
Findings of the Association for Computational Linguistics: ACL 2025, pages 24497–24524
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Retrieval Models Aren’t Tool-Savvy:
Benchmarking Tool Retrieval for Large Language Models

Zhengliang Shi1 Yuhan Wang1 Lingyong Yan2

Pengjie Ren1 Shuaiqiang Wang2 Dawei Yin2 Zhaochun Ren3*

1Shandong University, Qingdao, China 2Baidu Inc., Beijing, China
3Leiden University, Leiden, The Netherlands

� Tool-Retrieval-Benchmark

shizhl@mail.sdu.edu.cn z.ren@liacs.leidenuniv.nl

Abstract

Tool learning aims to augment large language
models (LLMs) with diverse tools, enabling
them to act as agents for solving practical tasks.
Due to the limited context length of tool-using
LLMs, adopting information retrieval (IR) mod-
els to select useful tools from large toolsets
is a critical initial step. However, the perfor-
mance of IR models in tool retrieval tasks re-
mains underexplored and unclear. Most tool-
use benchmarks simplify this step by manually
pre-annotating a small set of relevant tools for
each task, which is far from the real-world sce-
narios. In this paper, we propose TOOLRET, a
heterogeneous tool retrieval benchmark com-
prising 7.6k diverse retrieval tasks, and a corpus
of 43k tools, collected from existing datasets.
We benchmark six types of models on TOOL-
RET. Surprisingly, even the models with strong
performance in conventional IR benchmarks,
exhibit poor performance on TOOLRET. This
low retrieval quality degrades the task pass rate
of tool-use LLMs. As a further step, we con-
tribute a large-scale training dataset with over
200k instances, which substantially optimizes
the tool retrieval ability of IR models.1

1 Introduction

Large language models (LLMs) have demonstrated
remarkable progress across various natural lan-
guage processing (NLP) tasks, such as text sum-
marization (Chang et al., 2023). However, they
suffer from inherent inabilities to interact with the
physical world and access vast, up-to-date knowl-
edge (Qin et al., 2024). To alleviate these draw-
backs, tool learning is proposed to equip LLMs
with external tools, augmenting them as agents
to manipulate tools for practical task-solving (Qu
et al., 2025b; Wang et al., 2024e).

In practical applications, retrieving useful tools
from toolsets for LLM agents typically serves as

*Corresponding author.
1Resource is available on Huggingface and � Website.

49

51

53

55

22 25 28 31 34

Recall@10 of IR models

Pa
ss

 R
at

e
of

 G
PT

-3
.5

-tu
rb

o
…

64.2
Pass rate with pre-annotated toolset (oracle)

e5-base-v2

e5-large-v2

ColBET-v2

bge-base-v1.5

bge-large-v1.5

decrease 10.1

only 27.3 recall@10

Figure 1: Correlation between the tool retrieval perfor-
mance (e.g., Recall@10) of IR models and the end-to-
end task pass rate of tool-use agents.

the initial step (Wang et al., 2024c; Xu et al., 2024;
Song et al., 2023). This step becomes particularly
critical in real-world scenarios where the candidate
tools are usually large-scale and many of them are
similar in functionality (Qu et al., 2024a). How-
ever, most existing work (Guo et al., 2024; Qian
et al., 2023) simplifies this retrieval process by man-
ually pre-selecting a small set of 10-20 relevant
tools for each evaluation task. For example, the
ToolACE (Liu et al., 2024a) and ToolBench (Qin
et al., 2023) annotate about 10 tools per task. While
recent information retrieval (IR) techniques such
as semantic matching (Qu et al., 2024a; Xu et al.,
2024), can assist with tool retrieval, they are of-
ten trained on ad-hoc tool-use datasets, lacking
comprehensive evaluation on diverse scenarios, es-
pecially for unseen tasks. To further explore the
importance of tool retrieval, we conduct a pilot
experiment on ToolBench (Qin et al., 2023). As
shown in Figure 1, we observe that (i) the agent’s
performance substantially drops when replacing the
officially annotated toolset with the retrieved tools;
and (ii) even strong retrievers like colbertv2 (San-
thanam et al., 2021a), struggle to retrieve target
tools effectively. These findings highlight the ne-
cessity to (i) systematically evaluate IR models on
diverse tool retrieval tasks; and (ii) analyze the
impact of retrieval on the end-to-end task pass rate.

In this work, we introduce TOOLRET, the first

24497

https://github.com/mangopy/tool-retrieval-benchmark
https://huggingface.co/spaces/mangopy/ToolRet-demo
https://mangopy.github.io/tool-retrieval-benchmark/

large-scale tool retrieval benchmark comprising
7.6k diverse retrieval tasks and a corpus of 43k
tools, which comprehensively evaluates IR mod-
els across diverse retrieval scenarios. Specifically,
we collect query-tool datasets from the following
sources: (i) Tool-use agent benchmarks from pub-
lished research papers in AI conferences, such
as ACL and NeurIPS; (ii) Related conference re-
sources such as AppBench in EMNLP and Tool-
Lens in CIKM; and (iii) Other publicly available
datasets from the open-source community, e.g.,
HuggingFace. The collected data is carefully cu-
rated to cover a wide range of practical tool require-
ments, comprising diverse types of tool documen-
tation, domains, and varying query lengths. Then,
we standardize the format of all the collected tasks,
aligning them with retrieval tasks similar to the for-
mat in MTEB, where each retrieval task contains a
query and target tools (e.g., labels). To support the
instructional retrieval (Weller et al., 2024) setting
of our benchmark, we also introduce a target-aware
strategy to supplement each query with an instruc-
tion using the powerful LLMs (i.e., gpt-4o).

We systematically evaluate five types of IR mod-
els such as embedding models and LLM re-ranking,
under various experimental settings. Our results re-
veal that even the best model (i.e., NV-embedd-v1)
that demonstrates strong performance in conven-
tional IR benchmarks, achieves an nDCG@10 of
only 33.83 in our benchmark. This highlights the
challenges of the tool retrieval tasks. We identify
two key factors contributing to this performance
gap: (i) Lower term overlap between queries and
target tools in tool retrieval tasks, which demands
higher representation abilities for IR models to ac-
curately match query intent with the correct tools;
and (ii) Task shift from conventional information-
seeking tasks (e.g., document retrieval) to tool re-
trieval, leading to suboptimal performance of IR
models that are not explicitly optimized.

To enhance the retrieval performance and enable
IR models to augment tool-use agents, we further
propose the TOOLRET-train, a large-scale train-
ing dataset containing more than 200k retrieval
tasks. We extend our data collection process from
TOOLRET to include the training set of three main-
stream tool-use datasets, including ToolACE (Liu
et al., 2024a), APIGen (Liu et al., 2024b) and Tool-
Bench (Qin et al., 2023). To enable the training, we
pair each retrieval task with 10 negative tools re-
trieved by the NV-embed-v1. Finally, each training
example contains the query, an generated instruc-

tion, the target tools, and the negative tools. Results
show that the IR models trained over TOOLRET-
train, exhibit significant improvements in the re-
trieval process, leading to a higher end-to-end task
pass rate when integrated with tool-use LLMs.

Our contributions are summarized as follows: (i)
We introduce TOOLRET, the first evaluation bench-
mark for tool retrieval tasks. (ii) We evaluate the
tool retrieval performance of various IR models
and analyze the impact of retrieval on the end-to-
end task pass rate of tool-use LLMs; and (iii) We
contribute to a large-scale training dataset that en-
hances the performance of IR models, improving
their ability to augment tool-use LLMs effectively.

2 Related work

Tool learning with foundation models. Tool learn-
ing aims to equip LLMs with tools, such as web
API (Song et al., 2023) and python packages (Wang
et al., 2024d), expanding their utility (Qin et al.,
2023). Existing work teaching LLMs to use tools
can be broadly classified into tuning-free (Lu et al.,
2023) and tuning-based methods (Gao et al., 2024).
The former prepends the description of candidate
tools in the LLMs’ context, prompting them to se-
lect and invoke tools (Huang et al., 2023). The
latter enables LLMs to learn the usage of each tool
through training on synthetic data (Liu et al., 2024a;
Gao et al., 2024). However, both two paradigms
struggle when facing the large-scale toolset in prac-
tice (Qu et al., 2024b; Liu et al., 2024b). First,
real-world toolsets are typically massive, making
it less possible to incorporate all tools within the
limited context of LLMs. For example, the Rapi-
dAPI platform contains more than 52k tools while
the PyPI2 hosts over 600k frequently updated pack-
ages. Second, since tools are frequently updated,
it is cost-intensive to re-train the LLMs to memo-
rize all tools (Qu et al., 2025a). Although recent
studies address this challenge using semantic re-
trievers (Qin et al., 2023; Wang et al., 2024c), these
solutions are typically ad-hoc and lack systematic
evaluation across diverse tool retrieval scenarios.
To fill this gap, we present the first comprehensive
tool retrieval benchmark with systematic analysis.
Information retrieval benchmark. Conventional
information retrieval (IR) benchmarks are typically
designed for information-seeking tasks, such as
Nature Question (Kwiat kowski et al., 2019) for
question answering and MS-MARCO (Nguyen

2https://pypi.org/

24498

https://pypi.org/

et al., 2016) for passage re-ranking. Recent work
also explores the IR technique in various down-
stream tasks, such as table retrieval (Chen et al.,
2024b; Zhang and Balog, 2020) and scientific re-
trieval (Ajith et al., 2024), which substantially aug-
ments the downstream models. However, tool re-
trieval, a crucial step for tool-use agents, remains
underexplored. Compared with traditional IR tasks,
retrieving useful tools is more challenging since
solving a task typically requires the combination
of multiple tools (Qu et al., 2024b). Most exist-
ing benchmarks simplify this retrieval process by
manually annotating a small set of tools that fit the
LLMs’ context, which is far from reality with a
large toolset. In this work, we evaluate IR models
on diverse tool retrieval tasks and contribute over
200k training data to facilitate future research.

3 Benchmark construction

3.1 Data collection
To build a comprehensive benchmark for tool re-
trieval evaluation, we collect data from the follow-
ing well-known sources: (i) Tool-use LLM bench-
marks: A wide range of benchmarks published in
leading AI conferences such as ACL and NeurIPS;
(ii) Conference Resources: Datasets from resource
tracks in IR and NLP conferences (e.g., CIKM and
EMNLP); and (iii) Other high-quality dataset: We
identify related datasets released on open-source
platforms like HuggingFace and their technique re-
ports can be found in public submissions like arXiv.
We include them to enrich TOOLRET.

Given the rapid development of benchmarks
from these sources, we collect datasets released
between the August 2023 to December 2024 in this
version.3 We download these data from official
channels based on their usage requirements and
totally collect more than 30 datasets. Since the data
sources are diverse and their original formats vary
substantially, we perform necessary data cleaning
operations such as deduplication and text normal-
ization to ensure consistency and quality.

We observe that most of the collected datasets
are originally designed to evaluate the tool-use ca-
pability of LLMs, where the LLM is required to cor-
rectly call a sequence of target tools given an input
query. To facilitate retrieval evaluation in TOOL-
RET, we align the format of all collected tasks with
the well-established IR benchmark like BEIR and
MTEB. Specifically, each task consists of a query as

3Our team will maintain and update the benchmark.

input and target tools as label (a.k.a, ground truth),
where a tool is identified by a unique identifier and
paired with detailed documentation to describe its
functionality. Endpoints of the collected datasets
and concrete examples of our formatted dataset are
provided in Appendix B.

3.2 Data sampling
After collecting the datasets, we observe data size
imbalances across different datasets. Besides, some
datasets are extremely large with substantial redun-
dant content, making comprehensive model evalu-
ation both inefficient and unnecessary. Therefore,
we streamline them through effective data sampling
while maintaining its evaluation integrity.
Task sampling. For each collected dataset, we
encode the tasks using the embedding model, i.e.,
NV-embedd-v1, and apply the K-means clustering
algorithm on the text embeddings. We set the num-
ber of clusters to the size of the corresponding
toolset and randomly sample one task from each
cluster. If the toolset size exceeds the number of
queries, we retain all queries. For example, the orig-
inal ToolEyes (Ye et al., 2024a) dataset contains
500 queries and 95 tools; Thus, we set the cluster
number as min(500, 95) = 95 for clustering.
Toolset sampling. To eliminate redundancy, we
manually review the documentation of each raw
dataset to identify and merge identical toolsets. For
example, since the COLT (Qu et al., 2024a) toolset
overlaps with the Toolbench (Qin et al., 2023) ,
we merge their intersecting tools. Ultimately, we
merge all toolsets from the 34 datasets to form the
final corpus, resulting in a total of 43k tools. Each
tool is assigned a unique identifier.

After sampling, we obtain 7.6k retrieval tasks
and a corpus of 43k tools.

3.3 Instruction construction
Instructional information retrieval (Sun et al., 2024;
Weller et al., 2024) is an active research area, where
an additional instruction is paired with the input
query to guide IR models in retrieving target in-
formation. This instruction-following capability is
especially critical in tool retrieval, as IR models
are often used to augment LLM agents and receive
additional context from the agents beyond the input
query. To support this instructional IR scenario, we
construct the instructions as part of TOOLRET.

Considering manually writing instructions is
cost-intensive and challenging to scale, we intro-
duce a target-aware strategy using powerful LLMs

24499

Statistic

size of retrieval task 7,615
- # of web API retrieval task 4,916
- # of code function retrieval task 950
- # of customized app retrieval task 1,749

size of tool 43,215
- # of web API 36,978
- # of code function 3,794
- # of customized app 2,443

avg. query / instruction length (tokens) 46.87 / 43.43
avg. tool documentation length (token) 174.56

Table 1: Basic statistics of our benchmark TOOLRET.

Ours NQ MSMARCO HotpotQA MTEB

Average number of tar-
gets for an input query. 2.17 1.00 1.00 2.00 2.57

ROUGE-L overlap be-
tween query and targets. 0.06 0.31 0.34 0.11 0.27

Table 2: Comparison with conventional IR benchmarks.

to automate this process. Specifically, we first in-
vite three human experts with strong NLP and
IR backgrounds to manually craft 100 seed in-
structions. In line with the well-defined format
from Asai et al., our instruction outlines the rel-
evance criteria by bridging the query intent and
the functionality of the target tools. For example,
for the transcribing the audio to text task, the in-
struction is presented as “retrieve tools that process
audio inputs to produce accurate textual transcrip-
tions aligned with the user requirements”. Next,
we employ a powerful LLM, i.e., GPT-4o, as an
automatic instruction generator and guide it to gen-
erate instruction for each task through in-context
learning. To enhance the diversity, we randomly
sample in-context examples from the pool of both
the generated and handcrafted instructions. A de-
tailed pseudo algorithm is provided in Appendix B.

After the above three processes, we obtain
TOOLRET, which consists of 7.6k tasks, each
paired with an instruction, and a corpus of 43k
diverse tools, providing a comprehensive testbed
and supporting various evaluation settings.

4 Benchmark statistic

Table 1 provides the basic statics of TOOLRET. We
observe that there are three mainstream formats of
tool documentation: (i) Code, which is a function-
level snippet in programming language; (ii) Web
API, which elaborates the tool usage in structured
JSON format following the Web OpenAPI specifi-
cation; (iii) Customized application, which directly
describes the tool functionality in free-form nature
language. Based on these formats, we categorize

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Rouge-L score between input query and target tool documentation

0.0

2.5

5.0

7.5

10.0

12.5

de
ns

ity

Frequency distribution for Rouge-L score
Normal distribution
Kernel density estimation

Figure 2: ROUGE-L overlap between the query (input)
and the target tools (label).

Figure 3: Length distribution of our benchmark.

TOOLRET into three subsets accordingly and di-
vide the TOOLRET into Code Function, Web API,
and Customized App subsets. Below, we report a
more detailed analysis of TOOLRET.

4.1 Complexity

In tool learning, previous studies have highlighted
the necessity of combining multiple tools for
task solving (Shi et al., 2024). Thus, we ana-
lyze the complexity of our retrieval benchmark
from two aspects. First, we calculate the av-
erage number of target tools for each retrieval
task and compare it with well-known IR bench-
marks such as HotpotQA (Yang et al., 2018) and
MTEB (Muenni ghoff et al., 2022). As shown in
Table 2, TOOLRET requires models to recall more
targets, posing a challenge in comprehensive re-
trieval. Second, we compute the lexical overlap,
i.e., ROUGE-L, between the input query and cor-
responding retrieval targets (tool documentation in
TOOLRET and passage in IR benchmarks). We find
that this overlap is substantially lower in TOOLRET.
It indicates that, for neural IR models, TOOLRET

requires more heavily on the semantic representa-
tion rather than simple lexical matching. Therefore,
the retrieval task in TOOLRET is more challenging.

24500

Quality Review Question Yes or No %

Whether the instruction is relevant to the orig-
inal input query?

90.1% / 9.9%

Whether the instruction describes the feature
of target tools

92.3% / 8.7%

Whether the instruction comprehensively de-
scribe the feature of all target tools

89.2% / 10.8%

Whether the instruction contains hallucination
about the target tools or input query? 5.9% / 94.1%

Table 3: The quality review for our generated instruc-
tions, which is conducted by five human experts with
0.743 Kappa statistics.

4.2 Length statistics
Figure 3 illustrates the length distribution of the
query, instruction, and tool documentation in
TOOLRET.4 We find that most queries are concise,
typically containing fewer than 60 tokens (about 25
words), which aligns with real-world user behavior,
as users tend to input brief queries with minimal
effort. Additionally, most tool documentation is
under 200 tokens, which is similar to the chunk
length in standard IR document retrieval corpus,
such as Wikipedia dump (Karpukhin et al., 2020).

4.3 Quality
So far, we have demonstrated the complexity and
quantity of our benchmark while the quality of the
LLM-generated instructions remains uncertain. To
investigate this, we ask 5 human experts to label
the quality based on four aspects listed in Table 3.
Our evaluation reveals that 89.2% of the generated
instructions correctly cover the feature of the target
tools and are faithfully grounded on the original
queries. For the remaining 10.8% instructions that
mismatch the query or the target tools, we ask ex-
perts to revise them. This re-check mechanism
ensures the high quality of instructions in TOOL-
RET, making it a reliable evaluation benchmark. To
explain more intuitively, we list a number of seed
instructions, high-quality and low-quality instruc-
tions in Table 8. Annotation guidance is also pro-
vided in Appendix B to promote our transparency.

4.4 Instruction diversity
We further analyze how the generated instructions
differ from the seed instructions used to prompt
the generation. For each generated instruction, we
compute its highest ROUGE-L overlap with the
100 seed instructions. We plot the distribution of
these ROUGE-L scores in Figure 4. The results

4We use the tokenizer from gpt-3.5-turbo in this work.

0.1 0.3 0.5 0.7
Rouge-L score between generated instruction and seed instruction

0

2

4

6

de
ns

ity

Frequency distribution for Rouge-L
Normal distribution
Kernel density estimation

Figure 4: ROUGE-L overlap between the handcrafted
seed instructions and model-generated instructions.

indicate a decent number of new instructions are
generated, which have low overlap with the seeds.

5 Benchmark evaluation setup

5.1 Evaluation protocol

We use three widely used IR metrics to evaluate
the retrieval performance: (i) NDCG@K (N@K):
evaluates ranking quality based on the relevance of
retrieved tools; (ii) Recall@K (R@K): evaluates
the proportion of target tools successfully retrieved
within the top-K results; and (iii) Precision@K
(P@K): evaluates the accuracy of the retrieved tools
within the top-K results. We also use Complete-
ness@K (C@K) from COLT (Qu et al., 2024b),
which specifically evaluates the retrieval complete-
ness in tool retrieval tasks. The C@K is 1 if all
target tools are included in the top-k retrieved tools;
otherwise, it is 0.

We mainly evaluate IR models under two set-
tings: (i) w/o inst.: The model take the query alone
as input; and (ii) w/ inst.: The model takes the con-
catenation of the query and instruction as input to
retrieve. This allows us to analyze the impact of
instructions on retrieval performance.

5.2 Model to Evaluate

We comprehensively evaluate the following main-
stream IR models on our benchmark.
Sparse retrieval. These methods measure the simi-
larity between query and tool documentation based
on lexical overlap. We evaluate BM25s (Lù, 2024).
Single-task dense retrieval. These methods
use dual-encoder models trained on conven-
tional IR datasets. We evaluate gtr (Ni et al.,
2021a), contriever (Izacard et al., 2021a), and col-
bertv2.0 (Santhanam et al., 2021a), all trained on
MS-MARCO (Nguyen et al., 2016). We also eval-
uate COLT (Qu et al., 2024a), a recently proposed
model trained on ad-hoc tool retrieval datasets.
Multi-task embedding Models. These methods

24501

Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Average

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10

BM25s 18.98 4.64 24.62 15.20 21.20 3.37 28.23 26.96 26.76 5.86 32.39 24.40 22.32 22.19
COLT 15.43 2.63 21.11 20.04 20.69 5.12 28.07 18.53 21.63 4.72 29.19 22.40 19.25 20.32
Colbert 22.40 5.37 27.41 15.45 16.43 2.65 22.54 21.65 19.54 3.65 23.72 18.97 19.46 18.69
contriever-msmarco 21.15 5.83 27.19 14.70 14.56 2.40 19.28 17.71 17.72 3.31 22.77 18.31 17.81 16.91
gtr-t5-base 17.36 4.25 24.17 15.95 16.47 2.71 22.27 21.16 23.47 5.09 28.93 22.49 19.10 19.87
gtr-t5-large 22.45 5.42 29.75 18.72 18.25 2.89 24.12 23.08 26.30 5.76 31.86 24.45 22.34 22.09

all-MiniLM-L6-v2 11.66 3.07 16.36 10.15 14.44 2.50 19.50 18.11 22.80 5.21 29.10 20.25 16.30 16.17
e5-small-v2 19.89 5.08 26.46 16.26 15.48 2.39 19.26 18.05 24.60 5.56 29.67 20.76 19.99 18.36
e5-base-v2 19.75 5.04 25.89 15.37 14.43 2.47 19.19 18.00 22.68 5.11 29.13 22.25 18.95 18.54
e5-large-v2 18.99 4.90 25.97 16.27 17.09 2.68 21.87 20.70 26.42 6.07 32.19 23.17 20.83 20.05
gte-base-en-v1.5 23.55 6.28 32.03 19.15 17.43 2.87 23.71 22.48 21.62 4.76 29.03 23.17 20.86 21.60
gte-large-en-v1.5 22.41 5.91 30.14 18.44 16.66 2.87 23.64 22.39 20.62 5.19 26.75 17.67 19.90 19.50
bge-base-en-v1.5 22.50 6.02 29.96 17.30 17.78 2.92 23.66 22.27 25.99 5.71 32.17 24.26 22.09 21.27
bge-large-en-v1.5 24.45 6.66 32.93 19.30 18.90 3.12 25.76 24.47 25.72 5.54 32.18 24.79 23.02 22.85
gte-Qwen2-1.5B-inst.♠ 29.17 7.93 38.05 21.49 21.66 3.41 28.89 27.67 36.04 7.89 44.51 35.55 28.96 26.04
e5-mistral-7b♠ 26.76 7.25 34.39 21.05 20.01 3.44 28.31 27.10 31.41 6.68 38.47 29.24 26.06 25.80
GritLM-7B♠ 25.74 6.85 34.27 21.28 22.02 3.72 30.41 28.87 42.31 8.71 49.34 38.17 30.02 29.44
NV-Embed-v1♠ 31.30 8.35 39.15 23.05 29.64 4.72 40.45 38.88 40.54 8.25 45.93 34.44 33.83 32.12

mxbai-rerank-large-v1 22.99 5.61 30.32 18.38 24.76 3.88 34.86 33.22 26.76 5.91 34.53 26.03 24.84 25.88
monot5-base-msmarco 28.92 7.70 36.44 19.97 21.61 3.62 30.06 27.88 36.22 7.54 45.11 36.41 28.92 28.09
bge-reranker-v2-m3 32.92 8.73 41.88 25.63 24.28 3.80 32.71 30.94 30.51 7.00 36.03 26.74 29.24 27.77
jina-reranker-v2-base 35.38 9.25 44.65 26.98 26.47 4.15 35.20 33.94 38.94 8.14 46.06 35.42 33.60 32.11
bge-reranker-v2-gemma 36.72 9.69 45.94 27.85 29.89 4.42 38.23 36.82 39.93 9.06 49.43 37.75 35.51 34.14

Mixtral-8x22B 28.21 8.31 34.13 25.42 27.41 3.14 34.13 36.98 30.76 5.40 34.12 28.65 28.80 30.35
gpt-3.5-turbo-0125 30.29 8.01 36.00 24.22 28.69 4.27 36.25 35.64 29.80 6.39 35.01 28.70 29.60 29.52
gpt-3.5-turbo-1106 31.01 7.86 35.82 23.76 28.95 4.44 38.16 38.45 32.30 6.89 38.31 30.84 30.75 31.01

Table 4: Experiment results in w/o inst. setting (§ 5), where the model takes the query as input to retrieve. We mark
the baselines pre-trained on instructional datasets with ♠. We highlight the best performance in each type of model.

utilize transformer encoders trained on various IR
datasets. We evaluate all-MiniLM-L6-v2, gte (Li
et al., 2023c), bge (Xiao et al., 2023a) and e5 (Wang
et al., 2022), covering a wide range of sizes.
Cross-encoder re-rankers. These models re-
rank the initially retrieved documents based
on the query-passage relevance. We evaluate:
MonoT5 (Nogueira et al., 2020), mxbai-rerank-
large, jina-reranker-v2-base, and bge-reranker.
LLM agents. These methods leverage general-
purpose LLM agents for re-ranking tasks in a zero-
shot setting, simulating the tool selection process
of tool-use agents. We evaluate the widely used
LLM re-ranking framework, i.e., RankGPT (Sun
et al., 2023), with various LLMs as backbone.

Initial tools for LLM agent and Re-ranking base-
lines are retrieved by Nv-embedd-v1 model. De-
tails of these baselines are provided in Appendix D.

6 Experiment result

6.1 Tool retrieval performance

Existing retrievers struggle. As shown in Ta-
ble 9, the tool retrieval tasks in TOOLRET raise
significant challenges for existing retriever mod-
els. Specifically, all retrievers in our experiments
achieve less than 35% in Completeness@10 and
under 52% in recall@10. Notably, retrieval meth-
ods that demonstrate strong performance in con-

16 18 20 22 24 26 28 30 32
Evaluation score on our benchmark

40

45

50

55

60

Ev
al

ua
tio

n
sc

or
e

on
 M

TE
B

 b
en

ch
m

ar
k

bm25

e5-small-v2
contriever-msmarco

gtr-t5-base

gtr-t5-large

all-MiniLM-L6-v2

e5-base-v2 e5-large-v2

gte-base-en-v1.5

bge-base-en-v1.5
bge-large-en-v1.5

e5-mistral-7b-inst.gte-large-en-v1.5

gte-base-en-v1.5

NV-Embed-v1

Pearson coefficient = 0.790
Spearman coefficient = 0.441

bm25
e5-small-v2
contriever-msmarco
gtr-t5-base
gtr-t5-large
all-MiniLM-L6-v2
e5-base-v2
e5-large-v2
gte-base-en-v1.5
bge-base-en-v1.5
bge-large-en-v1.5
e5-mistral-7b-inst.
gte-large-en-v1.5
gte-base-en-v1.5
NV-Embed-v1

Figure 5: Correlation between the score on our bench-
mark and MTEB (retrieval subset).

ventional information retrieval (IR) tasks, such as
ColBERT, even underperform compared to sim-
ple lexical-based matching approaches like BM25.
Similarly, other embedding-based models, even the
NV-Embed-v1 with 7B parameter, achieve less than
45% in completeness@10, exhibiting limitations.

We identify two potential reasons for the above
performance degradation: (i) Tool retrieval tasks
require intensive reasoning over the input query
to align user intentions with candidate tools, as
the lexical overlap between the query and targets
is low. (ii) There exists a domain shift between
the conventional training corpora used for retrieval
models and the specific tool retrieval tasks, which
current models are not explicitly optimized for.
Re-ranking technique has limited improvement.
As shown in Table 9, commonly used re-ranking

24502

Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Average

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10

BM25s 26.33 6.10 34.22 22.79 41.90 6.20 56.49 55.39 41.16 8.39 48.60 38.90 36.46 39.03
COLT 28.91 4.61 40.64 38.83 20.06 4.71 27.78 18.84 31.29 6.05 42.19 34.01 26.75 30.56
Colbert 16.67 3.12 21.14 14.94 30.35 4.37 41.38 40.28 24.35 4.56 30.97 24.87 23.79 26.70
contriever-msmarco 23.48 5.29 30.21 19.69 31.61 4.84 43.01 41.74 21.93 3.85 27.28 23.04 25.67 28.16
gtr-t5-base 20.38 4.49 27.53 19.24 33.59 4.90 43.18 41.88 41.84 7.66 48.35 39.28 31.94 33.46
gtr-t5-large 24.37 5.27 31.64 21.26 36.76 5.33 47.42 45.92 42.04 8.48 50.84 40.00 34.39 35.73

all-MiniLM-L6-v2 12.77 3.26 19.38 13.33 31.59 5.06 43.86 42.25 32.24 7.14 43.55 32.34 25.53 29.31
e5-small-v2 26.42 6.20 34.44 21.39 32.36 4.84 42.38 41.11 34.62 6.90 42.29 32.58 31.14 31.69
e5-base-v2 24.71 5.78 33.45 21.94 31.40 5.01 42.83 41.38 38.06 7.54 46.84 36.43 31.39 33.25
e5-large-v2 23.62 5.52 32.19 21.80 34.27 5.05 44.42 43.19 43.32 8.51 52.30 41.42 33.73 35.47
gte-base-en-v1.5 30.75 7.00 39.44 25.88 41.68 6.20 53.96 51.64 37.95 6.96 46.57 38.10 36.79 38.54
gte-large-en-v1.5 28.06 6.55 36.32 22.57 35.77 5.75 49.56 47.71 37.27 7.88 47.98 35.84 33.70 35.37
bge-base-en-v1.5 25.95 6.16 35.12 23.40 35.15 5.22 45.74 44.32 43.20 8.82 53.54 42.29 34.77 36.67
bge-large-en-v1.5 30.03 7.01 39.28 25.63 41.53 6.00 52.76 51.18 43.90 8.31 51.79 42.24 38.49 39.68
e5-mistral-7b♠ 31.07 7.65 41.30 27.04 44.97 6.66 58.95 56.79 40.88 7.91 49.35 38.35 38.97 40.73
NV-Embed-v1♠ 31.51 7.74 40.52 26.74 47.92 7.10 62.07 59.60 48.70 10.07 57.69 43.88 42.71 43.41
gte-Qwen2-1.5B-inst.♠ 37.53 9.31 48.31 30.95 47.38 7.29 61.12 59.55 52.98 10.63 59.47 45.68 45.96 45.39
GritLM-7B♠ 36.58 9.34 46.01 27.65 41.26 6.17 53.81 52.07 45.55 9.74 54.01 41.40 41.13 40.37

mxbai-rerank-large-v1 17.53 4.05 25.82 17.95 33.86 5.05 47.84 46.47 26.83 6.71 37.61 28.60 26.08 31.01
monoT5-base-msmarco 23.33 5.88 30.70 18.13 31.39 5.27 45.18 42.51 37.77 6.76 46.63 39.70 30.83 33.45
bge-reranker-v2-m3 34.83 8.54 45.23 31.73 50.86 7.64 67.26 64.78 42.35 9.52 53.75 39.90 42.68 45.47
jina-reranker-v2-base 42.35 10.11 51.21 34.23 53.21 7.66 66.03 63.94 45.94 10.36 57.96 45.41 47.17 47.86
bge-reranker-v2-gemma 34.73 8.09 45.08 32.29 55.85 8.22 70.53 68.76 51.97 11.04 61.20 45.65 47.52 48.90

Mixtral-8x22B 35.31 7.56 38.63 34.60 33.27 5.77 39.60 38.53 34.40 6.44 39.72 38.20 34.33 37.11
gpt-3.5-turbo-0125 37.22 8.97 40.82 35.22 35.42 6.22 41.16 42.64 37.29 8.24 41.34 39.70 29.60 29.52
gpt-3.5-turbo-1106 38.31 9.02 41.29 35.76 38.69 7.27 42.57 42.81 39.30 7.89 43.31 37.31 38.77 38.63

Table 5: Experiment results in w/ inst. setting (§ 5), where the model takes the query and instruction as input to
retrieval. ♠ indicates the model is pre-trained on instructional datasets. We highlight the best performance.

methods provide limited and even negative im-
provements for the tool retrieval task. When us-
ing MonoT5 to re-rank the tools retrieved by NV-
Embed-v1, the average NDCG@10 decreases from
33.83 to 28.92. A similar trend is observed with the
mxbai-rerank. Other advanced models such as bge-
ranker-v2-gemma only have 4.7% improvement in
the Completeness@10 metric. These results further
indicate the challenging nature of tool retrieval.

6.2 Substantial gains from instruction

Besides the evaluation results under w/o inst setting
in Table 4, we also present the results under w/ inst
setting in Table 5. We observe that all the IR model
achieves better performance when an additional
instruction is paired with the query as input. No-
tably, the instruction-tuned embedding model like
NV-embed-v1 or e5-mistral has the most obvious
improvement, which potentially benefits from its
powerful instruction-following capability. These
results illustrate the advantages of the instruction
and instruction tuning in tool retrieval tasks.

6.3 Compare with conventional IR tasks

To further explore the complexity of tool retrieval
tasks, we compare the models’ performance on
TOOLRET and conventional IR task benchmark,
i.e., MTEB, showing their relationship in Figure 5.
First, we can see that the two benchmarks share a

similar trend (Pearson’s coefficient β = 0.790), but
the score in TOOLRET is lower. This indicates that
the task in TOOLRET has a correlation with conven-
tional IR tasks but is more challenging. Second, we
also observe that conventional IR models trained
with relevance-oriented criteria such as contriever
perform poorly on TOOLRET, which indicates that
TOOLRET requires more target-aware reasoning
ability. This is also illustrated in § 4.1.

7 Retrieval affect downstream task

In this section, we qualitatively analyze the impact
of retrieval performance on downstream tool-use
agents. We conduct end-to-end evaluations on Tool-
Bench (Qin et al., 2023) dataset using the official
Pass Rate metric that evaluates whether the model
successfully calls target tools to complete a task.

7.1 Poor retrieval leads to poor tool-use agents
For each task in ToolBench, we replace the offi-
cially pre-annotated toolset (oracle) with tools re-
trieved by IR models. As shown in Figure 6, the
tool-use LLMs, when equipped with the retrieved
tools, exhibit substantially lower performance com-
pared to their oracle counterparts. For example,
in ToolBench-G1, GPT-3.5 achieves a pass rate of
50.60 using tools retrieved by bge-large, decreas-
ing by 11.40. This indicates that tool retrieval is
a crucial step to build better tool-use LLMs and

24503

45

50

55

60

65

32 42 52 62 72
48

53

58

63

68

6 10 14 18 22
53

57

61

65

69

27 38 49 60 71

NDCG@10 NDCG@10 NDCG@10

bge-large-en-v1.5 bge-base-en-v1.5 e5-large-v2 e5-base-v2 training improvement
Pa

ss
 R

at
e

of
 G

PT
-3

.5

Pa
ss

 R
at

e
of

 G
PT

-3
.5

Pa
ss

 R
at

e
of

 G
PT

-3
.5

35

40

45

50

55

32 42 52 62 72
40

43

46

49

52

6 10 14 18 22
30

35

40

45

50

27 38 49 60 71

ToolBench-G1 ToolBench-G2 ToolBench-G3

Pa
ss

 R
at

e
of

 T
oo

lL
la

m
a

Pa
ss

 R
at

e
of

 T
oo

lL
la

m
a

Pa
ss

 R
at

e
of

 T
oo

lL
la

m
a

ToolBench-G1 ToolBench-G2 ToolBench-G3

oracle (62.00) oracle (64.20) oracle (67.50)

oracle (53.60) oracle (50.80) oracle (49.10)

oracle performance

NDCG@10 NDCG@10 NDCG@10

Figure 6: The horizontal axis indicates the retrieval performance of IR models, both before and after training. The
vertical axis corresponds to the end-to-end pass rate of tool-use LLMs using the tools retrieved by these IR models.

improve their task-solving performance.

7.2 Towards better retrieval
The analysis in § 6.2 highlights the advantage of
instruction-tuning in improving tool retrieval. How-
ever, to the best of our knowledge, there is no large-
scale instructional IR dataset for tool retrieval tasks.
We propose the TOOLRET-train to fill this gap.
Large-scale training data We extend the data
collection process from TOOLRET to include the
training sets of three mainstream tool-use datasets:
ToolACE (Liu et al., 2024a), ToolBench (Qin et al.,
2023) and APIGen (Liu et al., 2024b). Ultimately,
we collect over 200k training instances, each com-
prising a query q and a set of target tools T . We
also pair each query q with an instruction I using
our target-aware strategy (See Appendix D).
Learning objective To train a IR model (denoted
as θ), we first use it to retrieved top-K negative
tools, denoted as T̂ = {t̂j | j ∈ [K] , t̂j /∈ T }.
The model θ is then optimized by maximizing the
log-likelihood of the target tools. The loss function
L is formulated as:

− 1

|T |
∑

ti∈T
log

esim(I⊕q,ti)

esim(I⊕q,ti) +
∑
t̂j∈T̂

esim(I⊕q,t̂j)
.

The I ⊕ q indicates concatenation of instruction
and query with a special token. During the training,
we set the K to 10 and the learning rate to 5e-5.
Improvement from retrieval. As shown in Fig-
ure 6, all IR models trained on TOOLRET-train
achieve substantial improvement in NDCG@10
metric. We further evaluate the task pass rate of
two tool-use LLMs: GPT-3.5 and ToolLlama (Qin

et al., 2023). When equipped with the improved
IR models, both LLMs exhibit substantial gains in
pass rate, confirming the critical role of retrieval
in downstream tasks. As part of future work, we
suggest adapting the IR models to better augment
the tool-use LLMs, which offers a efficient plug-
and-play solution compared with training LLMs.

We further conduct an ablation study by remov-
ing the instruction I from the loss function L. The
results show that this variant shows improvements
compared with the non-tuned counterparts, but un-
derperforms compared with their instruction-tuned
counterparts (See Appendix D). These validate the
effectiveness of our instructional training data in
enhancing tool retrieval performance.

8 Discussion

In this section, we discuss the following three open
questions related to the design and reliably of our
benchmark construction, as well as potential exten-
sion.

Fine-grained functional differences of tools In
this work, we construct the overall tool corpus
by merging tools from various existing tool-use
benchmarks. This heterogeneous construction strat-
egy inevitably leads to overlapping functionality
among different tools, which may raise concerns
about unreliable evaluations, such as the one-to-
many problem5. However, the following reasons

5The one-to-many problem arises because our dataset com-
bines multiple existing datasets. For example, for a query from
dataset A, the ground truth may not be limited to the single
annotation provided in A. Similar tools in dataset B might also
provide valid solutions to the same query. However, in the
evaluation process, only the ground truth from dataset A is

24504

support the reliability of our approach: (i) In real-
world scenarios, many different but functionally
similar tools exist, but typically, only the most suit-
able one is chosen. In this work, we focus on
such real-world scenarios, where the ground truth
from the original dataset is considered the most
appropriate. We argue that models should have
the fine-grained discrimination ability to identify
the most appropriate tool; (ii) Even if tools appear
to have overlapping high-level functionality (e.g.,
Bing Search vs. Google Search), they often differ
in important dimensions such as input parameters
(e.g., support for language-specific filtering) and
specific application scope (e.g., medical search vs.
general news search). For example, for a query
like search news articles in Chinese, a tool like
bing_search_with_lang_param is a more precise
match than a generic search API without language
constraints.

In line with prior work (Gao et al., 2024; Qin
et al., 2023; Qu et al., 2025a), our benchmark en-
courages models to retrieve semantically and func-
tionally appropriate tools, not merely those with
similar surface forms.

Reason for our format-based categorization
Unlike existing tool retrieval benchmarks (Qu et al.,
2024a), we introduce a novel task categorization
by dividing the overall TOOLRET dataset into
three subsets: Web APIs, Code Functions, and
Customized Applications. This division is moti-
vated by two reasons: (i) It naturally reflects the
structural features of tools collected from over 30
diverse datasets. This categorization aligns with
conventions established in prior research on tool-
augmented LLMs, where these three formats are
commonly used as the primary categories for ex-
ecutable tools. (ii) This format-based taxonomy
provides a clear, interpretable, and effective frame-
work for analyzing model behavior across different
tool representations.

Beyond format-based category In addition to
the format-based categorization presented in this
work, we believe that other dimensions of cate-
gorization can also offer valuable insights into re-
trieval behavior. Therefore, we propose extending
the category structure in future work to include
three additional dimensions for more comprehen-
sive and customized evaluations: (i) Query Length
(Input Complexity): Tasks are grouped based on

used as the label, potentially leading to unreliable evaluations.

the query token length, with categories such as
0–25, 25–50, 50–75, and 75+ tokens. (ii) Number
of Target Tools (Multi-Label Complexity): Queries
are grouped by the number of relevant ground-truth
tools, categorized as 1, 2–3, or ≥ 4 tools. (iii) Lex-
ical Overlap (ROUGE-L) Between Query and Tool
Documentation: Tasks are grouped by the de-
gree of lexical overlap, categorized as low (<0.05),
medium (0.05–0.2), and high (≥ 0.2). A lower
overlap indicates a higher need for deep semantic
matching between the query and the correct tools.

9 Conclusion

In this work, we introduce TOOLRET, the first di-
verse tool retrieval benchmark comprising 7.6k
queries, each paired with an instruction, and a
corpus of 43k tools. TOOLRET is a heteroge-
neous benchmark, constructed by aggregating ex-
isting tool-use datasets and aligning them into a
unified format, similar to conventional IR bench-
marks such as MTEB. We evaluate state-of-the-art
IR models on TOOLRET and uncover a surpris-
ing finding: even models with strong performance
on conventional IR benchmarks struggle in tool
retrieval. This low retrieval quality significantly
degrades the end-to-end task pass rate of tool-use
LLMs. Inspired by this, we further propose TOOL-
RET-train, a large-scale training set containing over
200k retrieval tasks. Results show that IR models
trained on TOOLRET-train exhibit substantial im-
provement and also enhance the pass rate of tool-
use LLMs by 10%-20%. In the future, we plan to
extend the TOOLRET into multimodal scenarios.

Acknowledgements

This work was supported by the Natural Science
Foundation of China (Grant No. 62472261), the
Shandong Province Key Research and Develop-
ment Program (2024CXGC010108), and the Shan-
dong Province Technology Innovation Guidance
Program (YDZX2024088).

24505

Limitation

The limitations of this work include the lack of
exploration in multilingual retrieval settings. Cur-
rently, our benchmark is confined to the English
language and focuses exclusively on text retrieval.
To address this limitation, we plan to expand our
research to encompass multilingual information
retrieval (IR) scenarios in the future. Addition-
ally, another limitation lies in the insufficient in-
vestigation of prompt sensitivity. Given that large
language models (LLMs) are highly sensitive to
prompt wording, we aim to annotate a broader
range of instructions in the future to examine how
variations in prompt phrasing influence LLM per-
formance.

Building upon TOOLRET, we suggest the fol-
lowing directions for future work.

(i) Investigating sensitivity to instructions: Con-
duct a comprehensive study on how LLM per-
formance varies with different prompt formu-
lations and instruction styles.

(ii) In this work, we focus on the retrieval-then-
calling method, where the tool retrieval step
is triggered only once initially, and the top-k
retrieved tools are then passed to the tool-use
LLMs. In the future, we aim to benchmark
IR models in interleaved retrieval-and-calling
scenarios. Specifically, the LLM can generate
long-form reasoning for task planning, and the
IR model can receive this reasoning output,
exploring step-by-step integration between the
LLM and IR models.

(iii) Enhancing IR models for improved retrieval
accuracy: Further optimize IR models to
achieve higher retrieval precision, leverag-
ing these improvements to augment tool-use
LLMs and, consequently, enhance end-to-end
task performance.

Ethics Statement

We acknowledge the importance of the ACM Code
of Ethics and fully agree with it. We ensure that this
work is compatible with the provided code in terms
of publicly accessible datasets and models. Risks
and harms associated with large language models
include the generation of harmful, offensive, or
biased content. The new benchmark is composed of
various previous datasets and is therefore licensed
under their respective data licenses.

In this research, we prioritize reproducibility
by not only utilizing state-of-the-art commercial
LLMs but also experimenting extensively with
open-source LLMs. Throughout the study, we
have strictly followed ethical standards to main-
tain the integrity and validity of our work. All
tools and resources used in this research were ob-
tained from publicly available platforms, ensuring
transparency and reproducibility in our experimen-
tal procedures. Furthermore, we have made every
effort to ensure that our research does not harm
individuals or groups, nor does it involve any form
of deception or potential misuse of information.

24506

References
Anirudh Ajith, Mengzhou Xia, Alexis Chevalier, Tanya

Goyal, Danqi Chen, and Tianyu Gao. 2024. Lit-
search: A retrieval benchmark for scientific literature
search. arXiv preprint arXiv:2407.18940.

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen-tau Yih. 2022. Task-aware retrieval
with instructions. arXiv preprint arXiv:2211.09260.

Emily M Bender and Batya Friedman. 2018. Data
statements for natural language processing: Toward
mitigating system bias and enabling better science.
Transactions of the Association for Computational
Linguistics, 6:587–604.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2023. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024a. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Si-An Chen, Lesly Miculicich, Julian Martin Eisen-
schlos, Zifeng Wang, Zilong Wang, Yanfei Chen,
Yasuhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, and
Tomas Pfister. 2024b. Tablerag: Million-token table
understanding with language models. arXiv preprint
arXiv:2410.04739.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, et al. 2023.
T-eval: Evaluating the tool utilization capability step
by step. arXiv preprint arXiv:2312.14033.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang,
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and
Zhaochun Ren. 2024. Confucius: Iterative tool learn-
ing from introspection feedback by easy-to-difficult
curriculum. In Proceedings of the AAAI Conference
on Artificial Intelligence: AAAI.

Timnit Gebru, Jamie Morgenstern, Briana Vec-
chione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé Iii, and Kate Crawford. 2021. Datasheets
for datasets. Communications of the ACM, 64(12):86–
92.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. 2024. Stabletoolbench: Towards stable
large-scale benchmarking on tool learning of large
language models. arXiv preprint arXiv:2403.07714.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji-
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,
Yasheng Wang, Lifeng Shang, et al. 2024. Planning,

creation, usage: Benchmarking llms for comprehen-
sive tool utilization in real-world complex scenarios.
arXiv preprint arXiv:2401.17167.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, et al. 2023. Metatool bench-
mark for large language models: Deciding whether
to use tools and which to use. arXiv.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021a. Unsupervised dense in-
formation retrieval with contrastive learning. Trans.
Mach. Learn. Res., 2022.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021b. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv
preprint arXiv:2112.09118.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020. Association for Computa-
tional Linguistics.

Tom Kwiat kowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. 2024. Nv-embed: Improved techniques for
training llms as generalist embedding models. arXiv
preprint arXiv:2405.17428.

Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia
Shao. 2023a. Making large language models a
better foundation for dense retrieval. Preprint,
arXiv:2312.15503.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, and
Yongbin Li. 2023b. Api-bank: A comprehensive
benchmark for tool-augmented llms. arXiv preprint
arXiv:2304.08244.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023c. Towards
general text embeddings with multi-stage contrastive
learning. ArXiv, abs/2308.03281.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, et al. 2024a. Toolace:

24507

https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2312.15503

Winning the points of llm function calling. arXiv
preprint arXiv:2409.00920.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, et al. 2024b. Apigen:
Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint
arXiv:2406.18518.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-
positional reasoning with large language models. In
Neural Information Processing Systems: NeurIPS.

Xing Han Lù. 2024. Bm25s: Orders of magnitude
faster lexical search via eager sparse scoring. ArXiv,
abs/2407.03618.

Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta,
and Ranjay Krishna. 2024. m & m’s: A benchmark
to evaluate tool-use for m ulti-step m ulti-modal tasks.
In European Conference on Computer Vision, pages
18–34. Springer.

Niklas Muenni ghoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. 2024. Generative representational in-
struction tuning. Preprint, arXiv:2402.09906.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In Proceedings of
the Workshop on Cognitive Computation: Integrat-
ing neural and symbolic approaches 2016 co-located
with the 30th Annual Conference on Neural Infor-
mation Processing Systems (NIPS 2016), Barcelona,
Spain, December 9, 2016, volume 1773. CEUR-
WS.org.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernández Abrego, Ji Ma, Vincent Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei
Yang. 2021a. Large dual encoders are generalizable
retrievers. ArXiv, abs/2112.07899.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernández Ábrego, Ji Ma, Vincent Y Zhao,
Yi Luan, Keith B Hall, Ming-Wei Chang, et al.
2021b. Large dual encoders are generalizable re-
trievers. arXiv preprint arXiv:2112.07899.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2020.
Document ranking with a pretrained sequence-to-
sequence model. arXiv preprint arXiv:2003.06713.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Cheng Qian, Chenyan Xiong, Zhenghao Liu, and
Zhiyuan Liu. 2023. Toolink: Linking toolkit creation
and using through chain-of-solving on open-source
model. arXiv preprint arXiv:2310.05155.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou,
Yufei Huang, Chaojun Xiao, et al. 2024. Tool learn-
ing with foundation models. ACM Computing Sur-
veys, 57(4):1–40.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Xu Jun, and Ji-Rong
Wen. 2025a. From exploration to mastery: Enabling
llms to master tools via self-driven interactions. In
The Thirteenth International Conference on Learning
Representations.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024a. Colt: Towards completeness-oriented
tool retrieval for large language models. In CIKM.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024b. Towards completeness-oriented tool re-
trieval for large language models. In Proceedings of
the 33rd ACM International Conference on Informa-
tion and Knowledge Management, pages 1930–1940.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2025b. Tool learning with large language mod-
els: A survey. Frontiers of Computer Science.

Yangjun Ruan, Honghua Dong, Andrew Wang, Sil-
viu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois,
Chris J Maddison, and Tatsunori Hashimoto. 2023.
Identifying the risks of lm agents with an lm-
emulated sandbox. arXiv preprint arXiv:2309.15817.

Keshav Santhanam, O. Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei A. Zaharia. 2021a.
Colbertv2: Effective and efficient retrieval via
lightweight late interaction. In North American
Chapter of the Association for Computational Lin-
guistics.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2021b.
Colbertv2: Effective and efficient retrieval via
lightweight late interaction. arXiv preprint
arXiv:2112.01488.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2023. Taskbench: Benchmark-
ing large language models for task automation. arXiv
preprint arXiv:2311.18760.

24508

https://arxiv.org/abs/2402.09906
https://arxiv.org/abs/2402.09906
https://api.semanticscholar.org/CorpusID:244799249
https://api.semanticscholar.org/CorpusID:244799249

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,
Lingyong Yan, Haibo Shi, Dawei Yin, Zhumin Chen,
Suzan Verberne, and Zhaochun Ren. 2024. Chain of
tools: Large language model is an automatic multi-
tool learner. arXiv preprint arXiv:2405.16533.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con-
necting large language models with real-world restful
apis. arXiv preprint arXiv:2306.06624.

Weiwei Sun, Zhengliang Shi, Jiulong Wu, Lingyong
Yan, Xinyu Ma, Yiding Liu, Min Cao, Dawei Yin,
and Zhaochun Ren. 2024. Mair: A massive bench-
mark for evaluating instructed retrieval. In EMNLP.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is chatgpt good at search?
investigating large language models as re-ranking
agents. arXiv preprint arXiv:2304.09542.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301.

Hongru Wang, Rui Wang, Boyang Xue, Heming Xia,
Jingtao Cao, Zeming Liu, Jeff Z Pan, and Kam-
Fai Wong. 2024a. Appbench: Planning of multiple
apis from various apps for complex user instruction.
arXiv preprint arXiv:2410.19743.

Jize Wang, Zerun Ma, Yining Li, Songyang Zhang,
Cailian Chen, Kai Chen, and Xinyi Le. 2024b. Gta:
a benchmark for general tool agents. arXiv preprint
arXiv:2407.08713.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2023. Improving
text embeddings with large language models. arXiv
preprint arXiv:2401.00368.

Renxi Wang, Xudong Han, Lei Ji, Shu Wang, Timo-
thy Baldwin, and Haonan Li. 2024c. Toolgen: Uni-
fied tool retrieval and calling via generation. arXiv
preprint arXiv:2410.03439.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024d. Exe-
cutable code actions elicit better llm agents. arXiv
preprint arXiv:2402.01030.

Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried,
and Graham Neubig. 2024e. What are tools anyway?
a survey from the language model perspective. arXiv
preprint arXiv:2403.15452.

Orion Weller, Benjamin Chang, Sean MacAvaney, Kyle
Lo, Arman Cohan, Benjamin Van Durme, Dawn
Lawrie, and Luca Soldaini. 2024. Followir: Evaluat-
ing and teaching information retrieval models to fol-
low instructions. arXiv preprint arXiv:2403.15246.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023a. C-pack: Packaged resources
to advance general chinese embedding. ArXiv,
abs/2309.07597.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023b. C-pack: Packaged resources
to advance general chinese embedding. Preprint,
arXiv:2309.07597.

Qiancheng Xu, Yongqi Li, Heming Xia, and Wenjie Li.
2024. Enhancing tool retrieval with iterative feed-
back from large language models. arXiv preprint
arXiv:2406.17465.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the tool
manipulation capability of open-source large lan-
guage models. arXiv preprint arXiv:2305.16504.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2024. Gpt4tools: Teaching
large language model to use tools via self-instruction.
Advances in Neural Information Processing Systems,
36.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang,
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou,
Qi Zhang, Tao Gui, et al. 2024a. Tooleyes: Fine-
grained evaluation for tool learning capabilities of
large language models in real-world scenarios. arXiv
preprint arXiv:2401.00741.

Junjie Ye, Yilong Wu, Songyang Gao, Caishuang
Huang, Sixian Li, Guanyu Li, Xiaoran Fan, Qi Zhang,
Tao Gui, and Xuanjing Huang. 2024b. Rotbench: a
multi-level benchmark for evaluating the robustness
of large language models in tool learning. arXiv
preprint arXiv:2401.08326.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung,
Hao Peng, and Heng Ji. 2023. Craft: Customiz-
ing llms by creating and retrieving from specialized
toolsets. arXiv preprint arXiv:2309.17428.

Shuo Zhang and Krisztian Balog. 2020. Web table ex-
traction, retrieval, and augmentation: A survey. ACM
Transactions on Intelligent Systems and Technology
(TIST), 11(2):1–35.

Yinger Zhang, Hui Cai, Xeirui Song, Yicheng Chen,
Rui Sun, and Jing Zheng. 2023. Reverse chain: A
generic-rule for llms to master multi-api planning.
arXiv preprint arXiv:2310.04474.

24509

https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597

Yuxiang Zhang, Jing Chen, Junjie Wang, Yaxin Liu,
Cheng Yang, Chufan Shi, Xinyu Zhu, Zihao Lin,
Hanwen Wan, Yujiu Yang, Tetsuya Sakai, Tian Feng,
and Hayato Yamana. 2024. Toolbehonest: A multi-
level hallucination diagnostic benchmark for tool-
augmented large language models. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code genera-
tion with diverse function calls and complex instruc-
tions. arXiv preprint arXiv:2406.15877.

24510

A Data Card

Following previous work (Bender and Friedman, 2018; Gebru et al., 2021; Zhuo et al., 2024), we provide
the datacard for TOOLRET, where we tend to summarize and centralize all information that might be
relevant for the benchmark analysis.

(i) The purpose of this benchmark: This benchmark is proposed to comprehensively evaluate the
information retrieval (IR) models on tool retrieval tasks. On top of TOOLRET, we find that existing
IR models, despite achieving strong performance in conventional IR benchmarks such as MTEB and
BEIR, still suffer from substantial challenges in tool retrieval tasks. The poor retrieval quality further
degrades the end-to-end task pass rate of tool-use LLMs. Thus, we believe that the TOOLRET reveals
the importance of tool retrieval in building better tool-use LLMs, and can be used as a comprehensive
and fair benchmark in facilitating the development of tool retrieval models.

(ii) How will the dataset be distributed (e.g., Tarball on Website or Github)? The proposed benchmark
TOOLRET will be released to the public, and hosted on GitHub and Hugging Face. The TOOLRET

will be managed and maintained by our research team.

(iii) Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
Yes. If we include more tasks or find any errors, we will correct the dataset hosted on Hugging Face
and GitHub and update the results in the leaderboard accordingly. It will be updated on our website.

(iv) Will the training dataset TOOLRET-train will be released publicly. Yes, the proposed training dataset
TOOLRET-train will be released to the public, and hosted on GitHub and Hugging Face.

B Details of Benchmark

B.1 Dataset collections

TOOLRET is a heterogeneous benchmark that integrates a wide range of well-established tool-use datasets
and aligns them into a unified format, similar to standard information retrieval (IR) benchmarks such as
BEIR and MTEB, to facilitate tool retrieval evaluation. In tool learning, we observe that previous work
primarily focuses on three mainstream types of tools:

(i) Web APIs: These tools are encapsulated in the OpenAPI format (standard JSON documentation)
and can be directly invoked via HTTP requests. Web APIs are typically used to access, manipulate
(e.g., add, delete, edit, or query), or retrieve private data or information from specialized databases,
covering a wide range of domains such as movies, music, and sports.

(ii) Code Functions: These tools are represented by source code containing function signatures and im-
plementation details. Code functions primarily focus on low-level computations or atomic operations,
such as tensor calculations, calling Hugging Face models, or utilizing PyTorch libraries.

(iii) Customized Apps: These tools are paired with free-form natural language descriptions. They are
typically user-oriented or personalized, enabling tasks such as sending emails or other custom
applications.

These tool types differ in functionality and documentation format, reflecting diverse scenarios for tool-use
LLMs. For IR models, retrieving different types of tools may present varying levels of difficulty. Therefore,
we categorize the collected datasets into these three types based on their paired toolset formats, resulting
in three subsets of TOOLRET: TOOLRET-web, TOOLRET-code, and TOOLRET-customized. During
evaluation, we report the performance of IR models on each subset to provide a fine-grained analysis.
Below, we list the datasets included in each subset and provide detailed descriptions.

24511

B.2 TOOLRET-Web
The TOOLRET-Web subset is constructed by integrating the following datasets, which contain tools in the
form of Web APIs:

• AutoTools-Food (Shi et al., 2024): Contains APIs related to food recipes, where LLMs must retrieve
specific food-related tools to answer user queries.

• RestGPT-TMDB (Song et al., 2023) and AutoTools-Movie (Shi et al., 2024): Includes web APIs
from the TMDB platform, a movie database. Evaluation tasks require LLMs to retrieve tools to find
relevant information about movies or celebrities and extract key evidence to answer given queries.

• AutoTools-Weather (Shi et al., 2024): Features web APIs from a weather database. LLMs must
invoke these APIs and gather responses to answer weather-related queries.

• RestGPT-Spotify and AutoTools-Music (Shi et al., 2024): Contains web APIs from a music
platform. Evaluation tasks require LLMs to retrieve tools for searching songs or albums based on
user queries.

• ToolBench (Qin et al., 2023): Comprises over 16,000 web APIs crawled from RapidAPI. Queries
are generated by LLMs, with ground truth tools labeled for each query.

• ToolLens (Qu et al., 2024a): A subset of ToolBench, where queries are annotated to evaluate tool
functionality.

• APIbank (Li et al., 2023b): Contains web APIs for daily personalized applications, such as alarm
booking and database login.

• MetaTool (ToolE) (Huang et al., 2023): Designed to evaluate whether LLMs are aware of tool usage
and can correctly select tools.

• Mnms (Ma et al., 2024): Evaluates LLM-based agents’ tool-use abilities for multi-step, multi-
modal tasks involving tools that process visual information. Since TOOLRET focuses on text-based
IR models, images are represented using their URLs.

• Reverse-Chain (Zhang et al., 2023): Contains diverse multi-step tasks requiring LLMs to invoke
relevant tools sequentially.

• ToolEyes (Ye et al., 2024a): Includes tools across various domains, such as advice, entertainment,
and art, providing a broad evaluation of tool-use LLMs in practical scenarios.

• UltraTool (Huang et al., 2024): A benchmark designed to improve and evaluate LLMs’ tool
utilization abilities in real-world scenarios, focusing on the entire process of planning, creating, and
applying tools in complex tasks.

• T-Eval (Chen et al., 2023): A fine-grained benchmark assessing tool-use LLMs across multiple
evaluation aspects, including instruction following, planning, reasoning, retrieval, understanding,
and review.

B.3 TOOLRET-Code
The TOOLRET-code subset is constructed by integrating the following datasets, which contain tools in the
form of code functions:

• Gorilla-PyTorch (Patil et al., 2023): Contains various PyTorch functions (code snippets) as tools,
evaluating LLMs’ ability to correctly combine PyTorch functions for solving deep learning tasks.
The functions in this dataset are collected from the Python Torch package.

24512

Dataset Endpoint Query size Tool size Task type
Web APIs

GTA (Wang et al., 2024b) https://github.com/open-compass/GTA 14 14
Gorilla (Patil et al., 2023) https://github.com/ShishirPatil/gorilla 598 1,005
- gorilla-pytorch subset https://github.com/ShishirPatil/gorilla/tree/main/data 43 43
- gorilla-tensor subset https://github.com/ShishirPatil/gorilla/tree/main/data 55 55
- gorilla-huggingface subset https://github.com/ShishirPatil/gorilla/tree/main/data 500 907
CRAFT (Yuan et al., 2023) https://github.com/lifan-yuan/CRAFT 654 985
- craft-Tabmwp subset https://github.com/lifan-yuan/CRAFT/tree/main/tab_and_math/TabMWP 174 180
- craft-Vqa subset https://github.com/lifan-yuan/CRAFT/tree/main/vqa 200 525
- craft-algebra subset https://github.com/lifan-yuan/CRAFT/tree/main/tab_and_math/MATH 280 280
AutoTools (Shi et al., 2024) https://github.com/mangopy/AutoTools 159 159
- AutoTools-Food subset https://github.com/mangopy/AutoTools/tree/main/data 22 22
- AutoTools-Weather subset https://github.com/mangopy/AutoTools/tree/main/data 11 11
- AutoTools-Movie subset https://github.com/mangopy/AutoTools/tree/main/data 54 54
- AutoTools-music subset https://github.com/mangopy/AutoTools/tree/main/data 72 72
APIGen (Liu et al., 2024b) https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k 1,000 3,605
APIbank (Li et al., 2023b) https://github.com/AlibabaResearch/DAMO-ConvAI 101 101
Appbench (Wang et al., 2024a) https://github.com/ruleGreen/AppBench 32 32
Mms (Ma et al., 2024) https://github.com/RAIVNLab/mnms 33 33
Metatool (a.k.a., ToolE) (Huang et al., 2023) https://github.com/HowieHwong/MetaTool 200 200
Reverse Chain (Zhang et al., 2023) https://github.com/ASK-03/Reverse-Chain 200 783
RestGPT (Song et al., 2023) https://github.com/Yifan-Song793/RestGPT 94 94
- RestGPT-TMDB subset https://github.com/Yifan-Song793/RestGPT/datasets/tmdb.json 54 54
- RestGPT-Spotify subset https://github.com/Yifan-Song793/RestGPT/datasets/spotify.json 40 40
Toolbench (Qin et al., 2023) https://github.com/OpenBMB/ToolBench 1,100 13,862
- G1-instruction subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 200 13,862
- G1-Tool subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 200 13,862
- G1-category subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 200 13,862
- G2-instruction subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 200 13,862
- G2-instruction subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 200 13,862
- G3-instruction subset https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J 100 13,862
ToolLens (Qu et al., 2024a) https://github.com/quchangle1/COLT 314 314
Tooleyes (Ye et al., 2024a) https://github.com/Junjie-Ye/ToolEyes 95 95
ToolACE (Liu et al., 2024a) https://huggingface.co/datasets/Team-ACE/ToolACE/ 1,000 16,072
GPT4tools (Yang et al., 2024) https://github.com/AILab-CVC/GPT4Tools 32 32
Rotbench (Ye et al., 2024b) https://github.com/Junjie-Ye/RoTBench 550 919
T-eval (Chen et al., 2023) https://github.com/open-compass/T-Eval 100 100
- T-eval-step level subset https://huggingface.co/datasets/lovesnowbest/T-Eval 50 50
- T-eval-dialogue level subset https://huggingface.co/datasets/lovesnowbest/T-Eval 50 50
Taskbench (Shen et al., 2023) https://github.com/microsoft/JARVIS 103 103
- TaskBench-multimedia subset https://github.com/microsoft/JARVIS/taskbench/multimedia 40 40
- TaskBench-daily subset https://github.com/microsoft/JARVIS/taskbench/dailylifeapis 40 40
- TaskBench-DL subset https://github.com/microsoft/JARVIS/taskbench/huggingface 23 23
ToolAlpaca (Tang et al., 2023) https://github.com/tangqiaoyu/ToolAlpaca 94 1,937
Toolbench-sam (Xu et al., 2023) https://github.com/sambanova/toolbench 197 197
ToolEmu (Ruan et al., 2023) https://github.com/ryoungj/ToolEmu 38 38
TooLink (Qian et al., 2023) https://github.com/qiancheng0/Toolink 497 1,804
UltraTool (Huang et al., 2024) https://github.com/JoeYing1019/UltraTool 500 1,171
Tool-be-honest (Zhang et al., 2024) https://github.com/ToolBeHonest/ToolBeHonest 350 892

Table 6: The detailed statistics about the each collected dataset in TOOLRET. We highlight that the subsets of
ToolBench share a same toolsets containing 13,000+ tools. Besides, the TOOLRET combine and deduplicate the
toolsets from the above datasets to build the final tool retrieval corpus.

• Gorilla-Tensor (Patil et al., 2023): Includes TensorFlow functions as tools, collected from Tensor-
Flow Hub, to assess LLMs’ tool selection capabilities in deep learning scenarios.

• Gorilla-HuggingFace (Patil et al., 2023): Treats specific downstream models from the Hugging
Face platform as tools. This dataset evaluates LLMs’ performance in correctly calling Hugging Face
models based on user queries.

• CRAFT-TabMWP (Yuan et al., 2023): Evaluates LLMs’ ability to use functions for table process-
ing. The functions in this dataset are first generated by GPT-4 and subsequently verified.

• CRAFT-VQA (Yuan et al., 2023): Provides evaluation cases for visual question answering (VQA),
where LLMs must call image processing functions such as image capture and object detection.

• CRAFT-Math-Algebra (Yuan et al., 2023): Assesses LLMs’ ability to invoke algebra functions
for solving complex mathematical problems.

B.4 TOOLRET-Customized
Besides Web APIs and code functions, we also collect datasets that contain customized apps. Unlike Web
APIs and code functions, customized apps are described using free-form natural language documentation

24513

https://github.com/open-compass/GTA
https://github.com/ShishirPatil/gorilla
https://github.com/ShishirPatil/gorilla/tree/main/data
https://github.com/ShishirPatil/gorilla/tree/main/data
https://github.com/ShishirPatil/gorilla/tree/main/data
https://github.com/lifan-yuan/CRAFT
https://github.com/lifan-yuan/CRAFT/tree/main/tab_and_math/TabMWP
https://github.com/lifan-yuan/CRAFT/tree/main/vqa
https://github.com/lifan-yuan/CRAFT/tree/main/tab_and_math/MATH
https://github.com/mangopy/AutoTools
https://github.com/mangopy/AutoTools/tree/main/data
https://github.com/mangopy/AutoTools/tree/main/data
https://github.com/mangopy/AutoTools/tree/main/data
https://github.com/mangopy/AutoTools/tree/main/data
https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k
https://github.com/AlibabaResearch/DAMO-ConvAI
https://github.com/ruleGreen/AppBench
https://github.com/RAIVNLab/mnms
https://github.com/HowieHwong/MetaTool
https://github.com/ASK-03/Reverse-Chain
https://github.com/Yifan-Song793/RestGPT
https://github.com/Yifan-Song793/RestGPT/blob/main/datasets/tmdb.json
https://github.com/Yifan-Song793/RestGPT/blob/main/datasets/spotify.json
https://github.com/OpenBMB/ToolBench
https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J
https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J
https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J
https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J
https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J
https://drive.google.com/drive/folders/1yBUQ732mPu-KclJnuQELEhtKakdXFc3J
https://github.com/quchangle1/COLT
https://github.com/Junjie-Ye/ToolEyes
https://huggingface.co/datasets/Team-ACE/ToolACE/
https://github.com/AILab-CVC/GPT4Tools
https://github.com/Junjie-Ye/RoTBench
https://github.com/open-compass/T-Eval
https://huggingface.co/datasets/lovesnowbest/T-Eval
https://huggingface.co/datasets/lovesnowbest/T-Eval
https://github.com/microsoft/JARVIS
https://github.com/microsoft/JARVIS/tree/main/taskbench/data_multimedia
https://github.com/microsoft/JARVIS/tree/main/taskbench/data_dailylifeapis
https://github.com/microsoft/JARVIS/tree/main/taskbench/data_huggingface
https://github.com/tangqiaoyu/ToolAlpaca
https://github.com/sambanova/toolbench
https://github.com/ryoungj/ToolEmu
https://github.com/qiancheng0/Toolink
https://github.com/JoeYing1019/UltraTool
https://github.com/ToolBeHonest/ToolBeHonest

Algorithm 1: The pseudo algorithm for our target-aware strategy in automatically constructing
instructions for evaluation tasks.
Input: A set of N seed instructions S = {si | i ∈ [N]} manually crafted by human experts; A

powerful LLMM (e.g., GPT-4o); Collected tasks T = {ti|i ∈ [|T |]}
Initialize an instruction pool I ← S;
for i ∈ |T | do

Sample k examples {s′1, s′2, ..., s′k} from I;
// Generate a new instruction si using M through in-context learning:
si ←M(prompt with {s′1, s′2, ..., s′k});
//Append new instruction to pool:
I = I ∪ {si} ;

Apply heuristic filtering to remove low-quality instructions from I;
Output: A set of high-quality instructions I = {s1, s2, ..., s|T |}

rather than structured formats. Specifically, we include the following datasets: ToolACE (Liu et al.,
2024a), GPT4Tools (Yang et al., 2024), TaskBench (Shen et al., 2023), ToolAlpaca, ToolBench-sam (Xu
et al., 2023), ToolEmu (Ruan et al., 2023), and TooLink (Qian et al., 2023).

B.5 Task format

The final benchmark, TOOLRET, integrates the above datasets and reformats all test cases into a unified
format, similar to conventional IR benchmarks such as BEIR and MTEB, to evaluate IR models in tool
retrieval tasks. Each reformatted task consists of: an input query, an instruction, and the corresponding
target tools (e.g., labels). Each tool is assigned a unique identifier and is paired with detailed documentation
describing its functionality. Below, we present a concrete example from TOOLRET.

An example of an evaluation task in our proposed benchmark

- Query: I need to find a grocery store near 123 Main Street , Downtown District that
has a good selection of limes for my Easter celebration.

- ID: toolLens_query_7
- Target tools (labels): toolLens_tool_20 , toolLens_tool_50 , toolLens_tool_2
- Instruction: Given a `local grocery search` task , retrieve tools that can locate
grocery stores based on the user 's specified location and criteria , such as the
availability of specific items like limes , to meet the query 's requirements.

Examples of tool documentation

- toolLens_tool_20: {" category_name ": "Food", "required_parameters ": [{" name": "
ingredient", "type": "STRING", "description ": "", "default ": "strawberry "}], "
optional_parameters ": [], "method ": "GET", "template_response ": {"name": "str", "
ingredients ": ["list of str with length 9"], "instructions ": ["list of str with
length 7"]}, "name": "pastry/ingredient", "description ": "This API endpoint allows
users to retrieve a random pastry recipe that contains a specific ingredient. Users
can make a GET request to the endpoint with the name of the ingredient as a query
parameter , and the API will return a JSON response with the given recipe , including
the name , list of ingredients , and instructions ."}

- toolLens_tool_50: {" category_name ": "Health_and_Fitness", "required_parameters ":
[], "optional_parameters ": [{" name": "limit", "type": "NUMBER", "description ": "
limit the length of response", "default ": "10"}] , "method ": "GET", "
template_response ": {"count": "int", "food": [{"_id": "str", "food_name ": "str", "
quantity ": "str", "calories ": "int", "uri": "str", "type": "str", "type_uri ": "str",
"core": "str", "core_uri ": "str", "food_nutrition ": [{" nutrient_name ": "str", "

value ": "float", "unit": "str", "_list_length ": 3}], "_list_length ": 10}]}, "name":
"View All Food Items", "description ": "The request allows clients to retrieve a
comprehensive list of all available food items.\n\nAPI request sent to [https ://
indnutrientsapi.tech/food](https :// indnutrientsapi.tech/food)"}

- toolLens_tool_2: {" category_name ": "Food", "required_parameters ": [{" name": "

24514

grocery", "type": "string", "description ": "", "default ": ""}], "optional_parameters
": [], "method ": "GET", "template_response ": {" message ": "str"}, "name": "Search a
Grocery", "description ": "Search a specific grocery "}

B.6 Details of instruction construction

In TOOLRET, each task is paired with an instruction using a target-aware strategy, where GPT-4o acts
as an automatic expert through in-context learning. Specifically, we follow these steps. We first invite
three human experts with strong backgrounds in NLP and IR to manually craft seed instructions. These
expert-crafted instructions form an initial example pool. For each task, we randomly sample a set of
instructions from this pool as in-context learning examples. Using these examples, GPT-4o generates a
new instruction tailored to the given task. The newly generated instruction is then appended back to the
instruction pool to enhance instruction diversity. The detailed pseudo algorithm is provided in Alg. 1.

Below, we provide a concrete example of the GPT-4o prompt used in our instruction construction
process. The example of seed instructions and the generated instructions is provided in Table 8.

The prompt for GPT -4o.

Given a query , you need to design an instruction about 20 words that clearly
indicates this is a task to retrieve tools capable of solving the query based on its
content. The instruction should emphasize the task requirements and target outcomes
of the query while incorporating the functional characteristics of the tools to

help the system accurately match the appropriate tools.

Below , I have provided the target tools (i.e., the labels for the query). Please
analyze the key aspects of the query and the tool descriptions. Your instruction
should implicitly highlight the task requirements and the characteristics of the
target tools relevant to the query.

Here is an output template that your should follow. Please note that the instruction
should be concise.

Query: I would like to generate a video presenting a text -based discussion on the
topic of 'The Benefits of Exercise '
Labels: [1] {'id ': 'taskbench_data_huggingface_tool_5 ', 'doc ': {'input -type ': ['text
'], 'output -type ': ['text '], 'name ': 'Text Generation ', 'description ': 'Generating
text is the task of producing new text. These models can , for example , fill in
incomplete text or paraphrase .'}}
Instruction: Given a `text -to-video` task , retrieve tools that process text inputs
to generate coherent textual outputs aligned with the query 's topic and requirements
.

Query: I have an audio file 'example.wav ' which is difficult to understand. I would
like you to help me transcribe the audio to text
Labels: [1] {'id ': 'taskbench_data_huggingface_tool_19 ', 'doc ': {'input -type ': ['
audio '], 'output -type ': ['text '], 'name ': 'Automatic Speech Recognition ', '
description ': 'Automatic Speech Recognition (ASR), also known as Speech to Text (STT
), is the task of transcribing a given audio to text. It has many applications , such
as voice user interfaces.'}, 'relevance ': 1}

Instruction: Given a `audio transcription` task , retrieve tools that process audio
inputs to produce accurate textual transcriptions aligned with the query 's
requirements.

Query: Conduct a two -sample independent t-test with two samples , sample1 =[1, 2, 3,
4, 5] and sample2 =[6, 7, 8, 9, 10], and a significance level of 0.05.
Labels: [1] {'id ': 'tool_id_693 ', 'doc ': {'name ': 'independent_samples_t_test ', '
description ': 'Conducts a two -sample independent t-test and returns the t-statistic ,
p-value , and conclusion.', 'parameters ': {'sample1 ': {'description ': 'The first

sample of observations.', 'type ': 'List[float]', 'default ': 0.05}, 'sample2 ': {'
description ': 'The second sample of observations.', 'type ': 'List[float]', 'default
': 0.05} , 'alpha ': {'description ': 'The significance level of the test. Defaults to
0.05.', 'type ': 'float , optional '}}}, 'relevance ': 1}
Instruction: Given a `significance test` task , retrieve tools that perform
statistical tests , specifically a two -sample independent t-test , by processing
numerical inputs and returning the t-statistic , p-value.

24515

Query: Can I get a list of all boards and their attributes on page number two with a
page size of seven?

Labels: [1] {'id ': 'ToolEyes_tool_34 ', 'doc ': {'name ': 'get_boards ', 'description ':
'A list of all boards and their attributes.', 'parameters ': {'type ': 'object ', '
properties ': {'page ': {'type ': 'string ', 'description ': 'Get the items on a specific
page. 0(default) is the first page.'}, 'page_size ': {'type ': 'string ', 'description

': 'Get the number of boards on a specific page. Default: 5.'}}, 'required ': []}}}
Instruction: Given a `pagination query` task , retrieve tools that can list boards
and their attributes by processing parameters such as page number and page size to
return the requested information.

B.7 Human annotation

To ensure the quality of the generated instructions, we conduct human annotation to review them based
on four key aspects listed in Table 3. For instructions deemed low-quality, human annotators manually
revise them to improve accuracy and clarity. For a clear illustration, we provide concrete examples of
handcrafted instructions, high-quality generated instructions, and low-quality generated instructions in
Table 8. Below, we also provide the detailed human annotation guidelines used in our review process for
reproducibility and transparency.

Human guidance for instruction quality annotation

We ask you to evaluate the quality of the generated instructions based on the
following four aspects. Please carefully assess each instruction and provide your
judgment:

Aspects for annotation

1. Hallucination Check: Does the instruction contain any incorrect or fabricated
information about the target tools or the input query? (Are there any details in
the instruction that do not align with the actual features of the target tools or
the content of the input query?)

2. Comprehensiveness of Tool Features: Does the instruction fully and accurately
describe the features of all target tools mentioned in the query? (Are there any
important features of the target tools that are missing or inadequately described in
the instruction ?)

3. Accuracy of Tool Feature Description: Does the instruction correctly describe the
features of the target tools? (Key question to ask: Are the descriptions of the

target tools technically accurate and consistent with their actual functionality ?)

4. Relevance to Input Query: Is the instruction directly relevant to the original
input query? (Key question to ask: Does the instruction address the specific needs
or context provided in the input query , or does it deviate from the query 's intent ?)

Detailed annotation Process

For each instruction , evaluate it based on the four aspects above.
1. If the instruction meets all criteria (no hallucination , comprehensive , accurate ,
and relevant), mark it as correct.

2. If the instruction fails to meet any of the criteria , mark it as incorrect and
provide a brief explanation of the issue (e.g., "contains hallucination ," "missing
key tool features ," or "irrelevant to query ").

For incorrect instructions , ``revise`` them to ensure they meet all quality criteria
. The goal of this annotation process is to ensure that all instructions in our
benchmark are of high quality and faithfully grounded in the original queries and
target tools.

C Large-scaling training dataset: TOOLRET-train

We extend the data collection process from TOOLRET to incorporate the training sets of three mainstream
tool-use datasets: ToolACE (Liu et al., 2024a), ToolBench (Qin et al., 2023), and APIGen (Liu et al.,

24516

2024b). These datasets are selected for their diversity in task types, tool categories, and query complexity,
ensuring a comprehensive representation of real-world tool-use scenarios.

After collecting and preprocessing the data, we ultimately collect over 200k training instances. Each
instance consists of a query and a corresponding set of target tools. Next, we further pair each query with
an instruction using our target-aware strategy (§ 3.3). This strategy generates instructions that explicitly
guide the retrieval process by incorporating task-specific context and tool functionality descriptions.
We report the basic statistics of TOOLRET-train in Table 7. We also show a training example of our
TOOLRET-train.

Query: Is 'https ://www.apple.com ' available in the Wayback Machine on September 9,
2015?

Instruction: Given a `URL availability` task , retrieve tools that check if a given
URL is archived and accessible on a specific date in the Wayback Machine.

Target tools (labels): ['{'name ': 'availability ', 'description ': 'Checks if a
given URL is archived and currently accessible in the Wayback Machine.', 'parameters
': {'url ': {'description ': 'The URL to check for availability in the Wayback Machine
.', 'type ': 'str ', 'de...}}} ']

Negative tools: [
{'name ': 'top_grossing_mac_apps ', 'description ': 'Fetches a list of the top -
grossing Mac apps from the App Store.', 'parameters ': {'category ': {'description
': "The category ID for the apps to be fetched. Defaults to '6016' (general
category).", 'type ': 'str ', 'default ': '6016'}, 'country ': {'descript ...},
{'name ': 'top_paid_mac_apps ', 'description ': 'Retrieves a list of the top paid
Mac apps from the App Store.', 'parameters ': {'category ': {'description '...} ,
...
{'name ': 'exact_url_non_english ', 'description ': 'Retrieves the backlinks of a
specific non -English URL using the RapidAPI service ...}

]

Statistic

size of retrieval task 205,826
Average token length of the input query 52.87
Average token length of the paired iinstruction 46.72
Average token length of the tool documentation 163.52
Number of negative tools per input query 5
Number of target tools (labels) per input query 2.31

Table 7: Basic statistics of the collected large-scaling training set TOOLRET-train. We use the tokenizer from
gpt-3.5-turbo in this work.

D More experiment details

D.1 Baselines

We comprehensively evaluate the following mainstream retrieval models on our benchmark, including:

• Sparse Retrieval. These methods measure the similarity between tasks and tool documentation
based on lexical overlap. We evaluate BM25s (Lù, 2024).

• Single-task dense retrieval. These methods employ dual-encoder architecture models trained on
conventional IR datasets. We evaluate gtr (Ni et al., 2021a), contriever (Izacard et al., 2021a),
and colbertv2.0 (Santhanam et al., 2021a), all trained on MS-MARCO (Nguyen et al., 2016) with
relevance criteria. We also evaluate the COLT (Qu et al., 2024a) which is a recently proposed model
trained on an ad-hoc tool retrieval dataset.

24517

Example of our seed instructions (handcrafted instruction
Query: I would like to generate a video presenting a text-based discussion on the topic of ’The Benefits of Exercise’.
Instruction: Given a "text-to-video" task, retrieve tools that process text inputs to generate coherent textual outputs
aligned with the query’s topic and requirements.

Query: I have an audio file ’example.wav’ which is difficult to understand. I would like you to help me transcribe the
audio to text.
Instruction: Given a "audio transcription" task, retrieve tools that process audio inputs to produce accurate textual
transcriptions aligned with the query’s requirements.

Query: Conduct a two-sample independent t-test with two samples, sample1=[1, 2, 3, 4, 5] and sample2=[6, 7, 8, 9,
10], and a significance level of 0.05.
Instruction: Given a "significance test" task, retrieve tools that perform statistical tests, specifically a two-sample
independent t-test, by processing numerical inputs and returning the t-statistic, p-value.

Query: Can you cancel a timer for my smart device?
Instruction: Given a "timer cancellation" task, retrieve tools that handle smart device operations by processing device
ID and switch time inputs to cancel a scheduled action and return the status of the operation.

Query: Find cruise tickets from Fontana to Santa Rosa on date 2023-07-04.
Instruction: Given a "ticket booking" task, retrieve tools that support booking cruise tickets by processing travel
details such as departure location, destination, date, and time.

Example of our generated instructions (high-quality instructions)
Query: Suppose that f(x) = 4x+ 5. What is f−1(f−1(9))?
Instruction: Given a "inverse function calculation" task, retrieve tools that calculate the value of the repeated inverse
for a linear function by processing coefficients, constants, and target values to determine the result.

Query: Identify an function that can classify images and works with spiking neural networks.
Instruction: Given an "image classification" task, retrieve tools that execute image classification by using spiking
neural network models and processing image inputs.

Query: I need to find a grocery store near 123 Main Street, Downtown District that has a good selection of limes for
my Easter celebration.
Instruction": "Given a "local grocery search" task, retrieve tools that can locate grocery stores based on the user’s
specified location and criteria, such as the availability of specific items like limes, to meet the query’s requirements.

Query: Please help me find a recipe with no more than 40 grams of carbohydrates per gram and at least 5 grams of
protein per gram.
Instruction: "Given a "nutritional recipe search" task, retrieve tools that can find recipes based on specific nutritional
criteria such as carbohydrate and protein content.

Query: What is 64277 times 38142?
Instruction: Given a "multiplication" task, retrieve tools that compute the product of two numbers by processing
numerical inputs and returning the result.

Query: Can I get a list of all boards and their attributes on page number two with a page size of seven?
Instruction: Given a "pagination query" task, retrieve tools that can list boards and their attributes by processing
parameters such as page number and page size to return the requested information.

Example of our generated instructions (low-quality instructions)
Query: I would like to generate a video presenting a text-based discussion on the topic of ’The Benefits of Exercise’
Instruction: Given a text-to-video task, please retrieve relevant tools to generate video about exercise.
// Too general to cover the key features.
Revised version: Given a ‘text-to-video‘ task, retrieve tools related to general video scripting, exercise video libraries
or tools process text data. // More specific to the query and target tools.

Query: Can you assist me in finding a 1-bedroom townhouse or condo in Little Rock with max rent 1541000? I want
it on the sixth floor with 7 balconies.
Instruction: Please retrieve tools find 1-bedroom or condo in Little Rock. // Too general and miss the point of floor
Revised version: Given a property search task, retrieve tools that can find rental properties based on location, property
type, rent budget, and specific features or requirements. // Cover all key points and related to tools functionality.

Table 8: Example of the instruction in TOOLRET. We show the handcrafted instruction by human experts, the high-
quality instruction and low-quality instruction generated by GPT-4o, respectively. We also show the revised version
of the low-quality instruction paired with the reason for revision.

24518

Name Public Link of Endpoint
Conventional sparse and dense models

BM25S (Lù, 2024) https://github.com/xhluca/bm25s
contriever (Izacard et al., 2021b) https://huggingface.co/facebook/contriever-msmarco
ColBERTv2 (Santhanam et al., 2021b) https://github.com/stanford-futuredata/ColBERT
gtr-t5-base (Ni et al., 2021b) https://huggingface.co/sentence-transformers/gtr-t5-base
gtr-t5-large (Ni et al., 2021b) https://huggingface.co/sentence-transformers/gtr-t5-large

Multi-task embedding models
all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
e5-small-v2 (Wang et al., 2022) https://huggingface.co/intfloat/e5-small-v2
e5-base-v2 (Wang et al., 2022) https://huggingface.co/intfloat/e5-base-v2
e5-large-v2 (Wang et al., 2022) https://huggingface.co/intfloat/e5-large-v2
bge-base-en-v1.5 (Xiao et al., 2023b) https://huggingface.co/BAAI/bge-base-en-v1.5
bge-large-en-v1.5 (Xiao et al., 2023b) https://huggingface.co/BAAI/bge-large-en-v1.5

gte-Qwen2-1.5B-inst. (Li et al., 2023c) https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
e5-mistral-7b (Wang et al., 2023) https://huggingface.co/intfloat/e5-mistral-7b-instruct
GritLM-7B (Muennighoff et al., 2024) https://huggingface.co/GritLM/GritLM-7B
NV-Embed-v1 (Lee et al., 2024) https://huggingface.co/nvidia/NV-Embed-v1

Cross-encoder re-ranking
mxbai-rerank-large-v1 https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1
monot5-base (Nogueira et al., 2020) https://huggingface.co/castorini/monot5-base-med-msmarco
bge-reranker-v2-m3 (Li et al., 2023a; Chen et al., 2024a) https://huggingface.co/BAAI/bge-reranker-v2-m3
jina-reranker-v2 https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual
bge-reranker-v2-gemma (Li et al., 2023a; Chen et al., 2024a) https://huggingface.co/BAAI/bge-reranker-v2-gemma

LLM agent
RankGPT https://github.com/sunnweiwei/RankGPT
- Mixtral-8x22B https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
- GPT-3.5-turbo-1106 https://openai.com/chatgpt/overview/
- GPT-3.5-turbo-0125 https://openai.com/chatgpt/overview/

Table 9: The public link or endpoint of the baselines in our experiments.

• Multi-task Embedding Models. These methods utilize transformer encoders trained on various
annotated IR datasets. We evaluate gte (Li et al., 2023c), bge (Xiao et al., 2023a), and e5 (Wang et al.,
2022), covering a wide range of parameter sizes. Additionally, we evaluate all-MiniLM-L6-v26 from
the Sentence Transformers platform.

• Cross-encoder Re-rankers. These models re-rank the initially retrieved documents based on the
query-passage relevance using bidirectional or unidirectional transformers. We evaluate MonoT5-
Base and three re-rankers trained on diverse tasks: (i) mxbai-rerank-large-v17, (ii) jina-reranker-v2-
base8, and (iii) BGE-reranker.

• LLM Agents. These methods leverage general-purpose LLM agents for re-ranking tasks in a zero-
shot setting, simulating the tool selection process of tool-use agents. We evaluate the widely used
LLM re-ranking framework, i.e., RankGPT (Sun et al., 2023), with various LLMs as backbone.

We highlight that the initial tools for LLM agent and Re-ranking baselines are retrieved by
NV-embedd-v1 model. Details about these baselines are provided in Table 9.

D.2 Compare with conventional IR tasks
To further investigate the complexity of tool retrieval tasks, we conducted a comparative analysis of model
performance between our proposed benchmark (TOOLRET) and the conventional Information Retrieval
(IR) task benchmark, specifically the Massive Text Embedding Benchmark (MTEB). The relationship
between these two benchmarks is visually presented in Figure 7. Our analysis reveals two significant
findings.

First , we observe a strong positive correlation between the two benchmarks, as evidenced by a Pearson’s
correlation coefficient of β = 0.790, indicating a similar performance trend across models. However,
we observe that the absolute performance scores in TOOLRET are consistently lower than those in the

6huggingface.co/all-MiniLM-L6-v2
7huggingface.co/mxbai-rerank-large-v1
8huggingface.co/jina-reranker-v2-base-multilingual

24519

https://github.com/xhluca/bm25s
https://huggingface.co/facebook/contriever-msmarco
https://github.com/stanford-futuredata/ColBERT
https://huggingface.co/sentence-transformers/gtr-t5-base
https://huggingface.co/sentence-transformers/gtr-t5-large
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/intfloat/e5-small-v2
https://huggingface.co/intfloat/e5-base-v2
https://huggingface.co/intfloat/e5-large-v2
https://huggingface.co/BAAI/bge-base-en-v1.5
https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
https://huggingface.co/intfloat/e5-mistral-7b-instruct
https://huggingface.co/GritLM/GritLM-7B
https://huggingface.co/nvidia/NV-Embed-v1
https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1
https://huggingface.co/castorini/monot5-base-med-msmarco
https://huggingface.co/BAAI/bge-reranker-v2-m3
https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual
https://huggingface.co/BAAI/bge-reranker-v2-gemma
https://github.com/sunnweiwei/RankGPT
https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
https://openai.com/chatgpt/overview/
https://openai.com/chatgpt/overview/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1
https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual

Model REST API Code Function Customized tool Avg.

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10
Conventional sparse and dense models
BM25s 62.09 15.68 72.98 58.06 56.98 8.24 73.95 72.81 68.48 14.78 80.51 69.55 62.51 66.81
ColBERT 56.73 14.59 67.86 47.87 53.56 7.82 71.66 70.09 64.49 13.05 76.35 64.85 58.26 60.94
contriever-msmarco 57.81 15.33 70.77 50.87 49.66 7.29 65.99 64.56 68.86 14.67 83.05 73.45 58.77 62.96
gtr-t5-base 57.06 14.54 68.26 49.75 49.38 7.29 65.76 64.09 70.48 14.29 81.60 70.96 58.97 61.60
gtr-t5-large 60.32 15.27 72.05 54.03 52.79 7.41 67.28 65.79 72.03 14.69 84.39 73.95 61.72 64.59
Embedding models
all-MiniLM-L6-v2 53.92 14.47 66.77 48.64 50.14 7.58 68.39 66.74 68.31 14.20 81.57 71.14 57.46 62.17
e5-small-v2 61.95 15.84 72.91 53.34 51.45 7.76 68.16 65.46 69.13 14.24 79.69 68.33 60.85 62.38
e5-base-v2 62.90 15.90 73.98 53.83 55.81 8.44 74.17 72.53 69.96 14.98 83.63 73.94 62.89 66.77
e5-large-v2 61.72 15.90 73.27 52.84 56.21 8.42 75.25 73.14 69.88 15.01 81.13 71.30 62.60 65.76
gte-base-en-v1.5 64.35 16.55 75.80 57.38 59.18 8.77 76.95 74.45 71.79 14.53 81.90 70.07 65.11 67.30
gte-large-en-v1.5 60.67 15.46 72.30 52.41 54.11 8.22 73.35 71.37 68.59 14.36 80.41 69.82 61.12 64.53
bge-base-en-v1.5 65.05 16.37 75.72 57.30 54.55 7.72 69.22 67.48 71.21 14.71 83.13 72.53 63.60 65.77
bge-large-en-v1.5 66.25 16.48 75.84 57.75 58.61 8.41 74.91 72.74 71.19 14.20 80.44 69.27 65.35 66.59

gte-Qwen2-1.5B-inst. 67.57 16.93 78.14 60.81 58.12 8.51 75.41 73.39 71.73 15.34 83.03 73.39 65.81 69.19
e5-mistral-7b 69.51 17.37 79.34 62.48 58.15 8.37 75.12 72.79 72.52 14.68 81.79 71.49 66.73 68.92
GritLM-7B 69.43 17.25 78.97 61.67 62.78 9.22 78.74 77.59 76.04 15.44 85.55 74.35 69.42 71.21
NV-Embed-v1 66.04 16.88 77.19 59.06 63.46 9.40 81.79 79.82 75.39 15.75 88.48 78.37 68.30 72.42
Cross-encoder re-ranking models
mxbai-rerank-large-v1 57.48 14.60 68.65 49.54 50.37 7.75 69.59 67.88 62.24 13.32 73.26 61.24 56.70 59.55
monot5-base-msmarco 54.57 14.23 64.38 46.12 50.00 8.05 68.76 66.80 64.50 13.28 75.80 67.84 56.36 60.25
bge-reranker-v2-m3 70.42 17.75 80.33 65.49 64.22 9.37 80.60 79.48 75.70 16.15 88.87 78.65 70.11 74.54
bge-reranker-v2-gemma 75.67 18.63 84.07 71.00 69.59 9.78 84.18 83.47 77.17 16.55 88.34 79.80 74.14 78.09

Table 10: Results of control experiment where each IR models is evaluated from the toolset of each integrated
dataset in w/ inst. setting.

16 18 20 22 24 26 28 30 32
Evaluation score on our benchmark

40

45

50

55

60

Ev
al

ua
tio

n
sc

or
e

on
 M

TE
B

 b
en

ch
m

ar
k

bm25

e5-small-v2
contriever-msmarco

gtr-t5-base

gtr-t5-large

all-MiniLM-L6-v2

e5-base-v2 e5-large-v2

gte-base-en-v1.5

bge-base-en-v1.5
bge-large-en-v1.5

e5-mistral-7b-inst.gte-large-en-v1.5

gte-base-en-v1.5

NV-Embed-v1

Pearson coefficient = 0.790
Spearman coefficient = 0.441

bm25
e5-small-v2
contriever-msmarco
gtr-t5-base
gtr-t5-large
all-MiniLM-L6-v2
e5-base-v2
e5-large-v2
gte-base-en-v1.5
bge-base-en-v1.5
bge-large-en-v1.5
e5-mistral-7b-inst.
gte-large-en-v1.5
gte-base-en-v1.5
NV-Embed-v1

Figure 7: Correlation between the score on our benchmark and MTEB (retrieval subset).

conventional IR benchmark. This discrepancy suggests that while our benchmark shares fundamental
characteristics with conventional IR tasks, it presents additional challenges that make it more demanding
for existing models.

Second , our experimental results demonstrate that state-of-the-art IR models, particularly those trained
with relevance-oriented optimization criteria (e.g., Contriever), exhibit substantially degraded performance
on TOOLRET. This performance gap underscores the necessity for target-aware reasoning capabilities in
our benchmark, which goes beyond traditional relevance matching. The unique challenges of TOOLRET

are further elaborated in § 4.1, where we identify two key distinguishing factors: (1) the presence of

24520

Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Avg.

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10
Conventional sparse and dense models
BM25S 51.79 13.78 63.35 45.46 38.74 5.87 52.65 51.39 59.72 13.55 71.83 60.38 50.08 52.41
ColBERT 51.70 13.56 61.92 41.01 38.60 6.05 55.07 54.05 53.91 12.10 66.85 55.29 48.07 50.11
contriever-msmarco 53.23 14.55 65.96 46.59 35.97 5.79 52.32 50.84 56.94 13.21 72.11 61.17 48.71 52.87
gtr-t5-base 51.65 14.13 64.55 44.56 33.98 5.51 48.88 47.77 54.28 13.24 70.95 60.82 46.64 51.05
gtr-t5-large 56.62 15.06 69.77 50.26 37.40 5.85 52.41 51.27 56.24 13.31 71.25 61.40 50.09 54.31
Embedding models
all-MiniLM-L6-v2 48.49 13.54 62.35 43.63 34.40 5.62 50.15 48.71 58.08 13.22 72.72 62.17 46.99 51.50
e5-small-v2 54.40 14.60 66.47 46.76 35.18 5.67 50.70 49.19 56.85 13.45 73.43 60.86 48.81 52.27
e5-base-v2 55.42 14.92 67.90 48.10 38.35 6.23 56.08 54.90 59.96 14.18 76.18 66.55 51.24 56.52
e5-large-v2 54.32 14.81 67.69 47.89 40.24 6.23 56.33 54.85 59.40 13.79 72.96 60.37 51.32 54.37
gte-base-en-v1.5 56.48 15.40 70.07 50.96 39.46 6.27 56.58 55.24 64.00 14.23 78.03 66.93 53.31 57.71
gte-large-en-v1.5 55.39 14.89 68.33 48.98 38.23 6.22 56.16 54.95 57.88 13.86 75.12 65.15 50.50 56.36
bge-base-en-v1.5 56.17 14.86 68.30 49.05 38.71 6.05 54.35 53.08 59.40 13.93 75.38 64.81 51.43 55.65
bge-large-en-v1.5 58.20 15.33 69.83 50.20 40.39 6.13 55.03 53.67 61.40 13.83 77.27 66.71 53.33 56.86

gte-Qwen2-1.5B-inst.♠ 60.28 15.64 72.60 53.82 44.06 6.56 59.29 57.78 65.57 14.79 80.33 70.59 56.64 60.73
e5-mistral-7b♠ 60.78 15.93 73.12 55.60 44.20 6.77 61.18 59.79 60.56 13.80 74.47 63.38 55.18 59.59
GritLM-7B♠ 62.54 16.07 73.82 54.46 46.80 6.98 62.89 61.35 67.61 14.93 80.04 68.41 58.98 61.41
NV-Embed-v1♠ 61.76 16.02 73.86 55.96 50.38 7.54 67.93 66.03 67.01 14.61 79.70 69.74 59.72 63.91
Cross-encoder re-ranking models
mxbai-rerank-large-v1 56.45 14.51 67.51 49.02 42.55 6.28 57.85 55.96 54.63 13.03 72.68 60.20 51.21 55.06
monot5-base-msmarco 56.10 14.82 65.29 47.12 41.05 6.31 57.20 55.14 64.60 13.91 75.79 65.76 53.92 56.01
bge-reranker-v2-m3 61.78 15.94 72.35 55.61 45.15 6.74 61.03 59.56 62.45 14.86 79.65 68.68 56.46 61.28
jina-reranker-v2-base 65.86 17.14 77.54 62.33 47.23 7.01 63.50 62.24 69.10 15.38 81.29 69.63 60.73 64.73
bge-reranker-v2-gemma 65.80 16.87 76.85 61.40 52.49 7.60 68.14 65.94 67.87 15.63 81.98 72.24 62.05 66.53

Table 11: Results of control experiment where each IR models is evaluated from the toolset of each integrated
dataset in w/o inst. setting.

multiple potential target tools for each query, and (2) significantly lower term overlap between input
queries and relevant tools compared to conventional IR scenarios. These characteristics collectively
contribute to a more complex retrieval environment that requires advanced reasoning and understanding
capabilities from retrieval models.

D.3 Results of controlled experiment
Since TOOLRET integrates multiple datasets, we also conduct controlled experiments where IR models
retrieve tools exclusively within the toolset of each individual dataset instead of the overall tool corpus.
Table 11 presents the results under the setting that the IR models only take the query to retrieve, i.e., the
w/o inst setting. Table 10 presents the results under the setting that the IR models take the query and
additional instruction to retrieve, i.e., the w/ inst setting.

D.4 Results of in-subset retrieval
TOOLRET contains three subsets, including TOOLRET-web, TOOLRET-code and TOOLRET-customized.
The tool in each subset diverges by its documentation format, domain, and functionality. For a compre-
hensive evaluation, we also conduct an in-subset retrieval experiment, where IR models retrieve tools
exclusively within the toolset of each subset instead of the overall tool corpus. Table 13 presents the
results under the setting that the IR models only take the query to retrieve, i.e., the w/o inst setting.
Table 12 presents the results under the setting that the IR models take the query and additional instruction
to retrieve, i.e., the w/ inst setting.

D.5 Results of trained IR mdels
Experimental results on TOOLRET reveal that even IR models with strong performance on conventional
IR benchmarks such as MTEB and BEIR struggle significantly in tool retrieval tasks. A key factor
contributing to this performance degradation is the lack of a large-scale training dataset specifically
tailored for tool retrieval. To address this gap, we introduce TOOLRET-train, a diverse training dataset
comprising more than 200k tool retrieval tasks. Each example in TOOLRET-train consists of an input
query, an instruction generated using our target-aware strategy, the corresponding target tools, and a set of

24521

Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Average

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10
Sparse and dense models
bm25 49.01 7.17 64.96 63.68 28.92 6.78 37.09 24.44 51.28 10.66 60.70 48.40 43.07 45.51
COLT 36.58 5.74 50.84 49.04 21.98 5.12 29.68 20.03 46.02 9.12 58.02 45.27 34.86 38.12
Colbert 43.80 6.40 58.02 56.28 16.60 3.05 20.85 14.95 31.18 5.86 39.40 32.10 30.53 34.44
contriever-msmarco 35.78 5.31 47.17 46.07 25.19 5.67 31.95 20.56 44.37 9.35 57.53 46.80 35.11 37.81
gtr-t5-base 37.45 5.50 48.78 47.44 22.54 4.93 29.64 20.60 51.02 10.28 61.08 49.06 37.00 39.03
gtr-t5-large 42.14 5.98 53.59 52.19 26.60 5.71 33.68 22.38 53.95 11.17 66.08 52.21 40.90 42.26
Embedding models
all-MiniLM-L6-v2 36.93 5.65 49.54 47.92 15.89 3.89 22.68 15.24 43.09 9.29 56.84 43.96 31.97 35.71
e5-small-v2 38.22 5.55 49.34 48.07 28.97 6.81 36.96 23.45 47.59 9.78 58.19 45.31 38.26 38.94
e5-base-v2 40.69 6.51 55.38 54.01 28.43 6.59 37.14 23.67 47.89 9.48 59.01 46.91 39.00 41.53
e5-large-v2 40.14 5.87 52.23 50.80 26.88 6.16 35.65 24.31 51.40 10.65 61.45 48.28 39.47 41.13
gte-base-en-v1.5 48.25 7.16 61.96 59.17 33.28 7.57 41.99 27.20 50.33 9.70 62.05 50.09 43.95 45.49
gte-large-en-v1.5♠ 40.48 6.46 56.34 54.52 30.58 7.00 38.79 24.78 49.24 9.98 59.13 47.20 40.10 42.17
bge-base-en-v1.5 43.74 6.43 57.33 55.85 29.83 6.96 38.86 25.67 52.41 10.75 63.84 51.19 41.99 44.24
bge-large-en-v1.5 44.07 6.44 56.78 55.22 33.88 7.90 43.11 28.62 53.48 10.53 63.66 52.00 43.81 45.28

gte-Qwen2-1.5B-inst.♠ 47.29 7.10 61.89 59.98 39.30 9.90 48.58 29.51 55.56 11.67 65.55 51.75 47.38 47.08
e5-mistral-7b♠ 48.76 7.16 63.57 61.40 33.06 8.14 43.56 28.49 57.16 11.43 67.28 52.62 46.32 47.51
GritLM-7B 53.69 8.13 68.70 67.26 41.59 10.06 51.69 33.87 60.14 11.63 68.93 54.60 51.81 51.91
NV-Embed-v1♠ 51.95 7.62 66.58 64.21 34.42 8.40 43.66 29.65 57.93 12.34 71.14 57.47 48.10 50.44
Cross-encoder re-ranking models
mxbai-rerank-large-v1 33.39 5.09 46.75 45.11 24.90 5.95 32.20 19.52 35.62 7.35 43.96 34.14 31.30 32.92
monot5-base-msmarco 29.95 5.20 42.47 40.36 30.20 7.84 37.94 21.43 46.99 9.26 57.10 46.48 35.71 36.09
bge-reranker-v2-m3 56.49 8.42 72.26 70.67 38.09 9.25 48.14 33.48 54.66 12.46 70.79 56.17 49.75 53.44
jina-reranker-v2-base 35.24 5.48 47.70 46.31 36.23 9.21 45.59 29.26 54.12 11.92 65.09 51.18 41.86 42.25
bge-reranker-v2-gemma 62.84 8.87 76.24 74.86 37.13 8.62 47.23 33.45 64.33 13.72 77.37 62.08 54.76 56.79

Table 12: Experiments are conducted under the w/ inst. setting, with retrieval performed within each subset
individually.

negative tools. IR models are trained to distinguish target tools from negative tools (§ 7). We evaluate
these trained IR models on TOOLRET and present the results in Table 14.

D.6 Improved IR enhances tool-use LLMs
We further investigate the impact of improved IR models on the end-to-end performance of tool-use LLMs.
Specifically, we evaluate tool-use LLMs on the ToolBench (Qin et al., 2023) dataset using the official
Pass Rate metric, which measures whether the model successfully invokes the correct tools to complete a
given task.

For each task in ToolBench, we replace the pre-annotated toolset (oracle) with tools retrieved by
IR models from TOOLRET’ tool corpus, which contains 43,000 tools. Since TOOLRET integrates the
ToolBench dataset, we can compute NDCG@10 for this retrieval step. For a comprehensive evaluation,
we assess two widely used tool-use LLMs, including GPT-3.5 and ToolLLaMA (Qin et al., 2023).

Table 15 presents the retrieval NDCG@10 scores alongside the corresponding pass rates on ToolBench.9

Our results demonstrate that LLM agents equipped with improved IR models achieve substantial gains
in pass rate, highlighting the critical role of accurate tool retrieval in downstream task performance.
Furthermore, Figure 6 visually illustrates a positive correlation between improved IR performance and
higher task pass rate, suggesting that better retrieval directly leads to improved downstream outcomes.

Based on this analysis, we propose that future work could explore the following two directions: (i)
Further optimize IR models to enhance tool retrieval performance; or (ii) Adapt IR models by incorporating
feedback from end-to-end task performance, allowing them to better support tool-use LLMs. These
approaches provide a more efficient plug-and-play solution compared to fine-tuning LLMs, enabling
flexible integration into diverse tool-use systems.

9ToolBench consists of three subsets: ToolBench-G1, ToolBench-G2, and ToolBench-G3.

24522

Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Average

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10
Sparse and dense models
bm25 26.47 4.04 34.51 33.22 20.61 5.06 26.35 15.87 38.48 8.51 48.24 37.09 28.52 28.73
COLT 22.23 3.75 31.66 30.15 21.65 5.36 29.15 19.12 36.12 7.99 47.63 37.64 26.67 28.97
Colbert 23.58 3.84 32.64 31.19 23.50 5.70 28.82 16.03 33.71 6.64 40.85 32.01 26.93 26.41
contriever-msmarco 19.11 3.16 26.52 24.97 21.84 5.93 27.83 15.19 35.01 7.57 44.07 34.71 25.32 24.96
gtr-t5-base 21.19 3.48 29.05 27.90 18.18 4.45 25.09 16.32 35.95 8.10 45.77 36.50 25.11 26.91
gtr-t5-large 24.48 3.91 33.55 32.44 23.49 5.64 30.79 19.31 38.88 8.89 49.55 38.64 28.95 30.13
Embedding models
all-MiniLM-L6-v2 18.07 3.10 25.13 23.75 13.71 3.49 18.73 11.78 31.61 7.12 40.66 30.03 21.13 21.85
e5-small-v2 20.10 3.14 26.47 25.12 21.02 5.33 27.70 16.88 32.58 7.35 39.85 30.33 24.57 24.11
e5-base-v2 20.96 3.54 29.43 28.23 21.25 5.43 27.59 16.42 32.90 7.33 43.10 33.51 25.04 26.05
e5-large-v2 22.93 3.49 29.53 28.09 20.16 5.19 27.26 16.68 39.45 8.81 49.07 38.19 27.51 27.65
gte-base-en-v1.5 24.50 3.98 33.85 32.48 24.32 6.46 33.01 19.91 37.86 8.10 49.44 38.94 28.89 30.44
gte-large-en-v1.5♠ 23.00 3.90 33.07 31.93 23.84 6.19 31.38 19.15 35.34 8.24 45.43 35.28 27.39 28.79
bge-base-en-v1.5 23.44 3.86 32.79 31.47 24.17 6.37 31.80 18.68 36.59 8.47 47.44 36.87 28.07 29.01
bge-large-en-v1.5 23.12 3.76 31.93 30.67 27.14 7.24 35.77 21.16 35.51 7.82 45.71 36.39 28.59 29.40

gte-Qwen2-1.5B-inst.♠ 28.99 4.57 39.58 38.16 31.85 8.37 39.95 22.69 45.47 10.02 55.68 43.85 35.44 34.90
e5-mistral-7b 25.38 4.13 34.81 33.47 28.22 7.60 35.99 22.28 42.31 9.03 51.34 40.24 31.97 32.00
GritLM-7B♠ 29.67 4.82 41.30 39.77 30.86 8.18 39.99 25.25 48.92 10.31 59.01 46.55 36.48 37.19
NV-Embed-v1♠ 35.50 5.54 48.36 46.72 33.08 8.77 41.08 24.83 51.28 11.13 61.49 48.05 39.95 39.87
Cross-encoder re-ranking models
mxbai-rerank-large-v1 31.75 4.79 43.82 42.20 24.84 5.96 32.13 19.53 35.65 7.31 43.38 33.43 30.75 31.72
monot5-base-msmarco 26.91 4.32 37.16 35.03 30.43 8.11 38.04 20.45 46.32 9.15 56.53 46.36 34.56 33.95
bge-reranker-v2-m3 31.25 4.92 42.97 41.34 34.04 8.86 42.85 26.46 43.81 10.38 53.28 41.84 36.36 36.54
jina-reranker-v2-base 33.31 5.06 44.20 42.93 36.79 9.49 46.20 28.55 53.18 11.56 63.22 50.70 41.09 40.72
bge-reranker-v2-gemma 38.59 5.67 50.14 48.67 38.08 10.05 47.65 28.98 50.39 11.54 61.69 49.48 42.36 42.38

Table 13: Experiments are conducted under the w/ inst. setting, with retrieval performed within each subset
individually.

Model TOOLRET-Web TOOLRET-Code TOOLRET-Customized Avg.

N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 P@10 R@10 C@10 N@10 C@10

bge-large-en-v1.5‡ 25.07 3.94 33.52 31.85 32.05 7.98 41.03 26.11 41.72 8.80 49.26 37.99 32.95 31.98
bge-large-en-v1.5‡ 23.41 3.22 32.02 31.97 30.74 6.31 36.03 24.31 37.31 7.30 46.31 34.21 30.49 30.16
bge-large-en-v1.5 18.90 3.13 25.80 24.50 24.49 6.67 32.95 19.30 25.72 5.54 32.18 24.79 23.03 22.86

bge-base-en-v1.5‡ 20.35 3.41 28.19 26.77 30.69 7.70 39.16 24.95 37.01 8.53 47.21 36.40 29.35 29.37
bge-base-en-v1.5† 19.05 2.98 25.13 23.70 24.90 6.41 35.44 22.50 33.51 6.40 44.20 35.71 25.82 27.30
bge-base-en-v1.5 17.76 2.91 23.59 22.20 22.44 6.03 29.96 17.29 25.98 5.71 32.17 24.26 22.06 21.25

e5-large-v2‡ 23.15 3.74 31.41 29.94 33.05 7.79 40.42 26.97 34.33 6.60 42.08 34.26 30.18 30.39
e5-large-v2† 21.33 2.94 28.34 25.13 30.45 6.45 38.20 26.70 30.13 5.60 39.82 32.33 27.30 28.05
e5-large-v2 17.03 2.67 21.77 20.63 18.94 4.90 25.95 16.26 26.37 6.07 32.19 23.17 20.78 20.02

e5-base-v2‡ 19.97 3.33 27.67 26.36 26.45 5.92 32.71 22.24 31.03 6.06 38.42 30.92 25.81 26.51
e5-base-v2† 15.44 2.78 25.37 23.61 24.50 5.20 30.12 19.37 28.03 5.47 40.21 31.92 22.66 24.97
e5-base-v2 14.42 2.46 19.18 18.00 19.80 5.04 25.89 15.37 22.69 5.11 29.13 22.25 18.97 18.54

Table 14: Experimental results of IR models before and after training on our datasets. Models trained with the
concatenation of instruction and query are denoted by ‡. In contrast, the variants trained solely on the query as input
are marked with † (See the ablation study in § 7 for details).

24523

Dataset TOOLRET ToolBench-G1 ToolBench-G2 ToolBench-G3

NDCG@10 NDCG@10 Pass Rate NDCG@10 Pass Rate NDCG@10 Pass Rate
gpt-3.5-turbo as tool-use LLM

oracle - - 62.00 - 57.20 - 67.40

bge-large-en-v1.5 23.03 34.29 50.60 9.48 49.00 29.69 56.90
bge-large-en-v1.5 ♠ 32.95↑43.07% 71.11 ↑107.38% 59.50↑17.59% 18.11↑91.03% 58.40↑19.18% 67.87↑128.60% 59.20↑4.04%

bge-base-en-v1.5 22.06 36.89 50.60 9.28 51.20 33.02 57.70
bge-base-en-v1.5♠ 29.35↑33.05% 67.52↑83.03% 56.60↑11.86% 16.01↑72.52% 59.60↑16.41% 60.75↑83.98% 60.80↑5.37%

e5-large-v2 20.78 44.91 47.50 11.57 56.50 43.43 55.70
e5-large-v2♠ 30.18↑45.24% 70.08↑56.05% 57.00↑20.0% 17.71↑53.07% 62.10↑9.91% 66.09↑52.18% 58.00↑3.99%

e5-base-v2 18.97 38.66 49.60 9.87 54.10 37.35 54.20
e5-base-v2♠ 25.81↑36.06% 65.79↑70.18% 56.90↑14.72% 17.45↑76.80% 60.80↑12.38% 62.74↑67.98% 62.40↑15.13%

ToolLlama as tool-use LLM
oracle - - 53.6 - 50.8 - 49.1

bge-large-en-v1.5 23.03 34.29 37.60 9.48 41.30 29.69 37.20
bge-large-en-v1.5♠ 32.95↑43.07% 71.11 ↑107.38% 45.10↑19.95% 18.11↑91.03% 47.30↑14.53% 67.87↑128.60% 39.60↑6.45%

bge-base-en-v1.5 22.06 36.89 47.80 9.28 46.10 33.02 36.10
bge-base-en-v1.5♠ 29.35↑33.05% 67.52↑83.03% 50.60↑5.86% 16.01↑72.52% 49.80↑8.03% 60.75↑83.98% 45.70↑26.60%

e5-large-v2 20.78 44.91 41.50 11.57 46.60 43.43 40.20
e5-large-v2♠ 30.18↑45.24% 70.08↑56.05% 44.50↑7.23% 17.71↑53.07% 49.80↑4.72% 66.09↑52.18% 43.80↑4.50%

e5-base-v2 18.97 38.66 42.20 9.87 45.20 37.35 42.00
e5-base-v2♠ 25.81↑36.06% 65.79↑70.18% 49.10↑16.35% 17.45↑76.80% 48.30↑6.86% 62.74↑67.98% 44.70↑6.60%

Table 15: Experiment results of IR models before and after training. We also show the end-to-end task pass rate of
tool-use LLMs when equipped with the tools retrieved by the IR models on ToolBench dataset.

24524

