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Abstract

In inference-time scaling, Chain-of-Thought
(CoT) plays a crucial role in enabling large
language models (LLMs) to exhibit reason-
ing capabilities. However, in many scenarios,
high-quality CoT data is scarce or even un-
available. In such cases, STaR-like methods
can help LLMs synthesize CoT based on user
queries and response, but they inevitably suf-
fer from the risk of compounding errors. In
this work, we tackle an even more challenging
scenario: tool learning in the absence of user
queries. We design a data scaling method us-
ing back-translation, which establishes an infer-
ence cycle to synthesize both user queries and
CoT data. To reudce the compounding error
of inference time, we introduce two rule-based
verifiers to assess the validity of the synthe-
sized CoT data. In particular, the Cycle Verifier
facilitates performance improvement by con-
tinuously accumulating new data over multiple
iterations. Our approach achieves a 75.4% pass
rate and a 79.6% win rate using small models
(7B) in StableToolBench. Notably, these results
are obtained exclusively from self-synthesized
high-quality data, without relying on external
supervision or expert trajectories for warm-up.

1 Introduction

Tool use is a critical capability for LLMs, enabling
them to perform complex reasoning tasks through
interacting with real-world environments (Mallen
et al., 2022; Wang et al., 2023b; Zeng et al., 2023;
Xu et al., 2023b; Huang et al., 2024). Imitation
learning is one of the most efficient ways to acquire
new skills, as it allows LLMs to benefit from ex-
pert trajectories. However, collecting high-quality
expert data (Yang et al., 2024; Qin et al., 2023a) is
often time-consuming and inherently non-scalable.

In real-world scenarios, human experts use tools
in a sequential manner: they first determine the
query intent, select the appropriate tool, and then
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Figure 1: Illustration of Inference Cycle.

provide a CoT-based solution. In contrast, instruc-
tion backtranslation (Li et al., 2023) follows an
inverse process, inferring the user’s intent based
on a given solution. As shown in Figure 1, we
integrate these two approaches to establish an in-
ference cycle by leveraging tool environments and
LLMs. This cycle ensures data scalability by con-
tinuously generating new user queries and inter-
acting with the environment to produce CoT data.
STaR-like methods (Zelikman et al., 2022) provide
a potential approach to bootstrapping reasoning
capability in inference-time scaling (Snell et al.,
2024). However, they rely on oracle responses1

to filter low-quality data using rejection sampling,
which is unavailable in our scenario.

In multi-intent tool use, LLMs often require mul-
tiple rounds of reasoning and interaction. It is not
suitable to obtain reward estimation through fre-
quent trial-and-error, which is inefficient and un-
scalable. In other words, without a deterministic
reward modeling, data augmentation is highly sus-
ceptible to compounding errors (Cundy and Ermon,
2023), a phenomenon known as LLM hallucina-
tion and error propagation in inference trajecto-
ries. Thus, we introduce two predefined rule-based
verifiers, which provide process-level reward sig-
nals to evaluate each API invocation action. In

1In mathematical reasoning, the oracle response corre-
sponds to the final numerical solution, while in tool use, it
refers to the invoked function name and specific parameters.
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particular, the format verifier aims to filter out pa-
rameter value inconsistencies by ensuring that the
provided parameters align with the function’s pre-
defined types. The cycle verifier ensures the con-
sistency of API invocation trajectories, preventing
deviations from the conditions of the initially syn-
thesized user query. Notably, these reward signal
can be distributed across multiple reasoning steps,
ensuring the effectiveness of process supervision.

Furthermore, we introduce the preference
tree (Zhuang et al., 2023) to enhance sampling
efficiency, which reduces the cost of redundant
reasoning in multi-step inference tasks. Addition-
ally, the preference tree provides pairwise sam-
ples (chosen and rejected) for Direct Preference
Optimization (DPO) training. In our implementa-
tion, we adopt iterative training to perform multiple
stage data synthesis, a process we call InfCycle,
effectively unlocking the potential of inference-
time computation. We evaluate InfCycle on a
diverse set of benchmarks, including the inter-
active StableToolBench and the non-interactive
Berkeley Function Calling dataset. Moreover,
our evaluations across multiple foundation models,
from the weakly toolcapable Mistral-7B-Instruct
to the more advanced LLaMA3-8B-Instruct and
Qwen2.5-7B-Instruct. Empirical results indicate
that InfCycle not only enhances model perfor-
mance but also outperforms robust baselines such
as GPT-4 on StableToolBench. Additionally, on
Berkeley Function Calling, InfCycle achieves
relative improvements of +16 and +40 points,
further demonstrating its effectiveness. Our main
contributions are as follows:

• We show that InfCycle is an effective strategy
for enabling LLMs to master candidate tools
even when expert data is unavailable.

• In the absence of explicit reward signals, our
findings indicate that combining LLMs with
rule-based rewards effectively reduces com-
pounding errors in data synthesis, thereby en-
hancing overall performance.

2 Related Works

Tool Learning As pioneers, Toolformer (Schick
et al., 2024), Gorilla (Patil et al., 2023), and ToolAl-
paca (Tang et al., 2023) have explored the po-
tential of LLMs in tool use. ToolLLaMA (Qin
et al., 2023b) notably expanded the number of
available tools, exceeding 10,000 APIs, and inves-

tigated the possibilities of data scaling. Many re-
lated works primarily seek improvements through
two approaches: Inherent Abilities: This involves
manipulating prompts or enhancing the execution
framework. Xu et al. (2023b) utilize examples, in-
context demonstrations, and generation styles to ex-
plore the potential of LLMs. AutoAct (Qiao et al.,
2024) employed a multi-agent collaboration frame-
work to complete reasoning tasks. RestGPT (Song
et al., 2023) introduced a coarse-to-fine online
planning mechanism by using three main modules
(Planner, API Selector, and Executor). Synthetic
Data: This strategy empowers model capabilities
through synthetic data. ToolVerifier (Mekala et al.,
2024) leveraged the LLaMA-2 70B model to verify
the accuracy of synthetic data. APIGen (Liu et al.,
2024b) used a strong model to filter API calls based
on rules and semantics, ensuring data accuracy.

Inference-time Scaling LLMs can utilize tech-
niques such as CoT (Wei et al., 2022) or Reflec-
tion (Shinn et al., 2024) to enhance their reasoning
capabilities during testing. However, many studies
show that these methods often have limited effec-
tiveness for complex tasks (Huang et al., 2023;
Stechly et al., 2023; Valmeekam et al., 2023). Nev-
ertheless, this research direction remains crucial for
the future, particularly in exploring the trade-offs
between inference time and pre-training computing.
Brown et al. (2024) demonstrate that scaling infer-
ence computing through repeated sampling leads
to significant improvements in coverage across var-
ious tasks and models. Snell et al. (2024) introduce
a compute-optimal strategy that enhances the effi-
ciency of test-time compute scaling compared to a
best-of-N methods.

In our scenario, no expert data trajectories or pro-
prietary models are available, meaning the model
improves purely through self-improvement. Un-
der such strict conditions, obtaining explicit re-
ward signals is highly challenging. Therefore, this
work focuses on exploring the effectiveness of prior
knowledge and consistency constraints as alterna-
tive forms of reward.

3 Preliminaries

We first provide the task definition of tool use
and describe the scenarios in our works. Given a
user query Q and a set of candidate API functions
A = {API0, API1, . . . , API|A|}, LLMs require to
fulfill the user’s intent by executing a specific se-
quence of API function calls. The decision pro-
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Figure 2: Pass@N results of model performance across different reasoning steps (from 1 to 10). The non-live
dataset of the Berkeley Function Calling benchmark comprises six distinct subsets, with our analysis focusing
exclusively on the test set using Python. In this context, Multiple refers to tasks that require the use of multiple
distinct functions to achieve the desired outcome, whereas Parallel denotes cases in which the same function must
be invoked multiple times to fulfill the user’s intent.

cess can be described as y ∼ πθ(y|s0, a1, a2, · · · ),
where πθ(·) represents the policy, s0 denotes the
initial task state 2, and a represents the actions, such
as selecting or executing a specific API function
from A. During inference-time scaling, we sample
data and optimize the model using reinforcement
learning algorithms. Beyond this, it is essential
to understand the capabilities of different founda-
tion models to achieve a better trade-off between
inference time and performance optimization.

3.1 Trial Experiment Design

We chose to use the Berkeley Function Calling
Benchmark to evaluate three different founda-
tion models: Mistral-7B-Instruct, LLaMA3-8B-
Instruct, and Qwen2.5-7B-Instruct. The Berkeley
Function-Calling benchmark contains four non-
live subsets to evaluate different intents. During the
evaluation process, we follow the official scripts3

and prompts for all models except Mistral-7B-
Instruct4. The experimental results are presented in
Figure 2, using Pass@N as the evaluation metric.
Pass@N is a key metric for evaluating a model’s
reasoning capability. It represents the probability
that the model generates at least one correct answer
within N attempts. This metric reflects both the in-
herent model capability and its potential to leverage
effective verifier to identify the correct answer.

2The inital state is the prompt, which contains user query,
API candidates, and task instruction.

3https://github.com/ShishirPatil/gorilla/tree/
main/berkeley-function-call-leaderboard

4Since Mistral-7B-Instruct has a weaker ability to follow
instructions, it struggles to produce outputs that can be directly
evaluated. To address this, we introduce a multi-step reasoning
framework, which is detailed in the Methods section.

Observation 1. The accuracy and model capabil-
ity exhibit a positive correlation, meaning that as
the number of inference steps increases, all models
consistently improve their chances of obtaining the
correct answer. For relatively simple tasks (such as
Python and Multiple), Mistral-7B-Instruct benefits
from a multi-step reasoning approach, which effec-
tively reduces task complexity and allows it to out-
perform LLaMA3-8B-Instruct. However, for more
challenging tasks (such as Parallel and Parallel
Multiple), the model’s inherent capability remains
the key determinant of performance.

Furthermore, we introduced a simple verifier,
termed the Format Verifier, to filter the data. A
key observation is that, when selecting parame-
ters from the candidate toolset, the model does
not consistently adhere to the predefined parameter
types. Consequently, when the model’s output devi-
ates from the expected function names, parameter
names, or parameter types, we prompt it to retry.
This approach effectively employs a rule-based re-
ward mechanism to guide the model’s behavior and
enhance its output selection.

Observation 2. As observed, Mistral-7B-Instruct
outperforms the Qwen2.5-7B-Instruct in both the
Python and Multiple tasks. Even on more challeng-
ing tasks, it demonstrates strong performance.

Conclusion. For models with limited tool use ca-
pabilities, such as Mistral-7B-Instruct, compound-
ing errors are inevitable during the generation. In
simpler tasks, the prompt refinements or basic fil-
tering mechanisms often ensures the generation of
correct answers. However, for more complex tasks
that inherently require multi-step reasoning, it is
crucial to ensure the accuracy of each intermediate
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step to prevent errors from accumulating over mul-
tiple steps. Therefore, it may require enhancement
through multiple iterations.

4 Methods

In scenarios lacking tool-specific training data, we
first collect an available candidate toolset and syn-
thesize data. Then, we filter high-quality CoT data
for model training and inference, As shown in Fig-
ure 3. Considering the capability limitations of
open-source small size LLMs, the entire process
requires multiple iterative refinements.

4.1 Data Synthesizer
To handle diverse real-world tool-use scenarios,
we collect a large set of interactable APIs for data
collcetion. To support this, we create and deploy
an execution environment for these APIs, enabling
type checking and providing execution feedback.
For more details, please refer to Section 5.

Collect API and Parameters. The interactive
environment inherently ensures the successful ex-
ecution of API requests while filtering out invalid
ones. Available APIs are collected as tool candi-
dates, with input consistency maintained through
a unified format. Given the complexity of user in-
tent, we incorporate API types that group function-
ally similar tools to construct Parallel and Multiple
tasks. The sampled tool data, including API defi-
nitions, request parameters, and execution results,
are utilized to build the candidate tool list.

User Query Synthesis We start with a sampled
API list and use LLMs to generate potential user
queries Q = {q1, q2, · · · , q|Q|}. However, not all
queries are equally useful. To filter out irrelevant
ones, we let LLMs act as semantic checkers (Liu
et al., 2024b), ensuring that each query is plausible
in real-world usage and that the expected response
correctly aligns with user intent.

CoT Trajectories Synthesis Once we have a
valid query set, we generate structured execution
trajectories. Formally, we define a trajectory as
{q, ap, as, ae}, where ap represents hierarchical
task planning, as represents API selection with its
parameters, and the final execution outcome ae. By
explicitly modeling these transitions, we facilitate
structured reasoning within LLMs, progressively
improving their tool-use capabilities.

To fully capture the reasoning dynamics behind
tool invocation, we break down the inference pro-

cess into four steps: (1) Task Planning: The model
first deconstructs the user query q into structured
sub-tasks, a process analogous to hierarchical rea-
soning methods like ReWoo (Xu et al., 2023a).
(2) Tool Selection: Leveraging its capability, the
model selects the most suitable tools and parameter
configurations to address the sub-tasks. (3) Tool
Execution: The chosen tools interact with the en-
vironment to obtain execution results, which serve
as inputs for subsequent reasoning steps. (4) Task
Summarization: The model aggregates the execu-
tion results, synthesizing a well-formed summary
that aligns with the user’s intent. This reasoning
pipeline allows LLMs to construct an explicit ac-
tion trajectory, orchestrating the tool-use process
in a manner that mimics human-like sequential
decision-making.

Remark: Task planning decomposes complex
tasks into multiple simpler sub-tasks, leading to
iterative cycles of Tool Selection and Tool Execu-
tion in the reasoning process.

4.2 Inference Scaling via Cycle Verifier
The above data synthesis pipeline defines a sym-
metric process, where the flow progresses from the
API candidate list to user query generation, and
further into CoT-based reasoning trajectories via
tool execution. However, CoT trajectory inference
is particularly prone to compounding errors. To
address this, we introduce two verifiers to filter out
low-quality CoT data.

Format Verifier. Each API has predefined pa-
rameter names and types. During inference, LLMs
often generate invalid parameters when attempting
to fulfill the user query. The format verifier assist
the LLMs in learning the parameter constraints spe-
cific to each API. Furthermore, our experiments
enforce JSON-formatted outputs, filtering out re-
sponses with invalid formats, ensuring consistent
formatting that benefits model training.

Cycle Verifier. In multi-step reasoning, LLMs of-
ten need to predict multiple tool invocations to ful-
fill a user query. Ensuring consistency between the
invoked tools and the user query conditions is criti-
cal. This verifier evaluates coherence across differ-
ent reasoning contexts, minimizing errors caused
by hallucinations or noise.

Why is the Cycle Verifier Necessary? As illus-
trated in Figure 4, these issues are unpredictable
when synthesized data is validated only through a
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Figure 3: The entire InfCycle process consists of three key components: First, we construct user queries suitable for
inference. Since to the lack of correct labels, two verifiers are employed to filter the data. For small size model,
multiple iterative steps are also necessary to progressively enhance their capabilities.

Case Analysis

Internal Logical Error: #Query: I have an equation that describes a signal over time, given by
x(t) = Re

(
AejπBt

)
+ Re

(
DejπEt

)
, where A and D are constants. If A=3, D=0.5, E=5, and B=4,

what are the values of B and E in this equation?
Planning Error: #Sub-Plan: Since find_triplet_equal_sum is supposed to solve the user’s query
directly, skip calling the twosum function for now.

Figure 4: The above case illustrates two types of errors found in the filtered samples.

semantic verifier: (1) Internal logical issues within
the user query: These issues can lead to synthe-
sized queries that lack executable trajectories. (2)
Semantic problems in planned sub-tasks: Such
problems can result in synthesized trajectories that
are fundamentally unreasonable. Unlike recent ap-
proaches (Qin et al., 2023b; Liu et al., 2024b) that
use an outcome verifier to filter samples, step-wise
cycle consistency as a process verifier ensures the
accuracy of the reasoning process, thereby guaran-
teeing the high quality of the synthesized data.

4.3 Iterative Training via Preference Tree

To further enhance the decision-making capabil-
ity of LLMs, we aim to iteratively optimize them
through data synthesis and inference. The prefer-
ence tree has already been widely used as a general
method for optimizing model strategies. To gener-
ate preference data, we define the entire reasoning
process starting from the initial node ap as an ex-
pansion into a decision tree. The successors of each
node are generated through temperature sampling.

In conclusion, the entire process is divided into
three stages: Stage 1: An instruction LLM interacts
with the environment to generate CoT trajectories.
Stage 2: Using the synthesized data from Stage 1,
we train an initial model and employ a tree-search
method to generate new trajectories, filtering out
unreasonable samples through cycle consistency.
Stage 3: From the synthesized trajectories within
the tree, we compare sibling nodes to identify cor-
rect and incorrect pairs to build preference data.
Direct Preference Optimization (DPO) is then ap-
plied to refine the model’s ability to distinguish be-
tween similar yet distinguishable trajectories. This
structured, iterative approach facilitates a gradual
improvement in decision-making, ensuring that the
model can better navigate complex reasoning tasks
by learning from its mistakes and optimizing its
decision boundaries.
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Method Model Inf I1-Ins I1-Cat I1-Tool I2-Cat I2-Ins I3-Ins Avg.

ToolLLaMA CoT 51.8±0.4 53.1±0.6 46.4±1.2 51.6±1.1 48.9±0.4 37.2±0.8 48.2
ToolLLaMA DFS 61.0±1.8 58.8±0.6 45.6±1.2 60.3±1.1 53.5±0.4 48.1±0.8 54.6
GPT4-Turbo CoT 52.8±1.3 56.6±0.9 51.9±0.5 51.9±1.1 52.8±0.4 52.5±0.8 53.1
GPT4-Turbo DFS 59.2±0.5 61.7±0.7 65.7±1.0 55.6±0.6 55.2±0.4 52.5±4.3 60.6
TP-LLaMA DFS 55.0±0.0 65.0±0.0 80.0±0.0 75.0±0.0 67.0±0.0 61.0±0.0 65.0
Tool-Planner P&S 66.0±0.0 78.5±0.0 75.0±0.0 83.5±0.0 77.5±0.0 83.0±0.0 77.3
Tool-Planner P&S 64.0±0.0 77.0±0.0 59.5±0.0 79.5±0.0 76.5±0.0 78.0±0.0 72.4

InfCycle P&S 68.6±0.4 57.7±0.4 44.5±1.6 50.3±0.8 69.1±1.9 63.7±4.3 59.0
InfCycle P&S 70.6±1.8 69.3±0.0 70.7±0.5 55.8±0.6 71.8±0.7 70.8±1.0 68.2
InfCycle P&S 71.2±1.4 80.8±0.9 78.3±0.4 63.2±0.7 80.8±1.2 77.9±0.7 75.4

Table 1: We calculate the pass rates (%) by averaging the results of each model over three trials. All evaluations are
conducted using GPT-4 Turbo, following official guidelines, to ensure comparability.

5 Experiments

We chose StableToolBench (Guo et al., 2024)
and the Berkeley Function-Calling (Yan et al.,
2024) benchmark to evaluate the effectiveness of
our proposed method. StableToolBench requires
real-time interaction with the RapidAPI5 to gather
feedback, primarily evaluating the model’s perfor-
mance in a dynamic environment. In contrast,
Berkeley Function-Calling employs a static
evaluation set that emphasizes the model’s abil-
ity to extract complex APIs and parameters. To
achieve this, we collected 6k APIs from RapidAPI
and converted 2k code problems from LeetCode
into usable APIs. For additional statistics and ex-
perimental details, please refer to the Appendix A.

5.1 StableToolBench

5.1.1 Evaluation Setup
In this experiment, I1 represents intra-category
multi-tool instructions, I2 denotes intra-collection
multi-tool instructions, and I3 includes unseen in-
structions for the same tools as those in the training
data. We categorized unseen tools into three groups:
(1) Ins for unseen instructions related to the same
tools, (2) Tool for unseen tools within the same
(seen) category, and (3) Cat for unseen tools in a
different category. We compared the performance
of different models based on the official evalua-
tion metrics: Pass Rate: This metric measures the
proportion of successfully completed instructions
within limited budgets, indicating the executability
of instructions for LLMs. Win Rate: This metric
involves providing an instruction along with two so-
lution paths to a GPT evaluator, which determines

5https://rapidapi.com/hub

the preferred solution.

5.1.2 Baselines
We compared several strong baselines: ToolL-
LaMA (Qin et al., 2023a), which is trained on dis-
tilled data from ChatGPT and employs depth-first
tree search (DFS) for reasoning. TP-LLaMA (Chen
et al., 2024), which leverages reinforcement learn-
ing on synthesized preference pairs. ToolPlan-
ner (Liu et al., 2024a) introduces the Plan-and-
Solve (P&S) (Wang et al., 2024) approach, which
emphasizes task planning prior to function invoca-
tion. These planning methods often require mod-
els with strong reasoning capabilities and typically
depend on closed-source LLMs. In contrast, our
study explores data synthesis using less strong mod-
els to enhance reasoning ability, demonstrating an
alternative pathway toward improving tool-use effi-
ciency in open-source LLMs.

5.1.3 Results
Table 1 presents the pass rates of different models,
indicating whether they successfully completed the
given user queries. Table 2 presents the win rates
by evaluating the inference paths of different mod-
els in comparison to GPT-4. When interacting with
RapidAPI, InfCycle significantly outperforms pre-
vious models across six different test sets, achiev-
ing higher pass rates and win rates.

With different backbones (Mistral-7B-Instruct,
LLaMA3-8B-Instruct, and Qwen2.5-7B-Instruct),
our approach demonstrates outstanding tool invoca-
tion capabilities. Our data synthesis method relies
solely on open-source models, with our 7B model
outperforming GPT-4-based strategies such as Tool-
Planner, illustrating the effectiveness and compati-
bility of our approach. Although TP-LLaMA also
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Methods Model Inf I1-I I1-C I1-T I2-C I2-I I3-I Avg.

ToolLLaMA CoT 41.7 45.1 32.3 52.8 46.8 26.2 40.8
ToolLLaMA DFS 42.3 51.0 31.0 67.0 54.0 31.1 54.0
GPT4-Turbo CoT 71.2 77.1 61.4 79.2 71.8 67.2 71.3
GPT4-Turbo DFS 73.0 75.2 68.4 77.4 66.9 60.7 70.2
TP-LLaMA DFS 56.0 59.0 54.0 70.0 64.0 86.0 65.0
Tool-Planner P&S 75.5 75.8 71.8 79.8 70.3 92.0 77.5
Tool-Planner P&S 73.8 76.3 73.8 79.3 68.3 87.5 76.5

InfCycle P&S 62.0 62.1 54.4 70.8 65.3 62.3 62.8
InfCycle P&S 78.5 75.8 77.8 74.5 78.2 65.6 75.1
InfCycle P&S 76.1 86.9 74.1 81.1 75.8 83.6 79.6

Table 2: We calculate the win rates (%) by averaging the results of each model over three trials. All evaluations are
conducted using GPT-4 Turbo, following official guidelines, to ensure comparability.

I1-Ins
(Single)

I1-Cat
(Single)

I1-Tool
(Single)

I1-Ins
(Multiple)

I1-Cat
(Multiple)

I1-Tool
(Multiple)

I2-Ins (Multiple)

I2-Cat
(Multiple)

Stage 1 Stage 2 Stage 3

Figure 5: The API F1 scores of LLMs at different data
synthesis stages.

leverages an open-source model for its Tree Search
algorithm, which rely on preference learning fails
to fully harness its tool invocation capabilities. This
discrepancy highlights the gap between synthesized
data and real data, emphasizing the importance of
reliable verifiers to filter data and ensure accuracy.

5.1.4 Human Evaluation

Given that the evaluations in the main results rely
on model judgments, which can often be unreli-
able (Wang et al., 2023a), we enhance accuracy
by conducting human annotation of the StableTool-
Bench test set. First, we remove inaccessible and
invalid samples by interacting with RapidAPI Web-
site and supplement them with new user queries
from the same tool candidates of StableToolBench.
Next, we categorize the collected samples into two
groups: those that can fulfill the user’s intent with

Figure 6: The figure illustrates the average API and Pa-
rameter F1 Scores on the human annotated StableTool-
Bench testset across different data synthesis iterations.

a single API and those that require multiple APIs.
Finally, we manually annotate the actual execution
trajectories for these samples to ensure precision.

We examine InfCycle performance trends across
various data synthesis stages using the API F1
score as our evaluation metric. This score eval-
uates the alignment between predicted and ground
truth APIs, showcasing the model’s ability to se-
lect appropriate tools. We deliberately use a small-
size model (Mistral-7B-Instruct) as the backbone
to determine if it can gradually synthesize higher-
quality data. As Figure 5 illustrates, there is a clear
improvement in performance throughout different
stages. Notably, the most significant gains appear
in testsets requiring multiple APIs reflecting the
initial limitations of the small model in handling
only simple tasks. Our multi-stage synthesis strat-
egy enables the model to progressively acquire the
capability to tackle complex scenarios and tasks.

5.1.5 The Effect of Reducing Compounding
Errors

As shown in Figure 6, models incorporating itera-
tive data synthesis exhibit consistent improvements
in performance. Early in the synthesis process,
models often filter out a substantial amounts of
usable data, struggling to identify correct execu-
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Method InfP Model Abstract Syntax Tree (AST) Evaluation Avg
Simple Multiple Parallel Parallel Multiple

GPT-4o Prompt 73.58 92.50 91.50 84.50 85.52
GPT-4o-mini Prompt 79.67 89.50 89.00 88.00 86.54
o1-mini Prompt 68.92 89.00 73.50 70.50 75.48
Command-R-Plus FC 71.10 85.00 80.00 66.00 75.54
Open-Mixtral-8x22 Prompt 50.50 95.00 8.50 70.50 56.12

Mistral-7B Prompt 0.70 0.00 0.00 0.00 0.18
Mistral-7B∗ Prompt 19.83 60.50 2.00 22.00 26.08
InfCycle Prompt 65.50↑45.67 79.50↑19 72.00↑70 61.50↑39.5 69.63

Meta-LLaMA-3-8B Prompt 58.53 78.00 59.50 53.25 62.32
InfCycle Prompt 67.00↑8.47 90.00↑12 81.00↑21.5 76.50↑23.25 78.63

Table 3: The model performance on BFCL. InfP represents the Inference Pattern, where FC directly returns JSON,
while Prompt requires post-processing for results. Mistral-7B∗ uses the inference framework with InfCycle because
the official scripts fail to produce effective calls.

tion trajectories. However, as the synthesized data
grows, both Mistral and LLaMA effectively lever-
age the generated data, ultimately outperforming
models that rely solely on CoT-based synthesis. We
further conduct iterative experiments without ap-
plying cycle consistency filtering. Notably, as the
number of synthesis iterations grows, the perfor-
mance gap gradually expands. This highlights the
critical role of reliable verifiers in improving model
capabilities through inference-time computation.

5.2 Berkeley Function-Calling Benchmark

5.2.1 Evaluation Setup

In the non-liveBerkeley Function Calling
benchmark, four distinct test sets are included: The
Simple dataset consists of tasks across three pro-
gramming languages: Python, Java, and JavaScript.
The Multiple and Parallel datasets, as described
earlier, involve complex human intents that require
multiple tool invocations to complete. The bench-
mark employs Abstract Syntax Tree (AST) evalua-
tion to rigorously assess function-calling capabil-
ities and diagnose specific model errors, such as
incorrect function names, missing required param-
eters, and improper data types. For comparison,
we select multiple baselines, including the state-of-
the-art GPT-4 series, the powerful reasoning model
OpenAI o1-mini, and several open-source mod-
els such as Command-R-plus and Open-Mistral-
8x22B. Additionally, we use Mistral-7B-Instruct
and Meta-LLaMA3-8B as foundation models for
data synthesis and model training. It is worth not-
ing that LLMs typically support both function call
(FC) and prompt-based JSON-formatted output.

5.2.2 Results
As shown in Table 3, InfCycle significantly en-
hances tool use capabilities for Mistral-7B-Instruct
and Meta-LLaMA3-8B. Before applying our meth-
ods, Mistral-7B-Instruct struggled to generate
meaningful outputs, which fails to output JSON for-
mat response. With our multi-step reasoning frame-
work and iterative training approach, Mistral-7B-
Instruct achieves an improvement of nearly 43%
points. Even for the stronger Meta-LLaMA3-8B-
Instruct, InfCycle still yields 16% point perfor-
mance boost. Notably, we did not select Qwen2.5-
7B-Instruct as a backbone model because, it ex-
hibited a strong tendency to overfit to the data.
This suggests that Qwen LLMs requires better API
data and a more robust verifier to facilitate self-
improvement. Nevertheless, these results strongly
demonstrate the effectiveness of our approach in
enhancing LLMs’ ability to autonomously refine
their tool invocation capabilities.

6 Discussion and Conclusion

In this work, we enhance the model’s tool use ca-
pabilities without relying on external supervision.
Inspired by inference-time scaling, which increases
the sampling space to enhance performance, this
approach is particularly suitable for small size mod-
els to facilitate self-improvement. We demonstrate
that InfCycle effectively synthesizes high-quality
data using the LLMs and cycle consistency act-
ing as process verifiers. In the future, we plan
to incorporate more tools and parameters into our
research. The trade-off between the number of pa-
rameters and inference cost remains a key focus, as
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it directly impacts the efficiency and applicability.
Additionally, we plan to conduct more experiments
to investigate further scalability factors.

7 Limitation

Tool invocation is an essential capability for LLMs.
However, different tools require diverse abilities to
handle various tasks. In this work, we explore a
preliminary tool usage scenario that involves only a
limited set of tools and simple intents, without con-
sidering complex recursive intent structures. This
remains one of the biggest challenges in current
tool-use scenarios. Nevertheless, our approach
demonstrates a viable pathway, enabling tool in-
vocation based on the toolset itself without relying
on labeled data. This idea still requires further
validation in more complex real-world scenarios.

Acknowledgments

We want to thank all the anonymous reviewers
for their valuable comments. This work was sup-
ported by the National Science Foundation of
China (NSFC No. 62206194), the Natural Science
Foundation of Jiangsu Province, China (Grant No.
BK20220488), the Young Elite Scientists Spon-
sorship Program by CAST (2023QNRC001), and
the Priority Academic Program Development of
Jiangsu Higher Education Institutions. We also
acknowledge MetaStone Tech. Co. for providing
us with the software, optimisation on high perfor-
mance computing and computational resources re-
quired by this work.

References
Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald

Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Sijia Chen, Yibo Wang, Yi-Feng Wu, Qing-Guo Chen,
Zhao Xu, Weihua Luo, Kaifu Zhang, and Lijun
Zhang. 2024. Advancing tool-augmented large lan-
guage models: Integrating insights from errors in
inference trees. arXiv preprint arXiv:2406.07115.

Chris Cundy and Stefano Ermon. 2023. Sequence-
match: Imitation learning for autoregressive se-
quence modelling with backtracking. arXiv preprint
arXiv:2306.05426.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. 2024. Stabletoolbench: Towards stable

large-scale benchmarking on tool learning of large
language models. Preprint, arXiv:2403.07714.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji-
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,
Yasheng Wang, Lifeng Shang, et al. 2024. Planning,
creation, usage: Benchmarking llms for comprehen-
sive tool utilization in real-world complex scenarios.
arXiv preprint arXiv:2401.17167.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer
Levy, Luke Zettlemoyer, Jason Weston, and Mike
Lewis. 2023. Self-alignment with instruction back-
translation. arXiv preprint arXiv:2308.06259.

Yanming Liu, Xinyue Peng, Yuwei Zhang, Jiannan Cao,
Xuhong Zhang, Sheng Cheng, Xun Wang, Jianwei
Yin, and Tianyu Du. 2024a. Tool-planner: Dynamic
solution tree planning for large language model with
tool clustering. arXiv preprint arXiv:2406.03807.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, et al. 2024b. Apigen:
Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint
arXiv:2406.18518.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2022.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. arXiv preprint arXiv:2212.10511.

Dheeraj Mekala, Jason Weston, Jack Lanchantin,
Roberta Raileanu, Maria Lomeli, Jingbo Shang, and
Jane Dwivedi-Yu. 2024. Toolverifier: Generaliza-
tion to new tools via self-verification. arXiv preprint
arXiv:2402.14158.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. 2024. Autoact: Automatic
agent learning from scratch via self-planning. arXiv
preprint arXiv:2401.05268.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng

24666

https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2403.07714


Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023a. Tool learning with foundation
models. Preprint, arXiv:2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023b. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con-
necting large language models with real-world restful
apis. arXiv preprint arXiv:2306.06624.

Kaya Stechly, Matthew Marquez, and Subbarao Kamb-
hampati. 2023. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning prob-
lems. arXiv preprint arXiv:2310.12397.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301.

Karthik Valmeekam, Matthew Marquez, and Subbarao
Kambhampati. 2023. Can large language models
really improve by self-critiquing their own plans?
arXiv preprint arXiv:2310.08118.

L Wang, W Xu, Y Lan, Z Hu, Y Lan, RK Lee,
and E Lim. 2024. Plan-and-solve prompting: im-
proving zero-shot chain-of-thought reasoning by
large language models (2023). arXiv preprint
arXiv:2305.04091.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2023a. Large language models are not
fair evaluators. arXiv preprint arXiv:2305.17926.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023b. Describe,
explain, plan and select: Interactive planning with
large language models enables open-world multi-task
agents. arXiv preprint arXiv:2302.01560.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023a.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models. arXiv preprint
arXiv:2305.18323.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023b. On the
tool manipulation capability of open-source large
language models. arXiv preprint arXiv:2305.16504.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji,
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. 2024. Berkeley function calling
leaderboard. https://gorilla.cs.berkeley.
edu/blogs/8_berkeley_function_calling_
leaderboard.html.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2024. Gpt4tools: Teaching
large language model to use tools via self-instruction.
Advances in Neural Information Processing Systems,
36.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. Advances in Neural Information Processing
Systems, 35:15476–15488.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra,
Victor Bursztyn, Ryan A Rossi, Somdeb Sarkhel,
and Chao Zhang. 2023. Toolchain*: Efficient action
space navigation in large language models with a*
search. arXiv preprint arXiv:2310.13227.

24667

https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html


A Dataset and Experiment Details

A.1 StableToolBench Dataset

In this study, we use the StableToolBench (Guo
et al., 2024) environment and test set for method
validation, rather than ToolBench (Qin et al.,
2023b). StableToolBench applies manual filter-
ing and caching of HTTP requests to reduce API
failures. As shown in Table 4, ToolBench has a sig-
nificantly higher proportion of failed APIs, making
StableToolBench more reliable for ensuring com-
parability and enabling a fair evaluation of model
performance. However, it’s important to note that
StableToolBench generates virtual request results
using GPT-4, which can introduce biases during
data synthesis. Therefore, we do not use the Stable-
ToolBench environment for synthesizing training
data.

Benchmark I1-Ins I1-Cat I1-Tool I2-Ins I2-Cat I3-Ins Sum.

ToolBench 200 200 200 200 200 200 1100

StableToolBench 163 153 158 106 124 61 765

Table 4: This table illustrates the proportion of solvable
data filtered out by StableToolBench.

A.2 Human Annotated StableToolBench
Dataset

For each user query, we conducted real-time ac-
cess to the RapidAPI website and constructed the
following testset, which includes both Single and
Multiple types of user queries. As shown in Table 5,
each sample includes the required API, correspond-
ing parameters, and the access sequence.

Benchmark I1-Ins (S) I1-Cat (S) I1-Tool (S) I1-Ins (M) Sum.

StableToolBench
151 64 113 28

506I1-Cat (M) I1-Tool (M) I2-Ins (M) I2-Cat (M)

36 46 22 46

Table 5: Statistics on the sample counts for different
datasets (S represents Single samples, and M represents
Multiple samples).

A.3 Berkeley Function Calling Dataset

We also gathered data statistics on the Berkeley
Function Calling in Table 6. This evaluation dataset
primarily focuses on Python but includes other pro-
gramming languages (such as Java and JavaScript),
which increases the performance requirements for
base models, as many models may not be proficient
in languages beyond Python.

Python Java JavaScript Multiple Parallel Parallel_Multiple Sum.

400 100 50 200 200 200 1150

Table 6: This table shows the distribution of different
types of data.

A.4 Training Details
In our experiments, we utilize Mistral-7B-Instruct-
v0.2, LLaMA3-8B-Instruct, and Qwen2.5-7B-
Instruct as the foundation models, and the train-
ing process is conducted based on the alignment-
handbook framework in a multi-round conversa-
tion mode. During the 1-epoch supervised fine-
tuning (SFT) phase, we use a total batch size of
8, a learning rate of 7.0e-06, and a maximum se-
quence length of 4096. For the 1-epoch direct
preference optimization (DPO) phase, we main-
tain a total batch size of 2, a learning rate of 5.0e-7,
and a maximum sequence length of 1024, with
the β parameter set to 0.01. All experiments are
conducted on a single machine equipped with 8
NVIDIA A100 GPUs, each with 40GB of memory.

A.5 Prompts
In this section, we present the key prompt templates
we use in our data synthesis process, as shown in
Figure 7, 8, and 9. We do not carefully select
these prompts, as we focus on leveraging iterative
synthesis techniques to generate data, rather than
employing them for reasoning during inference.
This approach emphasizes data generation while
ensuring modeling flexibility.
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Prompt for the Generator to Generate Query

Simple Query
You are a query generator tasked with creating realistic and natural queries based on a provided API call. Please generate a
specific and complex user query based on the given API information.
Requirements:
- Realistic: The query should reflect what actual users might inquire about when trying to understand or utilize the function
in real scenarios.
- Fluent: The query should be well-structured, clear, and free of grammatical errors.
- Parameter Reasoning: The generated query should demonstrate an understanding of the function’s parameters, reasoning
about how they should be correctly used or what their values should be.
Please don’t mention API in the user query, but it needs to contain the parameters required to call the APIs. Now generate
query description for given API function call.
Input: function calling = {}

Parallel Query
You are a query generator tasked with creating realistic and natural query based on provided API call which necessitates
multiple times using different parameter-value pairs.
The query should align with realistic user needs, structuring a scenario where the function’s application is clearly required.
Requirements:
- Logical Flow: The query should be logically structured to necessitate multiple API calls, with the sequence of calls
matching the order of parameters provided.
- Parameter Inclusion: Incorporate all necessary parameters into the query. The query should allow each paramerter for API
call to be logically derived from the context.
- Clarity and Realism: The user query must be clear, grammatically correct, and realistically framed, resembling a genuine
request that might prompt such an API interaction in a real-world application.
Please don’t mention API in the user query, but it needs to contain the parameters required to call the APIs. Now generate
query description for given API function call chain.
Input: function calling = {}

Multiple Query
You are a query generator tasked with creating realistic and natural queries based on a provided API call. Using the provided
list of APIs, select and combine given APIs to create a specific and complex user query.
Requirements:
- Establish Logical Relationships: Ensure that the API calls are logically related and form a coherent sequence. The query
should reflect a natural flow where the output of one API informs the next, or where multiple APIs are combined to achieve
a complex objective.
- Parameter Validity: Construct the query so that valid parameters for each API call can be inferred from the context. Ensure
the query provides sufficient information to logically deduce the required parameters where applicable.
- Clarity and Realism: The user query must be clear, grammatically correct, and realistically framed, resembling a genuine
request that might prompt such an API interaction in a real-world application.
Please don’t mention API in the user query, but it needs to contain the parameters required to call the APIs. Now generate
query description for given API function call chain.
Input: function calling = {}

Figure 7: Instruction prompt for query generation.
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Prompt for the Generator to Generate Golden Trajectory

Simple Plan
Given [User Query], [Function call] that can be used to solve the query, your task is to provide a concise, logical, and
well-organized task plan centered around API function call to address the query
Provide the task plan without any "execution details", "result handling", or "error management".
***
Input:
[User Query]:{query}
[Function Call]:{function_call}
***
Please generate a plan in one sentence:

Simple Answer
Given [User Query], [Function call] with returned response used to resolve the query, your task is to generate a concise,
coherent, and reasonable answer based on the available information from the function.
Requirements:
- Ensure fluency and clarity: The answer should be well-structured and articulated in a clear, fluent, and natural manner.
- Match the function response: The answer must directly reflect the response of the function call. Avoid adding any outside
knowledge or assumptions not provided by the function. - Correct details: The answer must fulfill the user’s requirements
and resolve the query satisfactorily. Now generate an answer for the given query and function call.
***
Input:
[User Query]:{query}
[Function Call]:{function_call}
***
Please generate an answer:

Final Answer
Given [User Query] and [Subtask with Subanswer], your task is to summarize the results of executing all subtasks and
effectively consolidate these results to provide a comprehensive and accurate answer to the user query. The final answer
should be detailed, complete, and well-structured, directly addressing the user query.
Requirements:
- Subanswer Utilization: The final answer must be based entirely on the subanswer, without incorporating any external
knowledge or assumptions.
- Answer Resolution: Ensure that the final answer fulfills the user’s requirements and resolves the query satisfactorily.
- Answer Quality: The final answer should be clear, detailed, and logically structured, providing a high-quality solution to
the user query.
***
Input:
[User Query]:{query}
[Subtask with Subanswer]:{context}
***
Please generate a summary answer:

Figure 8: Instruction prompt for trajectory generation.
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Prompt for the Generator Semantic Checker

Query Check
Please compare the given query with the target function call parameter and determine if they match. The evaluation criteria
include:
- Query Clarity and Coherence: Assess whether the query is articulated in a clear, fluent, and natural manner.
- Parameter Derivability: Ensure that all parameter values required for the function call can be either directly extracted from
the query or logically inferred based on the provided information. Please note that common sense knowledge can be used to
infer parameters from problems.
If all the above criteria are met please first output YES/NO, and then give reasons for the judgment.
***
Input:
[query ]: {query}
[parameters]: {parameters}
***
Output:

Single Answer Check
Please evaluate if the current answer effectively addresses the user query based on the information provided by the function
response. The evaluation criteria include:
- Response Utilization: Check if the answer is obtained based on the given function response.
- Query Resolution: Determine whether the answer fulfills the user’s requirements and resolves the query satisfactorily.
- Clarity and Coherence: Assess whether the answer is articulated in a clear, fluent, and natural manner.
If all the above criteria are met please first output YES/NO, and then give reasons for the judgment.
***
Input:
[query ]: {query}
[function response]:{function_resp}
[answer]:{answer}
***
Output:

Final Answer Check
Please assess whether the given answer effectively solves the user’s problem and whether the language is smooth, fluent,
accurate, and concise. Please consider whether the answer responds directly to the query, is complete, and is clearly
expressed.
If all the above criteria are met please first output YES/NO, and then give reasons for the judgment.
***
Input:
[query ]:{query}
[answer ]:{answer}
***
Output:

Figure 9: Instruction prompt for semantic checker
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