contains s if any rotation of the string

includes s. Two cyclical strings are different if they’re not rotations of each other. Return the count modulo 10 + 7

Table 3: Example feedback from Sonnet-3.5, given in response to a proposed solution for APPS Interview

(Question #42)

default API settings for inference, limiting the max
number of tokens to 4096.

GPT-40 inference is done through the Ope-
nAl API https://platform.openai.com/docs/
overview and Sonnet-3.5 inference through the
Anthropic API https://www.anthropic.com/
api. We use the default API settings for inference,
limiting the max number of tokens to 4096.

A.6 Prompts

We use Sonnet-3.5 to generate user feedback for
out experiments, but we show that other models
can produce comparable feedback (Figure 7)

We provide all of the prompts for the user model
and code model. All user model prompts were
provided with the same system prompt with the
original question and code solution (Figure 8). The
PARAGRAPH prompt (Figure 9) and SENTENCE
prompt (Figure 10) are given the current code
model solution and generate feedback constrained
by output length. The CODE FEEDBACK prompt is
given the current code model solution and provides
a correction to specific lines of code in the solution
(Figure 11). The QUERY REPHRASING feedback
prompt is given the current code model solution
and underspecified question and generates an up-
dated version of the question with missing details

0.5 1

° °
w IS
s L

Test Case Accuracy
o
N
N

0.14

0.0 -

Baseline Self Critique Paragraph Feedback Static
Feeback Setting

Figure 7: APPS (Interview) test case accuracy with
Sonnet-3.5 as the coding model and GPT-40-mini as
the user model providing feedback.

(Figure 12).

The code model prompts for APPS and Live-
CodeBench are given in Figure 13 and Figure 14.
The code model prompts for ClassEval is given in
Figure 15 and Figure 16.

The 11-shot prompt used to summarize APPS
and LiveCodeBench questions is given in Figure
17. The prompt used to summarize each docstring
in ClassEval is given in Figure 18.

24685

https://platform.openai.com/docs/overview
https://platform.openai.com/docs/overview
https://www.anthropic.com/api
https://www.anthropic.com/api

You are an expert human programmer who is using a coding assistant to write code in order to solve some
programming puzzles. The coding assistant has completed a potential solution to the problem, but needs
your help to make adjustments to the code.

You have access to the full question, including formatting instructions and some test cases. You also
have access to a natural language description of the correct solution. The coding assistant has access to
a summarized, less detailed version of the problem, but only you have access to the full problem. This
means that the code assistant may need additional information on how the code should work or how its
output should be formatted.

Here is the description of the programming problem:

{full question}
Here is a description of the correct solution:

{solution info}

Figure 8: System prompt given to user model. Blue text indicates that the relevant text would be inserted at that

location in the prompt.

A.7 Performance Metrics

Test case accuracy. Test case accuracy can be
defined as below:

Test Cases Passed

TCA =
Total # Test Cases

Normalized Spearman’s Footrule distance.

The normalized Spearman’s Footrule distance is:

iz loa(i) = op(i)|

MaXe, o)iy o (i) = o'(i)]

Consider two rankings o4 and op over items
{1,2,...,n}. To measure the distance between
them, we use Spearman’s Footrule Distance, which
can be thought of as the Manhattan distance be-
tween two rankings:

F(O’A,O'B) =

Z lo4(2)

We normalize F' by its maximum possible value,
2 .
% for even n, to get the Normalized Spearman’s
Footrule Distance.

F(oa,0B) —op(i)|

- F
F(oa,0B) = 7(0147 75)

where F' :— [0,1]. In other words, F' = 0 in-
dicates 01 = 09, whereas F' = 1 indicates the
maximum possible distance between o1 and 0.

Now, we would like to derive the expected F'
between two rankings which are completely uncor-
related. Let us randomly sample o 4, o g uniformly
at random. Then the expected Spearman’s Footrule
Distance (F) is:

E[F(ca,0B)]

ZIUA
= S Efloa(i) - o50)]
i=1
" n+1
= ; 5
_n(n+1)
===

— (1))

Normalizing this by the maximum possible F'
gives:

ML (4 1)

n2 3p
2

Thus, for uncorrelated rankings of length 10, F~
0.73; for a perfectly correlated pair of rankings,
F = 0; and for perfectly anti-correlated rankings,
F=1.

A.8 Additional Details on Measuring
Feedback Quality

Automatic classification of directional correct-
ness. We use GPT-4o to classify the feedback into

24686

Your goal is to provide feedback about the solution that you think would help the assistant fix or adjust the
code. This feedback should be purely about the function of the code, not its aesthetics or nonessential
structure (e.g. do not make a suggestion regarding optimization or other choices that would not change
how the code behaves). The coding assistant will use this feedback to help generate the next version of
the code. Write one paragraph of feedback that you think would be most helpful to the coding assistant.

Do not write more than 100 words.

Here is the code assistant’s solution.

(NN

" python
{full solution}

Please provide one paragraph of feedback that would best help the coding assistant write a better version
of the solution. Don’t copy the code. Just write your reply.

Figure 9: Prompt given to user model to get PARAGRAPH feedback. Blue text indicates that the relevant text would

be inserted at that location in the prompt.

two classes: (1) the feedback claimed that the solu-
tion was correct or (2) the feedback claimed that the
solution was incorrect. As some feedback claims
that the “logic” of the solution is correct, but then
states that it is missing critical edge cases or in-
put/output formatting, we also apply rule-based
string matching to re-classify such feedback as in-
correct. We then compare the feedback to the actual
TCA performance to classify it into directionally
correct vs. directionally incorrect feedback.

Directionally incorrect feedback inaccurately
claims that correct solutions are incorrect or an
incorrect solution is correct. We find that, in some
cases, feedback in the latter case may still contain
low-level suggestions that the model can use in the
next round of iteration (e.g., an edge case). While
our metric is a rough proxy of feedback accuracy,
we expect that our conclusions should still hold be-
cause we apply it equally to all feedback types. The
key takeaway remains that the effect of directional
correctness varies by feedback type, even when
feedback types perform similarly with respect to
test case accuracy (e.g., CODE FEEDBACK and
PARAGRAPH both induce the best performance,
but PARAGRAPH feedback tends to have higher
directional correctness compared to CODE FEED-
BACK’s lower directional correctness).

Aggregating directional correctness for Table 2
and Figure 4. For Table 2, we average across all
steps of each interaction and then average across
all interactions. For Figure 4, we plot on a step-
wise basis, where “Solution Performance Change”

refers to whether the ith step solution performed
better or worse than the i-1th step solution. We
bucket all feedback steps into “Performance [of
Next Iteration of Solution] Increased” and “Perfor-
mance Decreased”, and then further divide each
bucket into “Directionally Correct” and “Direction-
ally Correct”.

Other metrics of feedback quality. We consid-
ered two other metrics of feedback quality. First,
we attempted to consider the increase in probabil-
ity over either the ground-truth solution or the full
question, comparing the code model’s solution with
and without feedback. However, we found that this
measure was too noisy to impart any meaningful
value.

We also attempted to prompt GPT-40 to classify
feedback relevance (to either the ground-truth so-
lution or full question) on a scale of 1-5. However,
this measure was also noisy, not to mention hard to
define in the prompt, as even humans would strug-
gle to distinguish between, for example, a "2" vs. a
"3" in relevance.

A.9 Additional SELF-CRITIQUE BASELINE
Settings

The standard SELF-CRITIQUE BASELINE uses the
underspecified question. We add an additional
version of SELF-CRITIQUE BASELINE which pro-
vides the code model with the fully specified ques-
tion rather than the underspecified question. We
run this baseline on a subset of models for Live-
CodeBench and show results in Table 4.

24687

Your goal is to provide feedback about the solution that you think would help the assistant fix or adjust the
code. This feedback should be purely about the function of the code, not its aesthetics or nonessential
structure (e.g. do not make a suggestion regarding optimization or other choices that would not change
how the code behaves). The coding assistant will use this feedback to help generate the next version of
the code. Write one sentence of feedback that you think would be most helpful to the coding assistant. Do

not write more than 50 words.

Here is the code assistant’s solution.

(NN

" python
{full solution}

Please provide one sentence of feedback that would best help the coding assistant write a better version of
the solution. Don’t copy the code. Just write your reply.

Figure 10: Prompt given to user model to get SENTENCE feedback. Blue text indicates that the relevant text would

be inserted at that location in the prompt.

Code Model SELF-CRITIQUE BASELINE SELF-CRITIQUE BASELINE w/ Fully Specified Queries
GPT-40 0.323 (0.026) 0.767 (0.023)
Sonnet-3.5 0.387 (0.026) 0.891 (0.016)
Qwen2.5-Coder-32B-Instruct 0.309 (0.025) 0.869 (0.017)
Gemma-2-27B-it 0.282 (0.025) 0.796 (0.020)
Aya 0.235 (0.022) 0.488 (0.028)

Table 4: Performance of five models on SELF-CRITIQUE BASELINE with underspecified queries (via input
obfuscation) and SELF-CRITIQUE BASELINE with fully specified queries on LiveCodeBench.

Unsurprisingly, SELF-CRITIQUE BASELINE
with Fully Specified Queries improves greatly over
the standard SELF-CRITIQUE BASELINE. We ex-
pect a strong model given full question specifica-
tions to improve via iterative refinement, which we
can think of as an upper bound on performance in
the interactive setting. In contrast, we expect our
SELF-CRITIQUE BASELINE, which reflects more
realistic input specifications, to perform poorly,
demonstrating that model must collaborate with the
user. We are happy to extend this to more datasets
and models and add this to the next revision of the

paper.

A.10 Multiple Feedback Types in the Same
Interaction

We have implemented two versions of interactions
where the user model can provide multiple feed-
back types in the same interaction. In RANDOM
FEEDBACK, we randomly sample feedback types at
each iteration of the interaction. In MIXED FEED-
BACK, we list all feedback types in the prompt and
allow the model to choose one to use at each step.
To avoid ordering biases, we randomly shuffle the

order in which the feedback types are listed each
time the user model is queried.

We show results in these two settings for two
datasets (ClassEval and LiveCodeBench) over 8
models in Tables 17 and 18. For both datasets, we
continue to observe ranking changes in these set-
tings, with ClassEval changing more dramatically
than LiveCodeBench, as we also find in Figure 3.

A.11 Ranking Changes Across Code
Readability

To demonstrate the versatility of our evaluation
protocol, we extend our evaluation to include an-
other axis of the coding experience: code read-
ability. Specifically, we ran a PEPS style checker
(pycodestyle) to find the average number of vi-
olations in the final output for each question in
every dataset and setting. For all 3 datasets, the
Spearman’s footrule ranking correlations between
interactive settings and the static settings are in
Table 5.

We note that our instructions to the user explic-
itly notes that feedback should be focused on func-
tionality rather than aesthetics (e.g., code readabil-

24688

Your goal is to provide feedback about the solution that you think would help the assistant fix or adjust the
code. This feedback should be purely about the function of the code, not its aesthetics or nonessential
structure (e.g. do not make a suggestion regarding optimization or other choices that would not change
how the code behaves). The coding assistant will use this feedback to help generate the next version of
the code. Point out specific lines of the code that are incorrect and explain why. Do not write more than
100 words.

Here is the code assistant’s solution.

" python
{full solution}

Please point out specific lines of the code that are incorrect and give the corrected version. Make sure
you copy paste the specific line in the solution which is incorrect! You should write both the original line
(exactly as found in the solution) and also write what line it should be replaced with.

Figure 11: Prompt given to user model to get CODE FEEDBACK. Blue text indicates that the relevant text would
be inserted at that location in the prompt.

Dataset CODE FEEDBACK QUERY REPHRASING PARAGRAPH SENTENCE
LiveCodeBench 0.222 0.4888 0.2222 0.1777
ClassEval 0.6667 0.7556 0.8444 0.7556
APPS 0.7555 0.8444 30.8 0.8

Table 5: Spearman’s footrule ranking correlations between interactive settings and static settings using a code
readability metric.

ity). Nonetheless, we still observe ranking changes,
especially in LiveCodeBench. In other words, eval-
uating models in an interactive setting also affects
code readability, even when the user is prompted
to avoid giving feedback about readability! Future
work could extend this to additional elements of the
broader coding experience (e.g., maintainability or
usability).

A.12 Performance Tables for Static vs.
Interactive Settings

In this section, we provide tables for the perfor-
mance of models across static and interactive set-
tings, including all feedback types and baselines.
Table 6 gives the TCA of APPS (Interview), Table
7 gives the TCA of APPS (Introductory). Table 8
gives the TCA of LiveCodeBench and Table 9.

A.13 Additional Tables

All additional tables — including information about
feedback quality by dataset, steerability metrics,
and ranking distance metrics — can be found in
this section.

Table 10, Table 11, Table 12 have the average

directional correctness of each setting and the num-
ber of steps it takes to reach a solution with 100%
TCA. We partition the analysis by model and by
feedback setting.

Table 14 measures the average number of edits
made by each model for each feedback. Table 15
measures the average number of test cases flipped
by each feedback setting.

Tables 16 gives the normalized Spearman’s
Footrule distance of each setting’s ranking com-
pared to the STATIC setting.

24689

Model STATIC SELF-CRITIQUE BASELINE SENTENCE PARAGRAPH CODE FEEDBACK QUERY REPHRASING

GPT-40 0.498 (0.016) 0.068 (0.007) 0422 (0.016) 0.544 (0.016) 0.598 (0.016) 0.488 (0.016)

Aya 0.261 (0.014) 0.009 (0.002) 0.131 (0.011) 0.259 (0.015) 0.235(0.014) 0.214 (0.013)
Deepseek-V3 0.616 (0.015) 0.048 (0.007) 0449 (0.016) 0.512(0.023) 0.521 (0.026) 0.442 (0.019)
Gemma-2-27B-it 0.409 (0.013) 0.007 (0.002) 0.351 (0.016) 0.556 (0.016) 0.51 (0.017) 0.403 (0.015)
Gemma-7B-it 0.177 (0.01) 0.009 (0.002) 0.039 (0.006) 0.084 (0.009) 0.299 (0.016) 0.029 (0.004)
Llama-3.1-8B-Instruct 0.253 (0.012) 0.025 (0.003) 0.236 (0.014) 0.402 (0.015) 0.453 (0.016) 0.215 (0.012)
Quen2.5-Coder-7B-Instruct 0.369 (0.014) 0.026 (0.004) 0.283 (0.014) 0.423(0.016) 0.495 (0.016) 0.336 (0.015)
Qwen2.5-Coder-32B-Instruct 0.542 (0.015) 0.039 (0.004) 0.5(0.016) 0.582(0.015) 0.605 (0.015) 0.503 (0.015)
Reka 0.164 (0.011) 0.018 (0.003) 0.224 (0.013) 0.303 (0.015) 0.4 (0.016) 0.157 (0.011)

Sonnet-3.5 0.59 (0.014) 0.114 (0.009) 0.571 (0.015) 0.654 (0.014) 0.627 (0.015) 0.62 (0.014)

Table 6: Average TCA of each model with standard error on APPS Interview questions.

Model STATIC SELF-CRITIQUE BASELINE SENTENCE PARAGRAPH CODE FEEDBACK QUERY REPHRASING
GPT-40 0.412 (0.015) 0.071 (0.007) 0.392 (0.016) 0.512 (0.016) 0.539 (0.016) 0.409 (0.016)
Aya 0.182 (0.008) 0.004 (0.001) 0.069 (0.006) 0.179 (0.009) 0.177 (0.009) 0.142 (0.007)
Deepseek-V3 - - - - - -
Gemma-2-27B-it 0.322 (0.012) 0.018 (0.003) 0.228 (0.013) 0.454 (0.016) 0.41 (0.016) 0.299 (0.013)
Gemma-7B-it 0.131 (0.008) 0.013 (0.003) 0.023 (0.004) 0.045 (0.006) 0.213 (0.014) 0.014 (0.003)
Llama-3.1-8B-Instruct 0.205 (0.01) 0.028 (0.004) 0.12 (0.009) 0.292 (0.014) 0.402 (0.015) 0.153 (0.01)
Qwen2.5-Coder-7B-Instruct 0.28 (0.012) 0.034 (0.004) 0.186 (0.012) 0.27 (0.014) 0.392 (0.016) 0.2 (0.011)
Qwen2.5-Coder-32B-Instruct 0.348 (0.024) 0.038 (0.007) 0.376 (0.023) 0.479 (0.025) 0.486 (0.025) 0.37 (0.023)
Reka 0.124 (0.009) 0.018 (0.003) 0.141 (0.01) 0.275(0.014) 0.34 (0.015) 0.11 (0.009)
Sonnet-3.5 0.497 (0.014) 0.073 (0.007) 0.468 (0.015) 0.556 (0.015) 0.53 (0.015) 0.492 (0.015)

Table 7: Average TCA of each model with standard error in each setting for APPS introductory. Deepseek-V3 is
missing for this setting due to rate limits on the API that impeded evaluation.

Model STATIC SELF-CRITIQUE BASELINE SENTENCE PARAGRAPH CODE FEEDBACK QUERY REPHRASING
GPT-40 0.8 (0.023) 0.323 (0.026) 0.767 (0.024) 0.745 (0.024) 0.702 (0.026) 0.23 (0.025)
Aya 0.522 (0.027) 0.235 (0.022) 0.482 (0.027) 0.632 (0.026) 0.483 (0.028) 0.134 (0.02)
Deepseek-V3 0.944 (0.013) 0.332 (0.026) 0.841 (0.02) 0.849 (0.019) 0.756 (0.024) 0.345 (0.028)
Gemma-2-27B-it 0.766 (0.021) 0.282 (0.025) 0.67 (0.026) 0.766 (0.023) 0.62 (0.026) 0.119 (0.019)
Gemma-7B-it 0.347 (0.023) 0.173 (0.019) 0.196 (0.021) 0.285 (0.024) 0.524 (0.027) 0.028 (0.008)
Llama-3.1-8B-Instruct 0.587 (0.025) 0.237 (0.022) 0.538 (0.027) 0.588 (0.026) 0.647 (0.026) 0.203 (0.023)
Qwen2.5-Coder-7B-Instruct 0.755 (0.021) 0.27 (0.024) 0.621 (0.027) 0.678 (0.026) 0.629 (0.027) 0.189 (0.023)
Qwen2.5-Coder-32B-Instruct 0.961 (0.007) 0.309 (0.025) 0.809 (0.021) 0.747 (0.024) 0.712 (0.025) 0.237 (0.025)
Reka 0.617 (0.025) 0.246 (0.023) 0.583 (0.026) 0.636 (0.026) 0.629 (0.027) 0.111 (0.018)
Sonnet-3.5 0.937 (0.012) 0.387 (0.026) 0.832(0.02) 0.821(0.02) 0.735 (0.025) 0.395 (0.029)

Table 8: Average TCA of each model with standard error on a subset LiveCodeBench questions. To provide code
solutions to the user model, we select questions which Sonnet-3.5 solves perfectly within two attempts, using the
generated solution as ground truth.

Model STATIC SELF-CRITIQUE BASELINE SENTENCE PARAGRAPH CODE FEEDBACK QUERY REPHRASING
GPT-40 0.839 (0.005) 0.561 (0.018) 0.836 (0.014) 0.848 (0.014) 0.895 (0.011) 0.789 (0.014)
Aya 0.718 (0.007) 0.305 (0.019) 0.596 (0.021) 0.597 (0.022) 0.781 (0.018) 0.675 (0.016)
Deepseek-V3 0.849 (0.005) 0.559 (0.018) 0.837 (0.013) 0.867 (0.012) 0.889 (0.012) 0.806 (0.013)
Gemma-2-27B-it 0.704 (0.008) 0.563 (0.018) 0.776 (0.015) 0.815 (0.015) 0.867 (0.014) 0.735 (0.015)
Gemma-7B-it 0.350 (0.008) 0.303 (0.017) 0.375 (0.018) 0.390 (0.018) 0.687 (0.019) 0.340 (0.017)
Llama-3.1-8B-Instruct 0.636 (0.007) 0.443 (0.019) 0.653 (0.019) 0.710 (0.019) 0.773 (0.017) 0.701 (0.018)
Qwen2.5-Coder-7B-Instruct 0.714 (0.006) 0.502 (0.019) 0.605 (0.018) 0.757 (0.017) 0.819 (0.014) 0.697 (0.016)
Qwen2.5-Coder-32B-Instruct 0.816 (0.006) 0.542 (0.018) 0.815(0.014) 0.832 (0.015) 0.876 (0.012) 0.778 (0.014)
Reka 0.670 (0.007) 0.471 (0.027) 0.096 (0.015) 0.109 (0.016) 0.112 (0.016) 0.600 (0.019)
Sonnet-3.5 0.833 (0.006) 0.564 (0.019) 0.821 (0.014) 0.865 (0.013) 0.881 (0.013) 0.803 (0.014)

Table 9: Average TCA with standard error in each setting for ClassEval.

24690

Model Feedback Type Average Steps to Correct Solution Average Directional Correctness

Code Feedback 2.981 0.937

GPT-40 Paragraph 3.003 0.896
Sentence 3.436 0.850

Code Feedback 3.586 0.928

Aya Paragraph 3.687 0.926

Sentence 3.886 0.901

Code Feedback 3.207 0.928

Deepseek-V3 Paragraph 3.132 0.886
Sentence 3.484 0.873

Code Feedback 3.296 0.948

Gemma-2-27B-it Paragraph 3.259 0.920
Sentence 3.630 0.895

Code Feedback 3.661 0.978

Gemma-7B-it Paragraph 3.947 0.982
Sentence 3.977 0.950

Code Feedback 3.349 0.963

Llama-3.1-8B-Instruct Paragraph 3.567 0.923
Sentence 3.850 0.897

Code Feedback 3.328 0.948

Qwen2.5-Coder-7B-Instruct Paragraph 3.453 0.909
Sentence 3.724 0.899

Code Feedback 3.082 0.952
Qwen2.5-Coder-32B-Instruct Paragraph 3.058 0.900
Sentence 3411 0.876

Code Feedback 3.520 0.935

Reka Paragraph 3.634 0.927

Sentence 3.854 0.879

Code Feedback 3.035 0.914

Sonnet-3.5 Paragraph 2.882 0.865
Sentence 3.299 0.834

Table 10: Average directional correctness of feedback and the average number of steps required to reach 100% TCA
on the APPS dataset.

24691

Model Feedback Type Average Steps to Correct Solution Average Directional Correctness

Code Feedback 2.697 0.736

GPT-40 Paragraph 2.337 0.902
Sentence 2.416 0.821

Code Feedback 2.856 0.852

Aya Paragraph 2.553 0.945

Sentence 3.097 0.898

Code Feedback 2.487 0.785

Deepseek-V3 Paragraph 1.808 0.891
Sentence 2.063 0.806

Code Feedback 3.089 0.809

Gemma-2-27B-it Paragraph 2.246 0912
Sentence 2.685 0.896

Code Feedback 3.229 0.927

Gemma-7B-it Paragraph 3.640 0.986
Sentence 3.818 0.963

Code Feedback 2.773 0.888

Llama-3.1-8B-Instruct Paragraph 2.672 0.957
Sentence 3.169 0.890

Code Feedback 2.876 0.786

Qwen2.5-Coder-7B-Instruct Paragraph 2314 0.958
Sentence 2.847 0.909

Code Feedback 2.811 0.771
Qwen2.5-Coder-32B-Instruct Paragraph 1.949 0.871
Sentence 2.219 0.817

Code Feedback 2.801 0.668

Reka Paragraph 2.575 0.883

Sentence 2.871 0.807

Code Feedback 2.663 0.701

Sonnet-3.5 Paragraph 2.017 0.885
Sentence 2.247 0.859

Table 11: Average directional correctness of feedback and the average number of steps required to reach 100% TCA
on the LiveCodeBench dataset.

24692

Model Feedback Type Average Steps to Correct Solution Average Directional Correctness

Code Feedback 3.436 0.743

GPT-40 Paragraph 3.546 0.963
Sentence 3.153 0.899

Code Feedback 3.977 0.749

Aya Paragraph 3.987 0.953

Sentence 3.840 0.898

Code Feedback 4.000 0.698

Deepseek-V3 Paragraph 4.000 0.969
Sentence 4.000 0.910

Code Feedback 3.076 0.789

Gemma-2-27B-it Paragraph 3.334 0.977
Sentence 3.661 0.917

Code Feedback 3.880 0.902

Gemma-7B-it Paragraph 3.874 0.979
Sentence 3.940 0.944

Code Feedback 3.389 0.872

Llama-3.1-8B-Instruct Paragraph 3.806 0.959
Sentence 3.699 0.899

Code Feedback 3.684 0.782

Qwen2.5-Coder-7B-Instruct Paragraph 3.724 0.967
Sentence 3.322 0.929

Code Feedback 3.536 0.744
Qwen2.5-Coder-32B-Instruct Paragraph 4.000 0.977
Sentence 3.585 0.889

Code Feedback 3.978 0.769

Reka Paragraph 4.000 0.942

Sentence 4.000 0.901

Code Feedback 3.664 0.659

Sonnet-3.5 Paragraph 3.675 0.947
Sentence 4.000 0.913

Table 12: Average directional correctness of feedback and the average number of steps required to reach 100% TCA
on the ClassEval dataset

24693

Model Feedback Type Average Steps to Correct Solution Average Directional Correctness

Code Feedback 2.925 0.904

GPT-40 Paragraph 2916 0.906
Sentence 3.293 0.858

Code Feedback 3.400 0.918

Aya Paragraph 3.516 0.934

Sentence 3.738 0.905

Code Feedback 2.814 0.831

Deepseek-V3 Paragraph 2.721 0.929
Sentence 3.171 0.886

Code Feedback 3.218 0.915

Gemma-2-27B-it Paragraph 3.120 0.925
Sentence 3.479 0.903

Code Feedback 3.545 0.969

Gemma-7B-it Paragraph 3.888 0.982
Sentence 3.936 0.952

Code Feedback 3.250 0.945

Llama-3.1-8B-Instruct Paragraph 3.427 0.930
Sentence 3.708 0.900

Code Feedback 3.237 0.921

Qwen2.5-Coder-7B-Instruct Paragraph 3.287 0.917
Sentence 3.663 0.874

Code Feedback 3.002 0.919
Qwen2.5-Coder-32B-Instruct Paragraph 2.931 0.908
Sentence 3.265 0.883

Code Feedback 3.508 0.889

Reka Paragraph 3.560 0.929

Sentence 3.761 0.878

Code Feedback 2.983 0.877

Sonnet-3.5 Paragraph 2.803 0.880
Sentence 3.193 0.849

Table 13: Average directional correctness of feedback and the average number of steps required to reach 100% TCA
across all datasets.

Model SENTENCE PARAGRAPH CODE FEEDBACK QUERY REPHRASING
GPT-40 265.029 308.837 451.749 325.441
Aya 333.695 274.630 503.740 351.736
Deepseek-V3 143.413 190.044 301.157 264.532
Gemma-2-27B-it 116.412 108.401 182.592 108.516
Gemma-7B-it 286.987 211.680 299.998 261.134
Llama-3.1-8B-Instruct 361.366 400.246 511.731 385.156
Qwen2.5-Coder-7B-Instruct 214.421 178.882 363.474 211.171
Qwen2.5-Coder-32B-Instruct 270.493 230.114 496.959 328.425
Reka 541.689 292.388 768.962 638.245
Sonnet-3.5 155.923 204.138 320.164 215.693

Table 14: Surface-level steerability (as measured by edit distance) vs. feedback type across each model.

24694

Model SENTENCE PARAGRAPH CODE FEEDBACK QUERY REPHRASING

GPT-40 0.225 0.164 0.240 0.152

Aya 0.169 0.090 0.208 0.108

Deepseek-V3 0.159 0.138 0.208 0.161
Gemma-2-27B-it 0.149 0.113 0.199 0.095
Gemma-7B-it 0.094 0.007 0.040 0.015
Llama-3.1-8B-Instruct 0.2 0.102 0.201 0.107
Qwen2.5-Coder-7B-Instruct 0.157 0.095 0.184 0.101
Qwen2.5-Coder-32B-Instruct 0.228 0.142 0.263 0.192
Reka 0.154 0.059 0.168 0.095

Sonnet-3.5 0.239 0.225 0.311 0.212

Table 15: Behavioral-level steerability (as measured by number of test cases changed from correct to incorrect or
vice-versa) vs. feedback type across each model.

Dataset Feedback Type Normalized Spearman’s Footrule Distance
Code Feedback 0.267
Apps Input Refinement 0.222
Paragraph 0.222
Sentence 0.178
Code Feedback 0.222
Input Refinement 0.267
ClassEval ’ Paragraph 0.267
Sentence 0.267
Code Feedback 0.356
. Input Refinement 0.356
LiveCodeBench Paragraph 0222
Sentence 0.044

Table 16: Normalized Spearman’s Footrule Distance when comparing each feedback setting’s ranking order to the
ranking order on static benchmark.

24695

Here is the code assistant’s solution.

" python
{full solution}

Here is the previous version of the question.
{underspecified question}

Please rewrite the question so as to provide an updated question of similar length which would help the
model generate a better version of the code. Make sure you don’t make the new question longer than the
older version! Begin your response with "Question:" and don’t add any extra text to the end.

Figure 12: Prompt given to user model to get QUERY REPHRASING feedback. Blue text indicates that the relevant
text would be inserted at that location in the prompt.

You are a coding assistant who is writing code in order to solve some programming puzzles.

You will be provided with a summary of the problem. You may also be provided with some starter code
that you need to complete.

Your goal is to complete the code so as to solve the problem. Do not add anything else to the code,
including natural language that is not part of the code or comments. Your generation should be ready to
run without needing any modifications.

Here is the programming problem description:
{underspec question}

Enclose your solution in a markdown block beginning with * * * python. When you are ready to submit
your response, please end the markdown block with ™ * “on a new line.

" python

{partial solution}

Figure 13: Prompt given to code model in the STATIC, SELF-CRITIQUE BASELINE, and QUERY REPHRASING
settings for APPS and LiveCodeBench. Blue text indicates that the relevant text would be inserted at that location

in the prompt. is the APPS-specific formatting instructions. Red text is prefill for the code model.
Code Model STATIC MIXED FEEDBACK RANDOM FEEDBACK
GPT-40 1 2 2
Sonnet-3.5 2 1 1
Qwen?2.5-Coder-32B-Instruct 3 4 3
Gemma-2-27B-it 4 3 4
Aya 5 7 7
Llama-3.1-8B-Instruct 6 5 6
Qwen2.5-Coder-7B-Instruct 7 6 5
Gemma-7B-it 8 8 8

Table 17: Performance of 8 models on STATIC, MIXED FEEDBACK, and RANDOM FEEDBACK on ClassEval.

24696

You are a coding assistant who is writing code in order to solve some programming puzzles.

You will be provided with a summary of the problem. You may also be provided with some starter code
that you need to complete.

Your goal is to complete the code so as to solve the problem. Do not add anything else to the code,
including natural language that is not part of the code or comments. Your generation should be ready to
run without needing any modifications.

Here is the programming problem description:
{underspec question}
Here is your last version of the code:

" python

{prev solution}

The user provided the following feedback on the code:
{user response}

You can choose to use this response, or you can choose to ignore it. Only incorporate the information that
you think is relevant and helpful into the code.

Enclose your solution in a markdown block beginning with ™ " python. When you are ready to submit
your response, please end the markdown block with ** “on a new line.

* " python

Figure 14: Prompt given to code model in the PARAGRAPH, SENTENCE, CODE FEEDBACK setting for APPS and
LiveCodeBench. Blue text indicates that the relevant text would be inserted at that location in the prompt.
is the APPS specific formatting instructions. Red text is prefill for the code model.

Code Model STATIC MIXED FEEDBACK RANDOM FEEDBACK
Qwen2.5-Coder-32B-Instruct 1 2 2
Sonnet-3.5 2 1 1
GPT-40 3 3 3
Gemma-2-27B-it 4 4 4
Qwen2.5-Coder-7B-Instruct 5 5 5
Aya 6 6 7
Gemma-7B-it 7 7 6
Llama-3.1-8B-Instruct 8 8 8

Table 18: Performance of 8 models on STATIC, MIXED FEEDBACK, and RANDOM FEEDBACK on LiveCodeBench.

24697

You are a coding assistant who is writing code in order to fill in the skeleton of a python class.

You will be provided with the skeleton of the class with function names and docstrings. You may also be
provided with some functions already completed.

Your goal is to complete the code according to the docstrings. Do not add anything else to the code,
including natural language that is not part of the code or comments. Your generation should be ready to
run without needing any modifications.

Here is the skeleton:
{underspec question}

Enclose your solution in a markdown block beginning with ** " python. When you are ready to submit
your response, please end the markdown block with ** “on a new line.

" " python

{partial solution}

Figure 15: Prompt given to code model in the STATIC, SELF-CRITIQUE BASELINE, and QUERY REPHRASING
settings for ClassEval. Blue text indicates that the relevant text would be inserted at that location in the prompt.
Red text is prefill for the code model.

You are a coding assistant who is writing code to fill in some incomplete classes.

You will be provided with the skeleton of the class with function names and docstrings. You may also be
provided with some functions already completed.

Your goal is to complete the code according to the docstrings. Do not add anything else to the code,
including natural language that is not part of the code or comments. Your generation should be ready to
run without needing any modifications.

Here is the skeleton:
{underspec question}
Here is your last version of the skeleton:

" python
{prev solution}

* " The user provided the following feedback on the code:

{user response} You can choose to use this response, or you can choose to ignore it. Only incorporate the

information that you think is relevant and helpful into the code.
Enclose your solution in a markdown block beginning with * * * python. When you are ready to submit
your response, please end the markdown block with ** “on a new line.

* " python

Figure 16: Prompt given to code model in the PARAGRAPH, SENTENCE, CODE FEEDBACK setting for Classeval.
Blue text indicates that the relevant text would be inserted at that location in the prompt. Red text is prefill for the
code model.

24698

Summarize the question with header ’'FORMAL QUESTION’ using only natural language. Write your
summary under 'SUMMARY"’

Do not use any variable or function names from the question. Do not write any code.

"You are given a coding/algorithmic question below. Your goal is to come up with a {sent length}
sentence summary using natural language to describe the problem.

"Here are examples of a question and a summary labeled "EX QUESTION’ and 'EX SUMMARY".
Format your summary of 'FORMAL QUESTION’ in a similar way to these summaries using {sent
length} sentence(s).

###EX QUESTION

Example question 1

##H#EX SUMMARY

Example summary 1

##EX QUESTION

Example question 2

##HEX SUMMARY

Example summary 2

##HEX QUESTION

Example question 3

##H#HEX SUMMARY

Example summary 3

#H#HEX QUESTION

Example question 11

#HEX SUMMARY

Example summary 11

###FORMAL QUESTION

{question}

#H#HSUMMARY
<YOUR SUMMARY HERE>

Figure 17: Format for the 11 shot prompt we use to generate summaries in APPS and LiveCodeBench problems.
Blue text indicates that the relevant text would be inserted at that location in the prompt.

24699

Do not reference any variables or function names. Do not write any code or examples of behavior.

You are given a method signature and a docstring below. Write a short, one sentence summary of the
docstring. Do not use code or examples in your summary. Retain only the key information. Do not use
more than 15 words.

SIGNATURE and DOCSTRING {function}
SUMMARY <YOUR SUMMARY HERE>

Figure 18: Prompt we use to generate summarized docstring for each function in ClassEval skeletons. Blue text
indicates that the relevant text would be inserted at that location in the prompt.

24700

