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Abstract

Natural language interfaces for NoSQL
databases are increasingly vital in the big data
era, enabling users to interact with complex, un-
structured data without deep technical expertise.
However, most recent advancements focus on
English, leaving a gap for multilingual support.
This paper introduces MultiTEND, the first
and largest multilingual benchmark for natural
language to NoSQL query generation, covering
six languages: English, German, French, Rus-
sian, Japanese and Mandarin Chinese. Using
MultiTEND, we analyze challenges in translat-
ing natural language to NoSQL queries across
diverse linguistic structures, including lexi-
cal and syntactic differences. Experiments
show that performance accuracy in both En-
glish and non-English settings remains rela-
tively low, with a 4%-6% gap across scenar-
ios like fine-tuned SLM, zero-shot LLM, and
RAG for LLM. To address the aforementioned
challenges, we introduce MultiLink, a novel
framework that bridges the multilingual input
to NoSQL query generation gap through a Par-
allel Linking Process. It breaks down the task
into multiple steps, integrating parallel multi-
lingual processing, Chain-of-Thought (CoT)
reasoning, and Retrieval-Augmented Genera-
tion (RAG) to tackle lexical and structural chal-
lenges inherent in multilingual NoSQL gener-
ation. MultiLink shows enhancements in all
metrics for every language against the top base-
line, boosting execution accuracy by about 15%
for English and averaging a 10% improvement
for non-English languages.

1 Introduction

In the age of big data, NoSQL databases have become in-
dispensable tools for managing vast amounts of unstruc-
tured and semi-structured data (Han et al., 2011). Unlike
traditional relational databases, NoSQL databases offer
more flexibility in schema design and can handle a wide
variety of data types, making them particularly suit-
able for modern applications such as social media (Bho-
gal and Choksi, 2015), e-commerce (Nalla and Reddy,
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2022), and real-time analytics (Ta et al., 2016). Nonethe-
less, the intricacy and heterogeneity of NoSQL query
languages present a formidable challenge, especially for
users who may not have advanced technical skills.

To address this challenge, the development of natural
language interfaces (NLIs) for NoSQL databases has
gained increasing attention. These interfaces are de-
signed to allow users to interact with NoSQL databases
in natural language, thus simplifying access to complex
data and lowering the technical barriers. By translat-
ing Natural Language Queries (NLQs) into executable
NoSQL queries (i.e., Text-to-NoSQL (Lu et al., 2025)),
these systems can significantly enhance user produc-
tivity and data accessibility. However, existing natu-
ral language to NoSQL query generation systems and
benchmarks have predominantly focused on the English
language. This limitation severely restricts the usability
of these systems for non-English speakers, who repre-
sent a significant portion of the global population.

To address above-mentioned issue, we introduce Mul-
tiTEND, the first multilingual benchmark for natural
language to NoSQL query generation, covering six di-
verse languages: English, German, French, Russian,
Japanese, and Mandarin Chinese (Sec. 3.1). Multi-
TEND not only expands the scope of natural language
to NoSQL query generation to a multilingual context
but also imposes additional challenges to the Text-to-
NoSQL tasks. Based on the findings from our experi-
ments (Sec. 4.2), We categorize the challenges in Multi-
TEND into Structural Challenge and Lexical Challenge.
In particular, the Structural Challenge refers to difficul-
ties models face in multilingual intention mapping tasks
due to syntactic differences across languages, hindering
accurate mapping to NoSQL operators. Additionally,
the Lexical Challenge represents the schema linking dif-
ficulties models face in multilingual settings due to lex-
ical differences (e.g., Japanese hiragana and katakana,
Russian Cyrillic characters, and morphological varia-
tions in German and French) and the complexity of
NoSQL structures (e.g., nested documents and array
processing).

To tackle these challenges, we propose MultiLink,
a novel framework designed to bridge the gap from
multilingual input to NoSQL query generation. Specifi-
cally, MultiTEND extracts accurate operator sketches
and relevant fields from multilingual NLQs through
a parallel linking process, enabling the model to ef-
fectively generate high-quality NoSQL queries even

24632

Findings of the Association for Computational Linguistics: ACL 2025, pages 24632-24657
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics



in multilingual contexts. Through the incorporation
of three novel and specifically designed components,
namely Intention-aware Multilingual Data Augmenta-
tion, Parallel Multilingual Sketch-Schema Prediction,
and Retrieval-Augmented Chain-of-Thought Query Pre-
diction, MultiLink effectively generates high-quality
NoSQL queries tailored for multilingual scenarios.

In summary, our contributions are as follows:

* We present MultiTEND, the largest multilingual
benchmark for natural language to NoSQL query
generation, which includes detailed construction
methods and will be released to promote further
research in this area.

* We conduct detailed analysis on the MultiTEND
dataset, identifying the lexical and structural chal-
lenges in multilingual NoSQL generation, which
arise from lexical and syntactic differences across
languages as well as the inherent structural com-
plexity of NoSQL queries.

¢ We introduce MultiLink, a novel framework de-
signed for multilingual NoSQL query generation.
By addressing both lexical and structural chal-
lenges through three innovative components, Mul-
tiLink achieves significantly better performance
compared to other baselines in multilingual noSQL
generation scenarios.

* We conduct extensive experiments on MultiTEND,
demonstrating its challenging nature and the effec-
tiveness of our proposed model in addressing these
challenges.

The rest of this paper is structured as follows: Section

2 introduces the related work. Section 3 describes the
construction process of the MultiTEND dataset. Section
4 describes the statistics and analysis of the MultiTEND
dataset. Section 5 provides a detailed description of
the MultiLink pipeline architecture. Section 6 presents
the experimental setup and analysis of the results. Fi-
nally, Section 7 concludes the paper and discusses future
directions. Section 8§ discusses limitations.

2 Related Work

This study is closely related to the fields of Text-to-SQL
and NoSQL Databases, as briefly surveyed below.

2.1 Text-to-SQL

Early research on Text-to-SQL primarily focused on
meticulously designed rule-based methods, such as
those in (Baik et al., 2020; Li and Jagadish, 2014a,b;
Quamar et al., 2022; Sen et al., 2020), these methods
used predefined rules or semantic parsers to translate
NLQs into SQL but were inflexible and inadequate
for handling increasingly complex database structures.
With the rise of deep learning, the focus of Text-to-SQL
research has gradually shifted towards methods that
utilize deep neural networks, such as attention mech-
anisms (Liu et al., 2023) and graph-based encoding
strategies (Hui et al., 2022; Li et al., 2023b; Qi et al.,
2022; Wang et al., 2020; Xu et al., 2018; Zheng et al.,

2022; Yu et al., 2021; Xiang et al., 2023). Alternatively,
some approaches treat Text-to-SQL as a sequence-to-
sequence problem by using encoder-decoder structured
Pre-trained Language Models (PLMs) to generate SQL
queries (Cai et al., 2018; Popescu et al., 2022; Qi et al.,
2022).

In recent years, large language models (LLMs),
which have demonstrated remarkable success across
various domains, have also garnered increasing atten-
tion in the Text-to-SQL field (Dong et al., 2023; Gan
et al., 2021; Gao et al., 2024; Li et al., 2023a; Lin et al.,
2020; Pourreza and Rafiei, 2024; Qi et al., 2022; Ru-
bin and Berant, 2021; Scholak et al., 2021). Current
literature primarily focuses on two approaches with
LLMs: prompt engineering and pretraining/fine-tuning.
Prompt engineering methods typically involve using spe-
cific reasoning workflows which can be categorized into
several reasoning modes, including Chain-of-Thought
(CoT) (Wei et al., 2022) and its variants (Pourreza and
Rafiei, 2024; Liu and Tan, 2023; Zhang et al., 2024b,
2023), Least-to-Most (Zhou et al., 2023; Gan et al.,
2021; Arora et al., 2023), and Decomposition (Khot
et al., 2023; Tai et al., 2023; Pourreza and Rafiei, 2024;
Wang et al., 2025; Xie et al., 2024). To evaluate Text-
to-SQL model performance in practical applications,
several large-scale benchmark datasets have been devel-
oped and released, including WikiSQL (Zhong et al.,
2017), Spider (Yu et al., 2018), KaggleDBQA (Lee et al.,
2021), BIRD (Li et al., 2023c¢), and Bull (Zhang et al.,
2024a) etc.

2.2 NoSQL Database

Traditional SQL databases face limitations with large-
scale, unstructured, or semi-structured data in the in-
ternet and big data era, prompting the rise of NoSQL
databases, which provide flexibility, scalability, and high
performance in web applications and real-time data anal-
ysis (Moniruzzaman and Hossain, 2013). In the field of
databases and NLP, current research primarily focuses
on several key areas of NoSQL databases,including
achieving scalability in data storage systems within
large-scale user environments (Cattell, 2011), ensuring
consistency in NoSQL databases (Diogo et al., 2019),
addressing multi-tenant NoSQL data storage issues in
cloud computing environments, particularly in scenar-
ios involving resource and data sharing (Zeng, 2015),
and realizing scalability, elasticity, and autonomy in
database management systems (DBMS) within cloud
computing environments (Agrawal et al., 2011).
Despite the extensive research on NoSQL across var-
ious domains, its accessibility remains a challenge, es-
pecially for non-expert users. Although Text-to-NoSQL
tasks have been proposed to address this issue, existing
NoSQL generation primarily supports English and over-
looks the needs of non-English users. To tackle this is-
sue, we introduce the Multilingual Text-to-NoSQL task,
which is based on existing Text-to-NoSQL research and
not only aims to reduce the barrier for non-expert users
to utilize NoSQL databases by automatically convert-

24633



DB Translation

Database schema

Monolingual N
NoSQL ’ "Allergy_Type": {
/
Database / “Has_Allergy": [
N ! & g
"StulD": "INTEGER", {ﬁy
LB m Ll
’ i g LS y
\ Student”: { ... } - 4
\ }
\
AN Ori Collectoin&Field name
\\ ["Allergy_Type", "Allergy"...]
NLQ&NoSQL Translation

Calculate and show the average
monetary amount for different types
of transactions.

Original
Database Schema

db.Investors.aggregate([ | |

{ $unwind: "$Transactions" },

{ $group: { _id: "$Transactions.transaction_type_code", Pparse
avg_amount_of_transaction: { Savg:
"$Transactions.amount_of_transaction" } }},

{ $project: { _id: 0, transaction_type_code: "$_id",
avg_amount_of_transaction: 1}} |

0

Field
Translated Mapping

Human Verification

Execute

Il'NoSQLSChema “*“’

Translated Database schema

& correction Multilingual

NoSQL

 Specification Compliance
Database

& Semantic Consistency

3
4
e

) R
{
"EPEID": "INTEGER",

) .
P}
}

274 35| 0FEOFIZHENHEL TRT

PaccuuTaTb U NOKasaTb CPeAHIOI AEeHEXHYIO

Human Verification
& correction

 Fluent & Natural Expression
& Semantic Consistency

T * Berechne und zeige den durchschnittlichen
Calculez et montrez le montant moyen

HEHETRARZZEBNTEISE.

Human Verification

Target & correction Translated NoSQL Query ZH
Language DB  Field Alignment dg.iﬁﬁﬁ.agggvzeéate([
A ; { Sunwind: " ")
@.Re‘"" AIBNMENt | Saroups {_id: "S558, IR
avg_amount_of_transaction: { $avg: "$32 5. ZZ &
] | * =po 1 H * "}k
“" { $project: { _id: 0, 23 2EBIEH: S _id",
4 avg_amount_of_transaction: 1} }

_______ 1 n

Figure 1: We developed a semi-automated pipeline to extend the monolingual dataset into a multilingual version
through three steps: (1) Translation of Database Fields, where English-exclusive fields were translated using
LLM-powered tools and manually verified; (2) Translation of NLQs, where NLQs were translated with few-shot
prompting for semantic consistency and manually corrected; and (3) Translation of NoSQL Queries, where queries
were programmatically parsed, updated with multilingual representations, and verified based on execution results.
Each step combined machine-generated methods with rigorous manual verification.

ing NLQs into NoSQL queries but also addresses the
gap in existing Text-to-NoSQL tasks that mainly sup-
port English while neglecting non-English users’ needs.
In this task, we also introduce MultiTEND, the largest
multilingual benchmark for natural language to NoSQL
query generation.

3 The MultiTEND Dataset

3.1 Overview

To address the limitation of existing datasets in the Text-
to-NoSQL domain being solely constructed in English
(Lu et al., 2025), we propose the first and the largest
multilingual benchmark MultiTEND in this field, cover-
ing six languages: English, German, French, Russian,
Japanese, and Mandarin Chinese. In this section, we’ll
introduce the dataset construction pipeline (Sec 3.2) and
the manual correction processing (Sec 3.3).

3.2 Dataset Construction Pipeline

We segment the dataset’s translation content into DB
fields, NLQs, and NoSQL queries, employing a combi-
nation of prompt engineering (Sahoo et al., 2024) and
manual corrections to construct the dataset.

Translation of DB Fields We interpret the task of
translating database fields as obtaining relationship
maps from English to five different languages for the
database fields. We encapsulate instructions and con-
textual information conducive to accurate translation,
such as the database schema, the fields to be translated,
and the required output format into prompts (As shown

in Appendix E.1) and utilize a large language model
(LLM) to complete the translation process. The trans-
lation results undergo detailed human inspection and
correction (as shown in Section 3.3), ultimately yield-
ing five maps from English to each target language for
every database. These well-checked maps are used for
the translation of the databases, resulting in a total of
924 databases covering six languages, derived from the
original 154 English-language databases (Figure 1).

Translation of NLQs We have established the follow-
ing requirements for the translation of the NLQs: (i)
Semantic alignment; (ii) Preservation of specific ref-
erenced values; (iii) Fluency in language expression.
Among these, the requirement to preserve specific refer-
enced values corresponds to multilingual database fields,
where the actual database values remain consistent with
the original English database to ensure data consistency.
To achieve efficient and high-quality NLQ translation,
we have designed a step-by-step, query-intent-based,
structured Prompt with contextual examples for mul-
tilingual NLQ translation (Appendix E.1). By encour-
aging the model to think step-by-step, we ensure the
fluency and accuracy of the translation. Finally, we per-
form manual verification and correction of the generated
NLQ (Sec 3.3) to ensure that the translated NLQ meets
the specified requirements.

Translation of NoSQL Queries As mentioned ear-
lier, for each database, we have already obtained five
mapping tables from English to target language for the
field names (Figure 1) and conducted manual reviews
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Dataset Input Output Query Source Query Size  Languages
Spider (Yu et al., 2018) NLQ SQL Query Human-Labeled 5693 English
nvBench (Luo et al., 2021a) NLQ  Data Vis Query Rule-based Synthesised 7247 English
OverpassQL (Staniek et al., 2024) | NLQ Spatial Query Crowdsourcing collected 3890 English
TEND (Lu et al., 2025) NLQ NoSQL Query Machine generated v 3404 English
MultiTEND NLQ  NoSQL Query Machine generated & Human Check v/ 20351 Multiple(6) v/

Table 1: Comparison of MultiTEND with Other Existing Benchmarks in Natural Language Interface fields.

and corrections. Based on these well-reviewed mapping
tables, we mapped the fields referenced in each NoSQL
query from English to five different languages. For each
translated NoSQL query, we first filter out incorrect
queries by executing them and checking the execution
results, then apply manual corrections to strictly ensure
the accuracy of the translated NoSQL queries.

3.3 Manual Correction

Typical Errors Analysis As mentioned in Sec 3.2,
we completed the translation of db fields, NLQs, and
NoSQL queries empowered by LLM and conducted
final manual inspections and corrections. We summa-
rize some of the typical mistakes discovered during
the inspection of translation process as follows. For
the translation part of DB fields, we identified two
typical error categories: Polysemy and Abbreviation.
Polysemy: Some fields can have different meanings
depending on the database scenario, which is one rea-
son for the inappropriate translation of certain database
fields. For example, the term ‘Movements’ in the ‘Air-
craft. Movements’ field could refer to ‘motion,” ‘move-
ment,” or more specifically, ‘take-offs and landings.” By
analyzing the data type and specific values of this field,
it becomes evident that ‘take-offs and landings’ is the
most suitable meaning within the context of aircraft op-
erations. Abbreviation: Translating abbreviations in
database fields, taking into account the database con-
text, is inherently a challenging task. Such errors con-
stituted a larger proportion of the issues we detected
in the translation of db fields. For example, ‘fname’
might be incorrectly translated as ‘f# 4%’ whereas it
should be translated as ‘4%’ when considering its neigh-
bor ‘Iname’; similarly, ‘f_id’ could mean ‘flight ID’ or
‘file ID,” depending on the theme of the collection. Simi-
larly, ‘HS’ from the ‘soccer_2’ database could stand for
‘High School,” ‘Home State,” or ‘Historical Score.” How-
ever, upon examining the neighboring fields and specific
values within the collection, it turns out that ‘HS’ actu-
ally means ‘Historical Score.” In the translation part of
NLQs, we found that most of the NLQs not meeting the
requirements mentioned in Sec 3.2 were due to insuffi-
cient fluency in the language, such as translating “How
many papers are ‘Atsushi Ohori’ the author of?” into
“F % /18 2 ‘Atsushi Ohori’ fA/E# 2. This result
comes from directly translating ‘are’ and ‘of” without
considering the overall structure of the sentence.

Correction Criteria Based on the error cases ob-
served during the aforementioned manual inspection
process, we made several adjustments to the dataset aim-

ing to ensure the following aspects: DB fields adhere to
standard database design rules and feature precise trans-
lations of polysemous words and abbreviations, aligning
them with the context of the database; NLQs maintain
semantic consistency and are expressed fluently and nat-
urally; and NoSQL query results are fully consistent
with the original queries. For example, we carefully ex-
amined some abbreviated fields in the original database
to ensure that these abbreviations, which are difficult
to understand without context, accurately convey their
original meanings after translation (e.g., “flno” remains
equivalent to “flight number” after translation). Ad-
ditionally, we paid special attention to potential field
duplication issues after translation, particularly for fields
originally distinguished by case or singular/plural forms,
as such differences might result in identical expressions
in the target language. For example, the collection name
“continents” and the field name “Continent” might both
be translated as “¥” in Chinese; similarly, the collec-
tion name “city” and the field name “City” might both
be translated as “&B 7> in Japanese.

4 Dataset Statistics and Analysis

4.1 Statistics of MultiTEND

After our multilingual extension of TEND (Lu et al.,
2025), MultiTEND ultimately includes a total of
154 databases with different content, comprising 924
databases in total, and 101,789 (NLQ, NoSQL) pairs
(including 20,351 distinct NoSQL queries). The count
of 101,789 pairs is derived from the fact that each
query corresponds to five NLQs, with each NLQ fur-
ther represented in six language versions. Approxi-
mately 16.6% of all NoSQL queries use the find method
(which includes filter, projection, sort, and limit oper-
ations), while the remaining queries use the aggregate
method (implemented through pipelines, which include
but are not limited to project, group, match, sort, limit,
lookup, and count stages) (Detailed statistics of Mul-
tiTEND see Apendix A.1). Compared to other well-
regarded datasets in different fields, such as Spider (Yu
et al., 2018), NvBench (Luo et al., 2021b), OverpassQL
(Staniek et al., 2024), and TEND (Lu et al., 2025), Mul-
tiTEND stands out for its vast scale and comprehensive
multilingual coverage (as shown in Table 1). In terms of
scale, MultiTEND boasts 101,789 NLQs and 20,351
corresponding queries, far surpassing other datasets
like Spider, which has 10,181 NLQs and 5,693 queries;
NvBench, with 25,750 NLQs and 7,247 queries; and
TEND, featuring 17,020 NLQs and 3,404 queries. Re-
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Metric Model EN ZH FR DE JA RU AVG (5 langs)
Fine-tuned Llama 17.05% 13.57% 16.53% 15.78% 16.40% 14.51% 15.36%

EM Zero-shot LLM 0.29% 0.61% 061% 054% 054% 0.29% 0.52%
RAG for LLM 16.09% 1398% 15.62% 14.33% 12.02% 13.89% 13.97%
SMART 18.85% 13.94% 18.38% 18.30% 18.05% 15.89% 16.91%
Fine-tuned Llama 44.61% 36.86% 41.26% 41.44% 43.32% 38.23% 40.22%

EX Zero-shot LLM 36.58% 2899% 33.86% 3491% 30.63% 29.68% 31.61%
RAG for LLM 51.70% 47.02% 49.28% 48.59% 45.12% 45.99% 47.20%
SMART 48.86% 38.05% 44.69% 4422% 43.30% 41.03% 42.26%

Table 2: Comparison of Exact Match and Execution Accuracy results for each model across different languages on
MultiTEND. Notice that AVG is the average value of the corresponding metric across the 5 non-English languages

garding multilingual support, unlike other datasets that
primarily offer data in English, MultiTEND supports
six distinct languages, greatly broadening its applica-
bility and research value. Additionally, MultiTEND’s
semi-automated construction process, which combines
machine-generated data with manual verification, pro-
vides significant advantages in terms of scalability and
efficiency during its development.

4.2 Analysis and Findings

To clarify the challenges posed by multilingual Text-
to-NoSQL tasks for existing models, we conducted a
series of experiments and derived key findings from the
analysis of the experimental results (See Appendix A.2).
Based on the findings, we categorize the challenges
in MultiTEND into Structural Challenge and Lexi-
cal Challenge. (i) The Structural Challenge refers
to the difficulties models face in performing intention
mapping tasks in multilingual contexts, primarily due to
significant syntactic differences across languages, which
reduce the model’s ability to understand and parse user
intentions, making it harder to accurately map them
to corresponding NoSQL operators. (ii) The Lexical
Challenge refers to the difficulties models encounter
in schema linking in multilingual environments, mainly
stemming from lexical differences (e.g., Japanese hi-
ragana and katakana, Russian Cyrillic characters, and
morphological variations in German and French) and
the complexity of NoSQL structures (e.g., nested docu-
ments and array processing). These factors collectively
increase the model’s comprehension difficulty, leading
to a significant decline in mapping accuracy.

5 Method

To address the complex challenge of generating NoSQL
queries from multilingual NLQs, we introduce the inno-
vative MultiLink framework. This framework leverages
a problem decomposition strategy and an efficient Paral-
lel Linking Process to effectively address the challenges
of multilingual NoSQL query generation. In this chap-
ter, we provide a comprehensive overview of MultiLink.

5.1 Overview

As shown in Figure 2 and Algorithm 1, MultiLink is
primarily divided into three key components: Intention-
aware Multilingual Data Augmentation, Parallel Multi-
lingual Sketch-Schema Predictor (including a NoSQL
Sketch Generator and a Schema Linking Generator),
and Retrieval-Augmented Chain-of-Thought Genera-
tor. By leveraging fine-tuned SLM (Small Language
Model) technology, which combines low computational
resource consumption, shorter training cycles, and suf-
ficient performance to meet our task demands, and in-
tegrating it with our data augmentation approach,we
achieve cost-effective and high-yield prediction of inten-
tion mapping and schema linking. This method specifi-
cally targets the extraction of lexical and structural chal-
lenges from multilingual NLQs and effectively empow-
ers LLM by providing contextual information, enabling
the generation of more accurate and reliable NoSQL
queries without significantly exacerbating model hallu-
cinations. To address these challenges, we employ En-
glish, a high-resource language, as a unified bridge for
conveying operator information across languages, while
utilizing the corresponding languages for schema link-
ing to maintain the model’s sensitivity to relevant fields
in each language. Finally, through our efficient RAG
(Retrieval-Augmented Generation (Lewis et al., 2020))
retrieval technique and a Chain-of-Thought prompting
strategy, we consolidate the extracted information into
structured contexts. This approach not only mitigates
hallucinations in LLMs but also significantly enhances
the accuracy of NoSQL generation in multilingual envi-
ronments.

5.2 Intention-aware Multilingual Data
Augmentation (MIND)

We augment the training data using a Intention-aware
Chain-of-Thought (CoT) (Wei et al., 2022) guided multi-
lingual query augmentation strategy. Given the original
(NLQ, NoSQL) pairs from the TEND dataset, we em-
ploy a LLM to synthesize additional pairs with diverse
querying intents(for detailed prompt example see E.2).
The augmentation process involves the following steps:
(1) analyzing the structural relationships between col-
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Figure 2: The pipeline of our proposed MultiLink method. MultiLink consists of three main process: (i) Intention-
aware Multilingual Data Augmentation (MIND), which enriches training data by generating diverse query pairs
through multilingual synthesis and comprehensive database schema analysis; (ii) Parallel Multilingual Sketch-
Schema Prediction, which parallelly maps multilingual NLQs intentions to operators and entity mentions to schema
elements,including: (a) Multilingual NoSQL Sketch Generation, which generates intermediate NoSQL sketches
reflecting operator mappings; (b) Monolingual Schema Linking Generation, which performs precise schema linking
for each language;(iii) Retrieval-Augmented Chain-of-Thought Query Prediction, which synthesizes the final
NoSQL query by integrating operator and schema mappings with multilingual context.

lections and fields in the MongoDB schema; (2) iden-
tifying logical relationships between fields and collec-
tions based on the NLQ and the referenced schema por-
tions in the NoSQL query; (3) generating new NoSQL
queries with completely different intents from the origi-
nal queries; (4) creating NLQs that match the intents of
the generated NoSQL queries and expanding them into
paraphrased variants; and (5) synthesizing correspond-
ing NLQs in multiple languages (e.g., German, French,
Russian, Japanese, and Mandarin Chinese). This pro-
cess not only increases the diversity of multilingual
training data but also enhances the performance of the
SLM:s in intention mapping and schema linking, ensur-
ing that our pipeline can effectively handle multilingual
inputs.

5.3 Parallel Multilingual Sketch-Schema Predictor

The Parallel Multilingual Sketch-Schema Predictor is a
key component of our pipeline, designed to address the
lexical and structural challenges in multilingual NoSQL
generation in parallel. The predictor consists of two par-
allel submodules: (i) the Multilingual NoSQL Sketch
Generator, which maps multilingual NLQs intents to
NoSQL operators via a unified intermediate represen-
tation (i.e., English); and (ii) the Monolingual Schema
Linking Generator , which maps entity mentions in the
NLQ to the corresponding schema elements in the target
database. By executing these submodules in parallel,
Sketch-Schema Predictor ensures high accuracy and ef-
ficiency in both operator and schema mapping across
multilingual contexts.

Multilingual NoSQL Sketch Generator To address
the challenge in intention mapping exacerbated by lexi-

cal diversity and syntactic heterogeneity in multilingual
contexts, we designed Multilingual NoSQL Sketch Gen-
erator, a sketch generator incorporating the mapping
from intention to operator. We adopt English, a high-
resource language, as a unified bridge for cross-lingual
transfer of operator information. Given a multilingual
NLQ, Sketch Generator, leveraging the power of an
LLM, extracts and anchors the underlying query intent
by translating both the NLQ and the database schema
into English. The translated English NLQ, along with
the corresponding database schema, is then fed into
the fine-tuned SLM to generate an intermediate NoSQL
sketch. This sketch reflects operator mappings (e.g., sort,
filter, aunwind), but does not include precise schema
field references. By unifying multilingual intentions
into a single language (i.e., English), Sketch Generator
efficiently and cost-effectively streamlines the operator
mapping process and ensures consistency across lan-
guages.

Monolingual Schema Linking Generator In the
Multilingual Text-to-NoSQL task, models are typically
required to have a thorough understanding of entity men-
tions across complex lexicons in different languages
(e.g., hiragana and katakana in Japanese, Cyrillic char-
acters in Russian, and the rich and varied lexical forms
in German and French). At the same time, they must
possess the ability to cross-linguistically map entity
mentions in NLQ to the corresponding fields in the
database schema. The nested and unstructured nature
of NoSQL schemas further exacerbates the challenge
in schema linking. Therefore, we designed an efficient
format to express schema linking results, such as ‘#
Collectionl: Fieldl, Field2.sub_field,... \n # Collec-
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Algorithm 1: The MultiLink Algorithm

Inputs :NLQ list in Test Set Q;
DB schema list in Test Set D;
DB list in Training Set D’;
NLQ list in Training Set Q’;
NoSQL list in Training Set N;
Output : NoSQL list A/
Procedure MultiLink(Q, D):
// Data Augmentation
Quugs Navgs Smg < AugmentData(Q’ . N, D)
// Sketch SLM Fine-tuning
My  TrainSLM(SLM, Q0ue enr Naug en)
// Schema Linking SLM Fine-tuning
M <= TrainSLM(SLM, Q. Siug)
// Build Vector Library
V « BuildVecLib(Q', N')
// Pipeline of MultilLink
N« ]
for each (¢,d) € (Q,D) do
// Language Classification
L <+ LangClassify(q)
// Translation
Qen, den <— Translate(q, d)
// Sketch Prediction
Nsk < SLMPredict(Mn, Qen, den)
// Schema Linking Prediction
$ < SLMPredict(Ms, g, d)
// Retrieval-Aug CoT Generation
& + Retrieve(q,V,L)
Ngen < Generate(q, d,ng, 5,€)
N .append(ngen)

end
return \/

tion2:.” (e.g., “# I fih: 77 i A%, BOUF. 1 TID\n# 5
T: 51 TID’). Based on this format, we constructed
corresponding corpora for schema linking in different
languages. Combined with a language classifier, the
schema linking generator inputs the multilingual NLQs
(e.g., “BWHNAT BTk # LLEIE e A ZE S I
[A] &4+ 4?2 ») into a fine-tuned SLM (Schema Link-
ing Model) trained on language-specific schema linking
corpora, in order to accurately map the entity mentions
in the NLQ to the corresponding schema elements in
the target database(e.g., # LIfk: EZK, B1LFE, &1l
% Wf1E]). By employing separately fine-tuned SLMs
for schema linking in each language, Schema Linking
Generator ensures high accuracy in schema linking re-
sult, addressing the lexical challenges in multilingual
NoSQL generation.

5.4 Retrieval-Augmented Chain-of-Thought
Query Generator

The final module of our pipeline is the Retrieval-
Augmented Chain-of-Thought Generator, which synthe-
sizes the final NoSQL query by integrating the results
from the previous steps. Given a multilingual NLQ,
the Query Generator include: (i) the reference English
NoSQL query with operator mappings (from Sketch
Generator); (ii) the database schemas; (iii) the schema
linking result of current NLQ (from Schema Linking
Generator); and (iv) retrieved examples from the cor-

responding language example library created from the
training data. Using a Retrieval-Augmented Chain-of-
Thought reasoning approach, the Query Generator sig-
nificantly enhances the reasoning capabilities of the
LLM by referencing similar retrieved examples in the
same language and guiding the query generation pro-
cess step-by-step. By combining the results from Sketch
Generator and Schema Linking Generator, the Query
Generator addresses the inherent challenges of multilin-
gual scenarios. Leveraging the enhanced reasoning ca-
pabilities of the LLM, Query Generator accurately syn-
thesizes and utilizes key contextual information, generat-
ing precise and semantically consistent NoSQL queries
with higher scores and better performance compared to
baseline models.

6 Experiments and Analysis

6.1 Experimental Setup

Dataset We conducted cross-domain partitioning of
the MultiTEND dataset for different languages, ensuring
that the training set for each language contained the
same sample content. The dataset was divided into
original language-specific training and test sets at a ratio
of 0.85:0.15, and the training and test sets for each
language were merged to form a multilingual training
set and test set encompassing six languages. For the
additional dataset obtained through data augmentation,
which contains 2,666 different NoSQL queries with
5 NLQs corresponding to each NoSQL query in each
language, we directly added it to the original training
set to create an augmented language-specific training
set. By combining these datasets for each language, we
obtained a multi-augmented training set covering six
languages. Comprehensive statistics on dataset splits,
including distinct training sets used across MultiLink
modules, are provided in the Appendix A.1.

Baselines We utilized a variety of popular neural net-
work models (i.e., LLM-based prompting methods (i.e.,
Zero-shot LLM, Few-shot LLM, RAG for LLM),
SLM-based fine-tuning methods (i.e., Fine-tuned SLM)
and existing Text-to-NoSQL methods (i.e., SMART (Lu
et al., 2025)) as baseline models for a comprehensive
performance comparison with MultiLink. The details
of these baseline models can be found in Section C.1 of
the Appendix.

Evaluation Metrics Following other text-to-NoSQL
study like SMART (Lu et al., 2025), we report results
using the same metrics including Exact Match (EM)
and Execution Accuracy (EX), each with more detailed
subdivisions such as Query Stages Match (QSM) and
Query Fields Coverage (QFC) under EM, and Execution
Fields Match (EFM) and Execution Value Match (EVM)
under EX. The detailed definition of these metrics can
be found in Section C.2 of the Appendix.

Implementation Details The SLM used in Multi-
Link is “Llama-3.2-1B”, with a full-parameter fine-
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Model EM QSM QFC

Fine-tuned Llama 15.64% 5590%  58.44%
Zero-shot LLM 048%  49.35% 59.36%
Few-shot LLM 10.82% 56.17% 61.12%
RAG for LLM 14.32% 59.79% 67.19%
SMART 17.23% 59.12% 61.94%
MultiLink (Ours) 25.54% 64.01% 73.17%

(a) Query-based Metric Results (Avg of 6 langs)

Model EX EFM EVM

Fine-tuned Llama 40.95% 81.41% 70.46%
Zero-shot LLM 3244% 5598%  59.22%
Few-shot LLM 36.69% 64.43% 64.71%
RAG for LLM 4795% 74.22%  69.80%
SMART 43.36% 85.05% 76.37%
MultiLink (Ours) 59.12% 85.66% 74.01%

(b) Execution-based Metric Results (Avg of 6 langs)

Table 3: Overall Performance Metrics

tuning strategy and set to 3 epochs. The LLM used
is “DeepSeek-V3”, with the parameter setting ‘tempera-
ture = 0.0’. The text-to-embedding model used is “text-
embedding-ada-002”.

6.2 Performance Comparison

Table 3 presents the average performance of MultiLink
and baseline methods across all languages in Multi-
TEND (For detailed per-language and per-metric anal-
ysis of MultiLink and all baselines, please refer to the
Appendix D.1). As shown in Table 3, the fine-tuned
Llama (Dubey et al., 2024) and LLM-based methods
(Zero/Few-shot LLM, RAG for LLM) underperform be-
low 50%, with Zero-shot LLM systematically exhibiting
the weakest results due to deficiencies in query intent
comprehension and critical failures in processing nested
arrays/multi-set associations. While the approach of
RAG for LLM with enhanced contextual information
shows relatively better performance in the Execution Ac-
curacy (EX) metric that directly reflects query execution
outcomes. This suggests that neither pure fine-tuning
nor direct reliance on LLM capabilities constitutes an
effective solution for multilingual NoSQL challenges.
Additionally, while SMART, which is designed for
English contexts, performs averagely in multilingual
NoSQL tasks, showing significantly different results
between English and non-English languages (see Table
2). This indicates that existing Text-to-NoSQL systems,
cannot be directly extended to non-English scenarios.
In contrast, our proposed MultiLink framework demon-
strates superior performance in multilingual environ-
ments, outperforming all existing models across every
metric. Particularly noteworthy is its 11% absolute im-
provement over the best-performing baseline in the cru-
cial EX metric. These results validate that MultiLink’s
design effectively addresses multilingual NoSQL gener-
ation challenges and produces high-quality queries.Due

6 EX vs RAG Number for Different Languages

0.66 1
0.64
0.621
0.601
0.58
0.561
0.54
0.52
0.501
0.48

EX

0 2 4 6 8 10
RAG Number

Chinese French Russian == Average

English German —e— Japanese

(a) Execution-based Metric

Figure 3: Parameter study

to space limitations, please refer to appendix D.1 for
more detailed analysis.

6.3 Parameter Study

To explore the performance of MultiLink under different
parameters, we conducted a hyperparameter experiment
on the number of retrieved examples (RAG num) using
the test set of the MultiTEND dataset. As shown in
Figure 3, the figures illustrate the execution accuracy
(EX) of MultiLink under different RAG numbers across
multiple languages (for complete metric results of the
parameter study, see the appendix D.2). As the RAG
number increases, MultiLink exhibits slight fluctuations
in various metrics across different languages. The execu-
tion accuracy (EX) shows that English performs the best,
with minor fluctuations around 67%; French and Ger-
man are in the middle range, at 5860%; while Chinese,
Japanese, and Russian are lower, consistently staying
within the 54%-57% range. The average performance
across all languages (represented by the red dashed line)
shows a steady increase and stabilizes after reaching
a RAG number of 6. This indicates that as the RAG
number increases, the model’s performance improves
within a certain range, and MultiTEND achieves its best
performance at a RAG number of 6.

6.4 Ablation Study

In this section, we conduct an ablation study to examine
the contribution of each module in MultiLink. We first
measure the results of MultiLink based on the complete
pipeline designed. Then, we evaluate the contribution of
each module by removing different key modules from
MultiLink, specifically: (i) removing the Sketch Gen-
erator (w/o Sk-G); (ii) removing the Schema Linking
Generator (w/o SL-G); (iii) using only the Retrieval-
Augmented Chain-of-Thought Generator (only GEN);
and (iv) using components without data augmentation
(w/o AUG).

Additionally, we include the experimental results of
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Method EM QSM QFC
Few-Shot LLM 10.82% 56.17% 61.12%
RAG for LLM 14.32% 59.79%  67.19%
MultiLink (Ours) 25.54% 64.01% 73.17%
- w/o Sk-G 25.51% 63.97%  73.12%
- w/o SL-G 2555% 64.06% 73.19%
- w/o AUG 21.18% 61.46%  70.15%
- only GEN 14.40% 61.68% 67.51%
(a) Query-based Metric
Method EX EFM EVM
Few-Shot LLM 36.69% 64.43% 64.71%
RAG for LLM 4795%  74.22%  69.80%
MultiLink (Ours) 59.12% 85.66% 74.01%
- w/o Sk-G 58.82%  85.64%  73.75%
- w/o SL-G 59.03% 85.69%  73.83%
- w/o AUG 55.74%  84.48%  73.36%
- only GEN 47.19%  73.33% 69.71%

(b) Execution-based Metric

Table 4: Ablation study results on MultiTEND.

Few-shot LLM and Retrieval-Augmented Generation
(RAG) for LLM to compare with the ablation study
results. This comparison aims to demonstrate that the
high performance of MultiLink is not solely reliant on
the inherent capabilities of the LLM itself, but rather
stems from our designed complex and effective pipeline.

The results of the ablation experiments are shown in
Table 4. MultiLink with all processes included outper-
forms other configurations across all metrics to varying
degrees. Among them, the performance of w/o Sk-G
is relatively close to that of MultiLink with all pro-
cesses included, while w/o SL-G demonstrates that the
contextual information provided by the SL-G module
is crucial, significantly aiding the LLLM in generating
more accurate queries. The results of w/o AUG are
the lowest, proving that our data augmentation method
substantially enhances the performance of each module
in the model. Overall, on the EX metric, which best re-
flects the model’s performance in real-world scenarios,
MultiLink with all processes included outperforms all
other configurations. This validates the effective con-
tribution of all components in MultiLink to the overall
framework.

Furthermore, on the critical EX and EM metrics, Mul-
tiLink with all major processes included significantly
outperforms Few-shot LLM, RAG for LLM, only GEN,
and w/o AUG configurations. This indicates that the
high accuracy of MultiLink does not directly stem from
the inherent understanding and generation capabilities
of the LLM itself, but rather primarily from the frame-
work itself and the information provided by the SLM
enhanced using our designed data augmentation method.

7 Conclusion

In this work, we introduce MultiTEND, a large-scale
multilingual benchmark dataset for Text-to-NoSQL
tasks encompassing six languages. To create this dataset,

we developed a robust process that combines the capa-
bilities of LLMs with human efforts. This approach
ensures high-quality, semantically aligned, and contextu-
ally accurate database fields, NLQs, and NoSQL queries
through thorough manual verification. Next, we identify
the inherent challenges of multilingual Text-to-NoSQL
tasks, including lexical variations and structural incon-
sistencies across languages. To address these issues, we
propose MultiLink, a unified multilingual pipeline that
breaks down the complex task into manageable steps,
such as multilingual query augmentation and language-
specific schema linking. Extensive experiments demon-
strate that MultiLink excels in generating accurate and
semantically consistent NoSQL queries across multiple
languages, significantly outperforming existing baseline
models.

Building on this line of research, we aim to explore
additional methodologies for text-to-NoSQL tasks as
the next phase of our work. We anticipate that this
work will not only contribute to the ongoing evolution
of the NoSQL field but also inspire further innovations,
fostering a dynamic research landscape similar to the
advancements seen in the parallel text-to-SQL domain.

8 Limitation

We propose a unified multilingual Text-to-NoSQL
pipeline, which effectively addresses the lexical and
structural challenges in multilingual NoSQL generation
by integrating context information generated from fine-
tuned SLMs and adopting a multi-step approach that
combines CoT and RAG prompting methods. Addition-
ally, our designed data augmentation method further
enhances the accuracy and quality of NoSQL query gen-
eration by the framework. However, our research in mul-
tilingual aspects is still limited to six languages (English,
German, French, Russian, Japanese, and Mandarin Chi-
nese), which only cover a portion of the mainstream
languages within the Indo-European and Sino-Tibetan
language families, while neglecting the needs of other
language families. The experimental results are con-
strained by the limited scope of general-purpose LLMs.
For instance, although we use relatively advanced and
high-performance LLMs in our experiments, there is a
lack of exploration into methods that could enable lower-
performance but more cost-efficient LLMs to achieve
similar results on this task. The pipeline requires high
computational costs for LLMs. For example, in scenar-
ios where LLMs are used in the pipeline, for obtain-
ing higher-quality outputs, the long-context inputs with
rich examples and step-by-step reasoning outputs, sig-
nificantly increases token overhead. Therefore, future
research could expand to include more widely used lan-
guages, explore the application of Text-to-NoSQL in
low-resource or minority languages, and investigate the
use of other LLM architectures or the development of
more cost-effective and high-performance neural-based
framework strategies.
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A Dataset Analysis
A.1 Dataset Details
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Figure 4: NoSQL Query Statistics in MultiTEND
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Figure 5: (NLQ,Query) Statistics Table 5: Database Statistics in MultiTEND

Figure 5 presents detailed statistics of (NLQ, NoSQL) Pairs and distinct NoSQL Queries across different languages
in MultiTEND. Figure 4 displays the statistics of NoSQL queries in MultiTEND (covering all six languages).
Specifically, figure 4a uses a pie chart to illustrate the distribution of different query methods in MultiTEND,
while figure 4b and figure 4c show the counts of stages in the aggregate method and operators in the find method,
respectively, with a heatmap included to represent the proportion of queries that use each specific stage or operator
relative to the total number of queries employing the corresponding method.

Table 5 conveys detailed statistical information about all databases (covering six languages) in the Muli TEND
dataset, which includes a total of 924 databases spanning 105 domains. The top five most represented domains in the
dataset are Sport, Customer, School, Shop, and Student. Across all databases, there are a total of 2,082 collections,
197,874 documents, and 35,760 fields. Each database contains an average of 2.25 collections, with values ranging
from 1 to 7. The number of documents averages 214.15 per database, spanning from 3 to 13,694. Field counts
average 38.7 per database, varying from 7 to 331.
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A.2 Analysis and Findings

Metric Model EN ZH FR DE JA RU AVG (5 langs)
Fine-tuned Llama 17.05% 13.57% 16.53% 15.78% 16.40% 14.51% 15.36%

EM Zero-shot LLM 0.29%  061% 0.61% 054% 054%  0.29% 0.52%
RAG for LLM 16.09% 1398% 15.62% 14.33% 12.02% 13.89% 13.97%
SMART 18.85% 13.94% 18.38% 18.30% 18.05% 15.89% 16.91%

Fine-tuned Llama 57.19% 56.71% 54.22% 56.14% 56.22% 54.91% 55.64%
Zero-shot LLM 51.24%  47.76% 50.36% 50.43% 47.35% 48.95% 48.97%

QSM RAG for LLM 62.30% 59.52% 60.51% 60.17% 57.36% 58.87% 59.28%
SMART 61.15% 57.69% 61.23% 59.35% 58.11% 57.17% 58.71%
Fine-tuned Llama 60.76% 53.83% 56.61% 62.35% 58.710% 58.41% 57.98%

QFC Zero-shot LLM 60.29% 58.59% 58.92% 60.07% 58.09% 60.22% 59.18%
RAG for LLM 68.04% 67.86% 67.03% 67.47% 6529% 67.46% 67.02%
SMART 65.05% 60.36% 60.97% 63.86% 62.03% 59.34% 61.31%
Fine-tuned Llama 44.61% 36.86% 41.26% 41.44% 43.32% 38.23% 40.22%

EX Zero-shot LLM 36.58% 2899% 33.86% 34.91% 30.63% 29.68% 31.61%
RAG for LLM 51.70% 47.02% 49.28% 48.59% 45.12% 45.99% 47.20%
SMART 48.86% 38.05% 44.69% 44.22% 43.30% 41.03% 42.26%
Fine-tuned Llama 84.97% 78.84% 80.14% 81.44% 79.50% 83.54% 80.69%

EFM Zero-shot LLM 51.78%  54.40% 57.36% 57.11% 57.01% 58.19% 56.82%
RAG for LLM 72.716% 73.60% 73.88% 74.31% 75.02% 75.73% 74.51%
SMART 86.74% 83.10% 85.67% 83.712% 84.76% 86.31% 84.71%
Fine-tuned Llama 74.20% 66.28% 68.38% 70.72% 68.43% 74.73% 69.71%

EVM Zero-shot LLM 58.05% 57.47% 59.93% 60.14% 60.14% 59.60% 59.46%

RAG for LLM 70.38% 68.47% 70.40% 70.41% 68.14% 70.98% 69.68%
SMART 76.79% 15.85% 18.99% 73.68% 74.60% 78.30% 76.28%

Table 6: Comparison of baseline model’s performance across multiple languages on MultiTEND dataset based on
the metrics. Notice that AVG is the average value of the corresponding metric across the 5 non-English languages

Dataset Model EM QSM QFC EX EFM EVM
TEND SMART 23.82% 63.21% 75.60% 65.08% 87.21% 72.79%

Table 7: Performance of SMART on TEND dataset based on the metrics.

To clarify the challenges posed by multilingual Text-to-NoSQL tasks to existing models, we first fine-tuned the
Llama-3.2-1B model for testing and found its accuracy to be very low. Through detailed experiments (as shown in
Figure 6), we further analyzed the additional challenges multilingual Text-to-NoSQL tasks pose to existing models.
Results show that the common errors in NoSQL query generation from different models are primarily caused or
worsened by multilingual issues. Additionally, we compared the performance of SMART (Lu et al., 2025), a model
specifically designed for Text-to-NoSQL, on a pure English dataset (TEND) and a mixed dataset of six languages
(MultiTEND)(See Table refappx.tab:Performence Comparison of baselines on MultiTEND and Table 7). Results
show that despite being designed for NoSQL generation, the quality of NoSQL queries generated by SMART
significantly drops in multilingual contexts. Based on the experimental results, we analyzed the factors leading to
the decline in NoSQL generation quality in multilingual environments, with the findings as follows:

* Finding 1: In the process of identifying entity mentions in NLQ and mapping them to corresponding database
fields (i.e., schema linking), significant lexical differences across languages, especially in those with more
complex lexical formation rules (such as Japanese hiragana and katakana, Russian Cyrillic characters, and
the morphological variations in German and French), impose higher demands on the model’s language
understanding capabilities, resulting in a significant drop in mapping accuracy.

* Finding 2: The support for nested documents and array structures in NoSQL requires models to have a stronger
understanding of database schemas in multilingual environments to handle complex nested fields or situations
requiring array expansion. This makes the already challenging schema linking task even more difficult due to
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the multilingual context.

* Finding 3: In multilingual contexts, NLQs often exhibit vastly different syntactic structures due to language
differences, significantly increasing the difficulty for models to comprehend multilingual questions. This also
leads to errors in two critical tasks: mapping intentions to operators (intention mapping task) and mapping
intentions to database fields (schema linking task).

Based on these experiments and findings, we categorize the challenges in MultiTEND into Structural Challenge and
Lexical Challenge.

B More Implementation Details

Dataset Construction During the dataset construction process, we utilized the “gpt-40-mini-2024-07-18" model
to extend the dataset from English to multiple languages, with the parameter setting temperature = 0.0.

MultiLink When building the RAG vector library, we construct a corresponding vector library for the training set
of each language. In the vector library construction process, the text-to-embedding model used is “text-embedding-
ada-002”, and the Faiss library is employed to build indexes for efficient vector search.

In the data augmentation phase of MultiLink, we use the “DeepSeek-V3” model to expand multilingual data
pairs, with the parameter setting ‘temperature = 0.0’.

In the Parallel Multilingual Sketch-Schema Prediction phase of MultiLink, all SLMs are fine-tuned based on
“Llama-3.2-1B” using a full-parameter fine-tuning strategy with AdamW as the optimizer. We set the hyperparame-
ters for fine-tuning as follows: batch size = 2, learning rate = 5e-5, and epochs = 3. Additionally, we configure the
gradient accumulation steps to 8 and set the maximum input token length to 2048. For the generation of SLMs, we
use top-p = 0.7 and temperature = 0.0, with a maximum input token length of 2048 and a maximum output token
length of 512.

In the Retrieval-Augmented Chain-of-Thought Query Generation phase of MultiLink, when retrieving examples
from the vector library, we set the similarity threshold to 0.5 and the retrieval count (rag retrieve num) to 6.0. For
query generation, the LLM used is “DeepSeek-V3”, with the parameter setting ‘temperature = 0.0’.

Baselines For baseline methods of Zero-shot LLM, Few-shot LLM, RAG for LLM, the LLM we use is “DeepSeek-
V3” , with the parameter setting ‘temperature = 0.0’; Specifically for RAG for LLM, we employ the same vector
library as MultiLink, setting the similarity threshold to 0.5 and the retrieval count (rag retrieve num) to 6.0.

For the part of SMART that requires the use of LLM, we also use “DeepSeek-V3”, with the parameter setting*
temperature = 0.0°, which is consistent with the configuration of MultiLink. For the part of SMART that involves
fine-tuning SLM as well as the baseline method of Fine-tuned SLM, we maintain the same settings as those used for
fine-tuning SLM in MultiLink, using “Llama-3.2-1B”. The hyperparameters for fine-tuning are set as follows: batch
size = 2, learning rate = Se-5, and epochs = 3. Additionally, we configure the gradient accumulation steps to 8 and
set the maximum input token length to 2048. For the generation of SLMs, we use top-p = 0.7 and temperature = 0.0,
with a maximum input token length of 2048 and a maximum output token length of 512.
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C More Experimental Details

C.1 Baselines

We utilized a variety of popular neural network models, LLM-based prompting methods,SLM-based fine-tuning
methods and existing Text-to-NoSQL pipelines as baseline models for a comprehensive performance comparison
with MultiLink. The baseline models are as follows:

* Zero-shot LLM: The zero-shot prompting approach utilizes the inherent zero-shot learning capabilities of
LLM, allowing LLM to produce precise and contextually appropriate responses without the need for prior
training or example-driven instructions.

* Few-shot LLM: The few-shot prompting technique serves as a key mechanism for in-context learning (ICL),
where a limited set of examples is incorporated into the context to instruct LLM on executing tasks within
specialized domains.

* RAG for LLM: Retrieval-Augmented Generation (RAG) technology provides an alternative approach to
support LLLM in downstream tasks. Unlike direct few-shot prompting, RAG dynamically retrieves relevant
examples from a knowledge base based on the model’s input, enriching the context and effectively reducing
hallucinations induced by insufficient or ambiguous information.

* Fine-tuned SLM: Fine-tuning is another effective strategy for enhancing the performance of language models
in specific downstream tasks, such as predicting NoSQL query generation. We fine tune SLM based on two
different approaches (Monolingual Training and Multilingual Training) to compare the quality of NoSQL
queries predicted by SLM based on single-target language training data and training data from multiple
languages.

* SMART: SMART is the first and currently the only framework in the Text-to-NoSQL domain tackling the
task of converting English NLQs to NoSQL queries. With the assistance of SLM and RAG technologies, it
constructs four main processes: SLM-based schema prediction, SLM-based query generation, query refinement
based on predicted schema and retrieved examples, and execution results-based query optimization.

* MultiLink: MultiLink is the framework proposed in this work, aiming to address the challenges of multilingual
Text-to-NoSQL tasks. It constructs three main processes: Intention-aware Multilingual Data Augmentation
(MIND), Parallel Multilingual Sketch-Schema Prediction,and Retrieval-Augmented Chain-of-Thought Query
Prediction.

C.2 Evaluation Metrics

We report results using the same metrics as SMART, which include Exact Match (EM) and Execution Accuracy
(EX), each with more detailed subdivisions such as Query Stages Match (QSM) and Query Fields Coverage (QFC)
under EM, and Execution Fields Match (EFM) and Execution Value Match (EVM) under EX.
Here are detailed descriptions of each metric:
» Exact Match (EM): The purpose of this metric is to evaluates whether the generated query is an exact match
to the gold query, considering both its structure and content. It is calculated as:

Nem
N
Where N.,, represents the count of queries fully matching the gold query, and N signifies the total number of
queries within the test set. EM serves as a stringent measure of syntactic and semantic alignment.
— Query Stages Match (QSM): QSM is designed to check if the generated query’s key stages (e.g.,
match,group, lookup) mirror the gold query in the order and keywords employed. It’s calculated as:
Ngsm
N
where N, represents the count of queries with matching stages.
— Query Fields Coverage (QFC): QFC assesses if the generated query encompasses all the fields present
in the gold query, considering both database fields and query-defined fields. It’s defined as:
Nase
N
Where N, . represents the number of queries with complete field coverage.

* Execution Accuracy (EX): This metric evaluates the accuracy of the execution results for the generated query
on the database. It is calculated as follows:

EM =

QSM =

QFC =

Nea
EX = —
N
where N, represents the number of queries whose execution results align with those of the gold query. EX

serves as the most critical performance metric for evaluating Text-to-NoSQL models.
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— Execution Fields Match (EFM): EFM validates the alignment of field names derived from the execution
of the generated query against those obtained from the gold query. It’s defined as:

Nefm

EFM =
N

where N, represents the number of queries with matching field names in the results.

— Execution Value Match (EVM): EVM evaluates the correspondence between the values in the execution
results of the generated query and those in the gold query. It is defined as:

Ne’um

EVM =
N

where N, represents the number of queries with matching values in the results.
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D More Experimental Results

D.1 Performance Comparison

Metric Model EN ZH FR DE JA RU AVG (5 langs)
Query-based Metric Results
Fine-tuned Llama 17.05% 13.57% 16.53% 15.78% 16.40% 14.51% 15.36%
Zero-shot LLM 0.29% 0.61% 0.61% 0.54% 0.54% 0.29% 0.52%
EM Few-shot LLM 12.18% 10.25% 10.65% 10.65% 9.87% 11.34% 10.55%
RAG for LLM 16.09% 13.98% 15.62% 1433% 12.02% 13.89% 13.97%
SMART 18.85% 13.94% 18.38% 18.30% 18.05% 15.89% 16.91%
MultiLink (Ours) 30.05% 23.47% 25.58% 25.65% 23.53% 24.95% 24.64%
Fine-tuned Llama 57.19% 56.71% 54.22% 56.14% 56.22% 54.91% 55.64%
Zero-shot LLM 51.24% 47.76% 50.36% 50.43% 47.35% 48.95% 48.97%
QSM Few-shot LLM 57.01% 58.52% 56.06% 53.83% 56.14% 55.45% 56.00%
RAG for LLM 62.30% 59.52% 60.51% 60.17% 57.36% 58.87% 59.28%
SMART 61.15% 57.69% 61.23% 59.35% 58.11% 57.17% 58.71%
MultiLink (Ours) 6591% 62.19% 64.71% 64.73% 63.26% 63.29% 63.63%
Fine-tuned Llama 60.76% 53.83% 56.61% 62.35% 58.70% 58.41% 57.98%
Zero-shot LLM 60.29% 58.59% 58.92% 60.07% 58.09% 60.22% 59.18%
QFC Few-shot LLM 62.88% 63.32% 59.39% 58.38% 61.51% 61.23% 60.76%
RAG for LLM 68.04% 67.86% 67.03% 67.47% 6529% 67.46% 67.02%
SMART 65.05% 60.36% 60.97% 63.86% 62.03% 59.34% 61.31%
MultiLink (Ours)  76.55% 71.14% 73.22% 73.73% 72.18% 72.22% 72.50%
Execution-based Metric Results
Fine-tuned Llama 44.61% 36.86% 41.26% 41.44% 43.32% 38.23% 40.22%
Zero-shot LLM 36.58% 28.99% 33.86% 3491% 30.63% 29.68% 31.61%
EX Few-shot LLM 40.79% 34.95% 36.64% 37.08% 3593% 34.77% 35.87%
RAG for LLM 51.70% 47.02% 49.28% 48.59% 45.12% 45.99% 47.20%
SMART 48.86% 38.05% 44.69% 4422% 43.30% 41.03% 42.26%
MultiLink (Ours) 67.64% 57.71% 59.86% 58.90% 55.75% 54.88% 57.42%
Fine-tuned Llama 84.97% 78.84% 80.14% 81.44% 79.50% 83.54% 80.69%
Zero-shot LLM 51.78% 54.40% 57.36% 57.11% 57.01% 58.19% 56.82%
EEM Few-shot LLM 63.21% 63.79% 62.85% 6531% 64.47% 66.97% 64.68%
RAG for LLM 72.76% 73.60% 73.88% 74.31% 75.02% 75.73% 74.51%
SMART 86.74% 83.10% 85.67% 83.72% 84.76% 86.31% 84.71%
MultiLink (Ours) 88.92% 85.41% 84.64% 85.27% 8532% 84.40% 85.01%
Fine-tuned Llama 74.20% 66.28% 68.38% 70.72% 68.43% 74.73% 69.71%
Zero-shot LLM 58.05% 57.47% 59.93% 60.14% 60.14% 59.60% 59.46%
EVM Few-shot LLM 6537% 6321% 63.94% 66.35% 63.46% 65.96% 64.58%
RAG for LLM 70.38% 68.47% 70.40% 70.41% 68.14% 70.98% 69.68%
SMART 76.79% 75.85% 78.99% 73.68% 74.60% 78.30% 76.28%
MultiLink (Ours) 76.33% 74.32% 74.42% 73.55% 72.03% 73.38% 73.54%

Table 8: Comparison of each model’s performance across multiple languages on MultiTEND based on the metrics.

Notice that AVG is the average value of the corresponding metric across the 5 non-English languages.

As shown in Table 8, models consistently achieve higher performance in English across all metrics, suggesting
baseline models are more proficient in handling complex tasks in English. This can be attributed to their extensive

training on English data, giving them an inherent advantage over other languages. In contrast, performance in

Chinese and Russian often lags behind languages like English, Japanese, French, and German. This disparity may

arise not only from limited training data for these languages but also from the unique challenges posed by Chinese

character construction, syntax, and the Cyrillic alphabet in Russian, which introduce additional complexities in
comprehension and generation.
According to the results shown in Table 8 and Table 9, there are significant differences in the performance of
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Model EM QSM QFC EX EFM EVM
Fine-tuned Llama  15.64% 55.90% 58.44% 4095% 81.41% 70.46%

Zero-shot LLM 048%  4935% 5936% 32.44% 5598%  59.22%
Few-shot LLM 10.82% 56.17% 61.12% 36.69% 64.43% 64.71%
RAG for LLM 14.32% 59.79% 67.19% 4795% 74.22%  69.80%
SMART 17.23% 59.12% 61.94% 43.36% 85.05% 76.37%

MultiLink (Ours) 25.54% 64.01% 73.17% 59.12% 85.66% 74.01%

Table 9: Comparison of each model’s average performance across six languages(AVG of 6 langs) on MuliTEND
based on the metrics.

various models on key metrics. Our model performs exceptionally well across all languages and metrics except for
EVM, outperforming the second-best baseline model by approximately 5% to 20%. Particularly on the two key
metrics for real-world applications, EM and EX, our model maintains an absolute lead with average advantages
of 25.54% and 59.12%, respectively, across all languages. In contrast, the Zero-shot LLM method performs the
worst across all languages and metrics, particularly on EM and EX, with its average accuracy across six languages
trailing MultiLink by nearly 25%. The other three methods achieve average accuracies across the six languages on
EM of 15.64% (Fine-tuned), 14.32% (RAG for LLM), and 10.82% (Zero-shot LLM), while on EX, their average
accuracies are 47.95% (RAG for LLM), 40.95% (Fine-tuned Llama), and 36.69% (Few-shot LLM). Overall, our
model demonstrates significant advantages across all metrics on every language.

Further analysis of Table 9 reveals distinct performance differences between model fine-tuning and direct
prompting LLM methods on the MultiTEND test set under cross-domain criteria. Fine-tuned Llama achieved an
81.41% accuracy in EFM, outperforming RAG for LLM by 7.19%, indicating its stronger capability in generating
queries that retrieve correct field results. On the other hand, RAG for LLM surpassed Fine-tuned Llama by margins
ranging from 3.8% to 8.75% in EX, QSM, and QFC metrics, demonstrating its superior understanding of the
mapping relationships between NLQs and NoSQL database fields, as well as a deeper grasp of data operations in
NoSQL queries, leading to higher execution accuracy

Among the Multi-Step methods specifically designed for Text-to-NoSQL tasks, the performance gap between
SMART and our proposed MultiLink approach is significant. As shown in Table 8, specifically, in terms of perfor-
mance across every language, MultiLink outperforms SMART, which is tailored for monolingual NoSQL generation,
across all metrics except EVM, with margins ranging from 2.18% to 18.78%. This demonstrates that SMART,
designed exclusively for English contexts, cannot directly address the challenges posed by multilingual tasks. In
contrast, the intention mapping and schema linking methods designed in MultiLink, specifically developed to tackle
multilingual generation challenges, effectively overcome these difficulties, enabling it to achieve significantly better
performance in multilingual scenarios compared to other baseline models.
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D.2 Parameter Study
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Figure 6: Parameter study of RAG number on the MultiTEND test set.

Figure 6 illustrates the performance variations of MultiLink across multiple languages under different numbers of
retrieved examples for all metrics. The vertical axis represents the model’s accuracy under each metric, and the
horizontal axis represents the RAG number ranging from 0 to 10.

Analyzing Figure 6 and observing the changes in the average represented by the red dashed line, we find that
as the RAG num increases, MultiLink shows significant improvement on all metrics except QSM, followed by a
slow rise and a gradual decline after reaching a certain value. The initial improvement, resulting from the change
in RAG num from 0 to 2, indicates that RAG greatly enhances model performance. The subsequent decline
in MultiLink’s performance beyond a certain value might be attributed to excessive context length introducing
redundant information, which interferes with generation.

Moreover, the model’s performance on the QSM metric declines as the RAG num increases, which may be
attributed to the influence of retrieved examples on the model’s decisions regarding NoSQL operations. However,
considering the performance on other metrics, the retrieved examples contribute to the model generating more
accurate queries before the RAG num reaches 6, with the peak accuracy of model execution occurring at a RAG
num of 6.
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D.3 Case Study

Table 10 presents a case study comparing various baseline methods and MultiLink in generating NoSQL queries
and their execution results. Firstly, we observe that the fine-tuned Llama exhibits a significant lack of understanding
regarding database field names and overall structure, as illustrated in Table 10. The model not only fails to accurately
match target fields (such as “IfF£44FR”), leading to erroneous query logic and invalid results, but also incorrectly
identifies “RFE" as an independent collection rather than recognizing it as a field nested within the “%}H” collection.
Additionally, it lacks the ability to deconstruct nested fields (e.g., using $unwind), rendering it incapable of properly
handling array-type nested structures.

On the other hand, RAG for LLM performs well in handling the syntax of complex operations, but it still falls
short in understanding field names and matching database schemas, and it fails to accurately incorporate the actual
values in the database for retrieval. As shown in Table 10, although the model correctly uses $unwind to deconstruct
nested fields, the query still cannot execute correctly because it does not filter based on the actual values in the
database.

In comparison, SMART demonstrates a solid grasp of NoSQL syntax and shows a slightly better understanding
of user query intentions and database structures compared to methods that directly utilize LLMs through prompting
for generation. However, it struggles with handling more complex fields that involve nested relationships. Due to a
lack of multilingual knowledge, it often incorrectly maps NLQ to database fields, finding it difficult to distinguish
between semantically similar fields in different languages. As illustrated in Table 10, SMART erroneously selected
the “IRFE” collection instead of the “FBt H” collection and failed to correctly structure the nested fields. In contrast,
MultiLink fully and accurately comprehended the query intent even in multilingual contexts, with clear query logic
and the ability to generate queries that precisely align with the query intent. This indicates that MultiLink can
effectively understand and execute multilingual Text-to-NoSQL tasks and generalizes well to test set examples after
learning from the training set.

Target db.®}H .aggregate([ { $unwind: “$HEFE” 3}, { $match: { “if Standard query: Correct usage of
NOSQL %il%*igﬂ_\'” “Spanish"’ T3 A $unw::md: “\$1%E$‘/_:E'L%T%EE nested field pa[hs
M2 3, { sproject: { IEMMHIEM: “siREE. FERBIEM. EME) | Reules: (BB -
A, id: 033 D 2017-12-07 02:21:13’}....]
Fine-tuned db. 72 . aggregate (L { $match: { IRFEL TR “Spanish” } }, { |Error: Incorrect collection (‘B H’
Llama $unwind: “$%ﬁ£i%$%°&ﬂﬂ” Y, { $project: { EMEIEH: “$2 |y GHF)
EREREM EME B, _id: 0 3 3 D; RS
RAG for db. R} H . aggregate ([ { $unwind: “$IEFE” 3, { $match: { “if Error: Wrong value (‘Spanish’ vs.
LLM RN PPEAIE” 3 ), { sunwind: “$ERER.EEREE | mEyiE)
M 3, { $project: { IEMHEEA: s A RBEEM FEMAOH Results: []
W, _id: 0 3} 3 1); '
SMART db. A2 . aggregate([ { $match: { IFFEZFR: “Spanish” } 3}, { |Error: Wrong collection and field
$unwind: “$%$i%*§&ﬂﬂ" 3, { $project: { EMAIHEA: «$2# paths
RN EMAORE, _id: 0 3 3 1); Results: []
MultiLink db.BIH .aggregate([ { $unwind: “$¥RFE” 3, { $match: { “ii% Success: Correct structure and
(Ours) B RBEZAFR7: “Spanish” } 3, { sunwind: “$iffe. S EIREETE values
w3, {.$project: { EMAEEE: «sEAE . A REEM . FEMT Results: [{ 7= H -
AR, id: 033 s 2017-12-07 02:21:13'},...]

Table 10: Case Study: Comparison of Different Approaches in Complex Nested Queries. This table illustrates
the performance of three baseline methods against our MultiLink method in generating Chinese MongoDB queries
based on the same NLQ.
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E Prompt Examples
In this section, we present the specific prompts designed for each LLM application scenario within MultiLink.

E.1 Prompt Design in Data Construction Pipeline
E.1.1 DB Fields Translation in Dataset Construction

Prompt for DB Fields Translation in Dataset Construction

Role: SYSTEM
Content: You are a language translator,just translate every English key name in the input dictionary to target language and no
more talk, your translation should be as accurate as possible, do not make it up.

Role: USER
Content:
# Given the input database schema and key list, perform the following actions:
1. Based on the understanding of the database structure below, translate the key names in the key list from English to targert
language,and return them in a list.
2. Ensure that identical English key names within the list are consistently translated into the same target language keys.
3. When you encounter a key name with an underscore, first understand the semantic meaning of the key before translating it.
For example, when the target language is Chinese:
original key : investor_id -> semantic meaning : id of inverstor -> translated key : %R E id
original key : date_of_transaction -> semantic meaning : date of transaction -> translated key : x5 BER

For example, when the target language is German:

original key : investor_id -> semantic meaning : id of inverstor -> translated key : Anleger_id

original key : date_of_transaction -> semantic meaning : date of transaction -> translated key : Geschaftsdatum
4. Ensure that every key name in the key list is translated and organized into the output list.The final output format should be like:
"json
[translated_key1,translated_key2,...]

## Target language:

Chinese

## Input Database Schema:

{"Activity": {"actid": "INTEGER", "activity_name": "varchar(25)", "Participates_in": [{"stuid": "INTEGER", "actid": "INTEGER"}],

"Faculty_Participates_in": [{"FacID": "INTEGER", "actid": "INTEGER"}]}, "Student": {"StulD": "INTEGER", "LName":

"VARCHAR(12)", "Fname": "VARCHAR(12)", "Age": "INTEGER", "Sex": "VARCHAR(2)", "Major": "INTEGER", "Advisor": "INTEGER",

"city_code": "VARCHAR(3)", "Participates_in": [{"stuid": "INTEGER", "actid": "INTEGER"}]}, "Faculty": {"FacID": "INTEGER",

"Lname": "VARCHAR(15)", "Fname": "VARCHAR(15)", "Rank": "VARCHAR(15)", "Sex": "VARCHAR(1)", "Phone": "INTEGER",

"Room": "VARCHAR(5)", "Building": "VARCHAR(13)", "Faculty_Participates_in": [{"FacID": "INTEGER", "actid": "INTEGER"}]}}

## Key List:

["Faculty_Participates_in", "actid", "LName", "Faculty", "Student", "city_code", "Fname", "stuid", "Participates_in", "Sex",
k"activity_name", "Major", "Activity", "Age", "FacID", "Phone", "Building", "StulD", "Rank", "Room", "Lname", "Advisor"]
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E.1.2 NLQ Translation in Dataset Construction

Prompt for NLQ Translation in Dataset Construction

Role: USER

Content:

#Given the Original Natrual Language Query List and Corresponding MongoDB Query, perform the following actions: ...
A: Let's think step by step!

Role: ASSISTANT

Content:

### Step 1: Identify Words for Translation ...
### Final Translations ...

Role: USER
Content:
#Given the Original Natrual Language Query List and Corresponding MongoDB Query, perform the following actions:

1. Recognize the words that should be translated into Chinese.

2. Analyze the NLQ with the corresponding MongoDB query,Find the value of the MongoDB Query index in the natural sentence,
maintain the consistency of this value's expression with that in the MongoDB Query.

3. Ensure the translation flows smoothly and naturally, with consistency in vocabulary.

4. Based on the steps above, Translate every NLQ in the List into the Target Language.

5. Output the translated NLQ in the following format:

"“"markdown

1. **Ori_NLQa**: [Translated_NLQz1],

2. **QOri_NLQ2**: [Translated_NLQ2],

## Original Natrual Language Query List:

"“*markdown

1. **Ori_NLQ1**: Show the booking status code and the corresponding number of bookings.

2. **Ori_NLQ2**: How many bookings does each booking status have? List the booking status code and the number of
corresponding bookings.

3. **Ori_NLQ3**: Display the booking status codes along with the total number of bookings for each status.

4. **Ori_NLQ4**: What is the count of bookings for each booking status? Provide the booking status codes and their respective
counts.

5. **Ori_NLQs**: List the different booking status codes and the associated number of bookings for each status.

## Corresponding MongoDB Query:

“javascript
db.Apartment_Buildings.aggregate([{sunwind:"$Apartments"}, {sunwind:"$ Apartments.Apartment_Bookings"}, {$group:{_id:"s
Apartments.Apartment_Bookings.booking_status_code", COUNT:{$sum:1}}},{$project:{booking_status_code:"$_id",COUNT:1,_i
d:03);

| A: Let's think step by step!
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E.2 Prompt Design in MultiLink
E.2.1 Intention-aware Multilingual Data Augmentation (MIND)

Prompt for Data Pairs Synthesis in Data Augmentation

Role: SYSTEM

Content: You are an excellent MongoDB expert responsible for writing corresponding MongoDB queries based on Natural
Language Query (NLQ) and the Database Schema.

Role: USER

Content:

# Given the MongoDB Schema, MongoDB Data, Original MongoDB Query and its corresponding Natural Language Queries
(NLQs), Write another MongoDB Query (MQL) and its NLQs that have different intent from the original MongoDB Query by
performing the following steps:

1. Analyze the structural relationships between collections and fields within the MongoDB Schema.

2. Analyze the fields in the MongoDB collection referenced by the existing NLQ, based on the MongoDB schema, NLQ, and
schema linking results, to identify the logical relationships between these fields and collections that support the NLQ's
underlying query logic.

3. Analyze the correspondence between the querying intent of the Original MongoDB Query (MQL) and Original NLQs.

4. Based on the above analysis results and MongoDB Data, write a new MQL with a completely different querying intent from the
Original MongoDB Query (MQL).

5. Write one NLQ corresponding to the generated MQL, and expand 4 more new NLQs that have the same meaning but different
expressions from the generated NLQ.

6. Return the new MQL and its corresponding NLQs in the following format:

- Generated MongoDB Query (MQL):

“javascript

<MongoDB Query>

- Corresponding Natural Language Queries (NLQs):
"“"markdown

NLQz: <Natural Language Query 1>

NLQ2: <Natural Language Query 2>

NLQs5: <Natural Language Query 5>
## Original MongoDB Query

## Original Natural Language Queries (NLQs)
['Find the students who have failed tests in any course, along with the course and subject details.', 'Retrieve the list of students
who failed tests in specific courses, including the course and subject information., ...]
## MongoDB Schema
### Collection: Subjects
- subject_id: INTEGER
- Courses (Array):
- course_id: INTEGER

### Collection: Students
- student_id: INTEGER
- date_of_registration: DATETIME

## MongoDB Data
\{"Subjects":[{"subject_id":3,"subject_name":"Language",...},...]}
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Prompt for Multilingual NLQs Synthesis in Data Augmentation

Role: SYSTEM

Content: You are a highly skilled multilingual translation assistant specialized in translating Natural Language Queries (NLQs)
into different target languages. Your task is to accurately translate NLQs while maintaining consistency with the corresponding
database queries (e.g., MongoDB queries) and ensuring the translations are natural and fluent. **During the translation process,
you must not alter the representation of any MongoDB values mentioned in the NLQ**

Role: USER

Content:

#Given the Original Natrual Language Query List and Corresponding MongoDB Query, perform the following actions: ...
A: Let's think step by step!

Role: ASSISTANT
Content:
Let's break down the task step by step: ...

Role: USER

Content:

#Given the Original Natrual Language Query List and Corresponding MongoDB Query, perform the following actions:

1. Recognize the words that should be translated into Japanese.

2. Analyze the NLQ alongside its corresponding MongoDB query, identify the values corresponding to the query conditions
within the natural language sentence, and preserve the consistency of these values' expressions as they appear in the MongoDB
query throughout the subsequent translation of the NLQ.

3. Ensure the translation flows smoothly and naturally, with consistency in vocabulary.

4. Based on the steps above, Translate every NLQ in the List into the Target Language.

5. Output the translated NLQ in the following format:

“*markdown

1. **Qri_NLQa**: [Translated_NLQzx],

2. **Ori_NLQ2**: [Translated_NLQ2],

## Original Natrual Language Query List:
"*markdown
1. **Ori_NLQa**: Retrieve the top 5 investors with the highest total transaction amounts along with their details.

5. **Ori_NLQs**: Find the top 5 investors with the highest total transaction amounts and provide their details.

## Corresponding MongoDB Query:
“javascript
db.Investors.aggregate([
{ sunwind: "$Transactions"},
{ sgroup: { _id: "sinvestor_id", Investor_details: { $first: "sInvestor_details"}, totalTransactionAmount: { $sum:
"s$Transactions.amount_of_transaction"}3},...]);

oy

\ A: Let's think step by step! _J
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E.2.2 Retrieval-Augmented Chain-of-Thought Query Generation

Prompt in Retrieval-Augmented Chain-of-Thought Query Generation

Role: sYSTEM

Content: You are now the natural language interface for MongoDB, responsible for referencing the English NoSQL query
examples provided by the user and generating MongoDB queries corresponding to the natural language queries based on
MongoDB schemas.

Role: USER

Content:

# Given the complete MongoDB Schemas, potential MongoDB fields to be used, natural language queries, and reference English
NoSQL queries, please perform the following actions:

1. Analyze the natural language query based on the reference English NoSQL query;

2. Infer the MongoDB fields to be used based on the analysis from the first step, the complete MongoDB Schemas, and the
potential MongoDB fields provided by the user;

3. Modify the reference English NoSQL query using the MongoDB fields inferred in the second step to make it suitable for the
current MongoDB database;

4. Output the final NoSQL query in the following format:

javascript

<final MongoDB query>

 FiRaevantshema T~ T "7 7T prestmmmsnemeeee

## Natural Language Query
## Reference English NoSQL Query

## Final MongoDB Query

## Complete MongoDB Schemas
““*markdown

### Collection: 4

- 24 |D: INTEGER

- B4 VARCHAR(22)

## Relevant Schema

### 25 id, Bk, 45

## Natural Language Query
S EREASTTHE, LEPRENEURAA?

## Reference English NoSQL Query

"javascript

db.students.aggregate([{$match: {gender: "female"}}, {$group: {_id: "$major",count: {$sum: 1}}},{$sort: {count: -1}},{slimit:
1},{$project: {major: "$_id",_id: o}}]);

\## Final MongoDB Query
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