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Abstract

Current Multimodal Large Language Model
(MLLM) architectures face a critical tradeoff
between performance and efficiency: decoder-
only architectures achieve higher performance
but lower efficiency, while cross-attention-
based architectures offer greater efficiency but
lower performance. The key distinction lies in
how visual tokens are processed. Decoder-only
architectures apply self-attention and FFN op-
erations on visual tokens, while cross-attention
architectures skip these computations. To in-
vestigate whether redundancy exists in this
computationally expensive process, we pro-
pose a training-free framework for analyzing
trained MLLMs. It consists of Probe-Activated
Dynamic FFN and Hollow Attention, which
enable adjustable reductions in computations
for visual tokens, as well as a Layer Ranking
Algorithm that prioritizes layers for these re-
ductions. Extensive experiments demonstrate
substantial, structured, and clustered redun-
dancy unique to decoder-only MLLMs, offer-
ing valuable insights for future MLLM archi-
tecture design. Furthermore, by leveraging our
reduction framework as a training-free infer-
ence acceleration approach, we achieve per-
formance comparable to or better than state-
of-the-art methods while remaining compat-
ible with them. Code is available at https:
//github.com/L-Hugh/Redundancylens.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Zhang et al., 2022; Touvron et al., 2023; Ope-
nAl, 2024) have seen rapid advancement in recent
years, attracting attention for their strong capabili-
ties in language comprehension and reasoning. In
computer vision, researchers extend LLMs with
visual abilities aimed at developing Multimodal
Large Language Models (MLLMs) (Li et al., 2023;
Alayrac et al., 2022; Liu et al., 2023; Zhu et al.,
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Figure 1: Comparison between decoder-only and cross-
attention-based architectures from a unified perspective.
Self-attention and FFN operations for visual tokens dom-
inate the computation of decoder-only layers.

2024). These models hold significant potential for
multimodal task solving and have become a promi-
nent focus of current research. A key challenge
in this area is designing effective architectures to
integrate visual signals into LLMs.

Current MLLMs are commonly built using
either decoder-only (e.g., LLaVA (Liu et al.,
2023)) or cross-attention-based architectures (e.g.,
Flamingo (Alayrac et al., 2022)). In the early de-
velopment of MLLMs, the simplicity and effective-
ness of the decoder-only architecture leads to its
widespread adoption (Lu et al., 2024; Guo et al.,
2025; Wei et al., 2025; Chen et al., 2024d). To
capture finer-grained visual details, decoder-only
MLLMs progressively increase input image resolu-
tions, resulting in significant performance gains (Li
et al., 2024b; Ye et al., 2023; Dong et al., 2024).
However, this also leads to longer visual token
sequences, significantly degrading the model’s ef-
ficiency. Consequently, cross-attention-based ar-
chitectures are attracting increasing interest due
to their greater efficiency in handling long visual
token sequences (Llama-Team, 2024; Chen et al.,
2024a). Nonetheless, recent work (Dai et al., 2024)
demonstrates that, decoder-only MLLMs tend to
achieve significantly better overall performance.
Developing an MLLM architecture that achieves
both high performance and efficiency remains an
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important area for further research.

To advance this research, this paper investi-
gates MLLM architectures by evaluating existing
designs and analyzing their redundancy patterns.
We begin by comparing these two common ar-
chitectures from a unified perspective. As shown
in Figure 1, the fundamental difference between
them lies in the processing of visual tokens: in
decoder-only architectures, visual tokens undergo
self-attention and FFN operations, whereas cross-
attention-based architectures omit these operations.
Since visual tokens often outnumber text tokens
significantly (Dong et al., 2024), the processing
of visual tokens consumes the majority of compu-
tational resources (roughly estimated as the ratio
of visual tokens to total tokens, typically exceed-
ing 90%). Investigating whether redundancy exists
in this computationally expensive process is valu-
able. Considering the computational cost can be
expressed as the number of layers multiplied by the
cost of performing self-attention and FFN opera-
tions on visual tokens at each layer, the question
arises: are full self-attention and FFN operations
for visual tokens required at every layer?

Given the significant training costs of state-of-
the-art MLLMs, we propose a training-free frame-
work to investigate this question by analyzing
trained decoder-only MLLMs. Specifically, we
apply computational reductions to visual token pro-
cessing in a subset of layers and evaluate their im-
pact on model performance. By gradually increas-
ing the number of layers where these reductions
are applied, from a single layer to all layers, we can
obtain a performance variation curve that reflects
the degree of redundancy in the self-attention and
FFN operations across layers.

To achieve this, the proposed framework con-
sists of two components: (1) Probe-Activated Dy-
namic FFN and Hollow Attention, which replace
the original FFN and attention modules, enabling
adjustable reductions in computations for visual to-
kens. Specifically, Probe-Activated Dynamic FFN
dynamically selects a subset of FFN parameters to
process visual tokens. The Probe-Activated strat-
egy is proposed to enable this selection in a training-
free manner. Hollow Attention limits global atten-
tion among visual tokens to local attention while
preserving attention between visual and text tokens.
(2) Layer Ranking Algorithm, which assigns a rank
to each layer. When selecting a subset of layers for
computational reductions during the traversal pro-
cess, those with the highest ranks are prioritized.

We conduct extensive experiments on state-of-
the-art MLLMs, including InternVL2-8B (Chen
et al., 2024c), Qwen2-VL-7B (Wang et al., 2024a),
MiniCPM-V 2.6 (Yao et al., 2024), and LLaVA-
OneVision (Li et al., 2024a). Our experiments are
divided into two parts.

For the first part, the results show that applying
the proposed reductions to approximately half of
the layers preserves or even improves model perfor-
mance. Notably, further applying these reductions
to text tokens leads to a sharp decline in model
performance. These findings reveal that decoder-
only MLLMs exhibit substantial redundancy in the
processing of visual tokens within certain layers.
This structured and clustered redundancy can be
effectively leveraged, providing valuable insights
for future architecture design.

For the second part, leveraging our reduction
framework as a training-free inference accelera-
tion approach, we achieve performance compara-
ble to or better than current state-of-the-art meth-
ods (Chen et al., 2025; Lin et al., 2024). Further-
more, existing approaches accelerate models by
reducing the number of visual tokens, while our
approach reduces the computational cost per visual
token. Since these two methods are orthogonal,
they can be combined for further acceleration.

In conclusion, our contributions are three-fold:

* We propose a framework to investigate redun-
dancy in visual token processing through the
analysis of trained decoder-only MLLMs.

¢ We demonstrate substantial, structured, and
clustered redundancy unique to decoder-only
MLLMs, offering valuable insights for future
MLLM architecture design.

* We introduce a training-free MLLM acceler-
ation method that takes a distinct and orthog-
onal perspective from current state-of-the-art
methods, achieving comparable or better re-
sults while remaining compatible with them.

2 Related Work

2.1 MLLM Architectures

The decoder-only architecture is one of the most
widely adopted designs for MLLMs (Li et al., 2023;
Liu et al., 2023; Zhu et al., 2024), favored for its
simplicity and efficiency. In this architecture, im-
age tokens are concatenated with text token se-
quences and processed uniformly alongside text
tokens by the LLM. A projector module maps the
features extracted by the image encoder into the
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input image tokens for the LLM, implemented
using either a multilayer perceptron (Liu et al.,
2023; Wang et al., 2024b; Lu et al., 2024) or cross-
attention mechanisms (Li et al., 2023; Bai et al.,
2023; Ye et al., 2024b). To improve fine-grained
visual perception by capturing more detailed visual
features, models like UReader (Ye et al., 2023) and
Monkey (Li et al., 2024b) divide high-resolution
images into multiple sub-images and concatenate
their tokens for input into the LLM. Extending this
idea, InternLM-XComposer2-4KHD (Dong et al.,
2024) enhances the model’s resolution capabili-
ties to 4K HD and beyond, demonstrating consis-
tent performance improvements. These advances
have significantly accelerated the development of
MLLMs (Chen et al., 2024c; Yao et al., 2024; Hong
et al., 2024; Wang et al., 2024a; Li et al., 2024a),
allowing open-source models to match or even sur-
pass commercial multimodal models. However,
increasing image resolution and multi-image input
scenarios lead to longer input sequences, which sig-
nificantly increase inference times and limit practi-
cal applications.

The cross-attention-based architecture offers
greater efficiency in handling long visual token
sequences, gaining increasing attention as an al-
ternative to the decoder-only architecture. These
architectures introduce additional cross-attention
layers within the LLM to integrate visual informa-
tion by applying cross-attention to visual tokens,
thereby eliminating the need for the entire LLM to
process them. Flamingo (Alayrac et al., 2022) is a
prominent early work in this area, using a perceiver
resampler to downsample the vision encoder’s fea-
tures before feeding them into the LLM via gated
cross-attention layers. Llama 3-V (Llama-Team,
2024) adopts a similar structure but removes the
perceiver module. EVLM (Chen et al., 2024a) uti-
lizes hierarchical ViT features and a mixture of ex-
perts to enhance performance. mPLUG-Owl3 (Ye
et al., 2024a) incorporates cross-attention mecha-
nisms in parallel with self-attention layers instead
of adding additional cross-attention layers. EE-
MLLM (Ma et al., 2024) modifies the original
self-attention mechanism into a composite atten-
tion mechanism. Meanwhile, NVLM (Dai et al.,
2024) introduces a hybrid architecture that uses the
LLM’s self-attention layers to process thumbnail
image tokens while employing cross-attention to
capture finer image details.

To provide a fair comparison of the two architec-
tures, recent work (Dai et al., 2024) trained both

a decoder-only MLLM (NVLM-D) and a cross-
attention-based MLLM (NVLM-X) under the same
conditions. The results show that NVLM-X pro-
vides superior computational efficiency for high-
resolution images, whereas NVLM-D delivers bet-
ter overall performance. This comparison provides
valuable insights for future research; however, fur-
ther investigation at a more granular level would
be beneficial.

2.2 Visual Token Compression in MLLMs

Compressing visual sequence length is an effective
and common method for accelerating MLLMs (Liu
et al., 2024a; Zhang et al., 2024; Xing et al., 2024;
Huang et al., 2024; He et al., 2024). Common tech-
niques include using a group of learnable query to-
kens to extract information via cross-attention (Dai
et al., 2023; Li et al., 2023; Alayrac et al., 2022),
directly concatenating adjacent tokens (Chen et al.,
2023; Yu et al., 2024), or downsampling through
convolutional neural networks (Cha et al., 2024,
Hu et al., 2024). Some recent approaches dy-
namically discard nonessential tokens during in-
ference (Shang et al., 2024; Chen et al., 2025; Lin
etal., 2024). For instance, FastV (Chen et al., 2025)
reduces computational costs dramatically by prun-
ing visual tokens based on their average attention
scores at a selected layer in the MLLM, without
sacrificing performance.

Token compression methods accelerate MLLMs
by reducing the number of visual tokens, but the
remaining tokens still require substantial compu-
tation in the LLM module, similar to text tokens.
In contrast, our method achieves acceleration by
reducing computation per visual token. This means
our method is orthogonal to these methods and can
be combined with them for further acceleration.

3 Methodology

The proposed framework consists of two compo-
nents: (1) Probe-Activated Dynamic FFN and Hol-
low Attention, which replace the original FEN and
attention modules, enabling adjustable reductions
in computations for visual tokens. (2) Layer Rank-
ing Algorithm, which assigns a rank to each layer.
When selecting a subset of layers for computational
reductions, those with the highest ranks are priori-
tized.
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Figure 2: Illustration of the proposed computational reductions for visual tokens: (a) Probe-Activated Dynamic
FFN and (b) Hollow Attention. The symbol ‘X’ denotes matrix multiplication.

3.1 Computational Reductions for Visual
Tokens

3.1.1 Probe-Activated Dynamic FFN

Inspired by MoE (Shazeer et al., 2016), we reduce
FFN computations for visual tokens by structurally
activating only a subset of FFN parameters. How-
ever, we cannot directly adopt MoE, as it requires
training a router that dynamically selects which
parameters to activate. To achieve this without
additional training, we propose Probe-Activated
Dynamic FFN.

For each forward pass, the visual input X €
RV Xdmodel consists of N visual tokens, derived from
a single image or multiple cropped images, where
dmodel 18 the feature dimension. The vanilla FFN
layer (Vaswani et al., 2017) performs the following
operations to obtain the output Y:

H =ReLU(XW, +by) € RV*d (1)
Y = HWy + by € RY Xdnodet (2)

where W, € RmowerXdit and Wy € R dmodel gre
the weight matrices.

In the proposed Probe-Activated Dynamic FFN,
we first randomly sample a subset X3mPle ¢
RMXdmosel from X, where M (M < N) denotes
the number of sampled tokens. This sampled subset
is used to compute the hidden representation:

Hsample — ReLU(XsampleVVl + bl) c ]RMdef‘
(3)
We then take the element-wise absolute value of
each token’s hidden representation and compute
the mean across the sampled tokens:

1 M
T sample des
h=1 1:‘1{2. e R,
1=

4

Next, we select the top K elements from h with the
highest values. Let S represent the set of selected
indices:

S = Topg (h). &)

Using the selected indices S, we activate a subset
of the weight matrices W7 and W5 as follows:

Wi = Wi[;, ] € Rifmosat <K 6)

WQaCt — I/I/2 [S’ :] c RKdeodel' (7)

2t i activated similarly:

The corresponding bias by

b1* = by [S] € RE. ®)
Finally, the forward propagation proceeds as fol-
lows:

H*' = ReLU(XW{ + by*) e RM5 - (9)

Y = HaCtW2aCt 4 b2 c RNdeodel' (10)

Figure 2 (a) provides a more intuitive illustration
of the computation process in Probe-Activated Dy-
namic FFN, with activation functions and biases
omitted for simplicity. It is important to note that
this process applies only to visual tokens, while
the FFN for text tokens remains unchanged. Some
MLLMs modify the vanilla FEN, such as by adding
gating mechanisms (Wang et al., 2024a; Chen et al.,
2024c), yet our method can still be directly applied
in these cases.

3.1.2 Hollow Attention

Inspired by sparse attention (Zaheer et al., 2020),
we introduce a custom sparse attention pattern for
MLLMs, called Hollow Attention, to reduce the
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Algorithm 1 Layer Ranking Search

1: Input: Number of layers L, validation set

2: Output: Ranked list of layer indices

3: RankedLayers « |]

4: UnrankedLayers < {1,2,...,L}

5: while UnrankedLayers # () do

6: SelectedLayer < null

7: BestPer formance < —oo

8: for each layer in UnrankedLayers do

9: Apply reduction to RankedLayers U {layer}
10: Evaluate the model on the validation set
11: and store the performance metric as P
12: if P > BestPer formance then
13: BestPer formance < P
14: SelectedLayer < layer
15: end if
16: end for

17: RankedLayers.append(Selected Layer)
18: UnrankedLayers.remove(Selected Layer)
19: end while

20: Return: RankedLayers

attention computation for visual tokens. As illus-
trated in Figure 2 (b), global attention among visual
tokens is replaced with local attention, while the
attention between visual and text tokens, as well
as within text tokens, remains unchanged. Specif-
ically, each visual token attends to the preceding
R 4 visual tokens (where R 4 denotes the attention
range) and all text tokens, whereas text tokens re-
tain the ability to attend to all tokens. Since visual
tokens typically outnumber text tokens by a large
margin in MLLMs, this reduction effectively elimi-
nates the majority of the attention overhead.

3.2 Layer Ranking Algorithm

Given the number of layers requiring reduction, de-
noted by L, (where 0 < L, < L, and L is the total
number of layers), the goal is to select the L,-layer
combination with the highest redundancy. To this
end, we construct a compact validation set and use
the performance variations of the MLLM on it to
estimate redundancy. Since exhaustively evaluat-
ing all possible layer combinations for each value
of L, is computationally infeasible, we propose a
search algorithm that ranks each layer, as detailed
in Algorithm 1. For a given L, the top-ranked L,
layers are selected for reduction.

The validation set used in the Layer Ranking
Algorithm comprises multiple subsets drawn from
different datasets. The overall evaluation metric is
computed by summing the scores across all sub-
sets. For each subset, we compute the difference
by subtracting the evaluation metric of the original
model from that of the reduced model. If this differ-
ence is negative—indicating that the reduced model

performs worse—it is multiplied by a penalty co-
efficient o > 1. This penalization mechanism en-
courages the search process to prioritize reductions
that maintain performance stability.

For each MLLM, Algorithm 1 is applied sepa-
rately for FFN and attention reductions, with the
process run twice. In our experiments, we observe
that the last few layers of MLLMs tend to exhibit
greater redundancy, making them a priority for
reduction. To reduce the number of evaluations,
we limit the ranking algorithm’s search to the first
L — L, layers. The last L, layers are ranked in
descending order of their position, starting from
the last layer.

4 Experiments

4.1 Datasets

To construct the validation set for the Layer Rank-
ing Algorithm, we randomly sample 750 instances
from the full evaluation dataset collected in (Liu
et al., 2024c), 1,000 instances from MMBench-
DEV-EN-V11 (Liu et al., 2024b), and 200 instances
each from the validation sets of DocVQA (Mathew
et al.,, 2021), InfoVQA (Mathew et al., 2022),
and ChartQA (Masry et al.,, 2022). To
avoid overlap with the test set, when sam-
pling the 750 instances from the full eval-
uation dataset in (Liu et al.,, 2024c), we
exclude any samples that appear in OCR-
Bench (Liu et al., 2024c), as well as those from
TextVQA (Singh et al., 2019), DocVQA (Mathew
et al., 2021), InfoVQA (Mathew et al., 2022), and
ChartQA (Masry et al., 2022).

For evaluation, we conduct experiments on
eight widely used benchmarks: OCRBench (Liu
et al., 2024c), DocVQA (Mathew et al., 2021), In-
foVQA (Mathew et al., 2022), ChartQA (Masry
et al.,, 2022), TextVQA (Singh et al., 2019),
MME (Fu et al., 2024), MMStar (Chen et al.,
2024b), and HallusionBench (Guan et al., 2024). In
particular, following prior work (Chen et al., 2024c;
Wang et al., 2024a), we use the validation set of
TextVQA (Singh et al., 2019) for evaluation.

4.2 Evaluation Metrics for Each Benchmark

We assess model performance using the stan-
dard metrics provided by each benchmark. OCR-
Bench (Liu et al.,, 2024c) uses the number
of correctly generated answers as its evalua-
tion metric. DocVQA (Mathew et al., 2021)
and InfoVQA (Mathew et al., 2022) use Aver-
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Figure 3: Impact of applying self-attention or FFN reductions across various layer proportions. The x-axis represents
the percentage of layers with reductions applied, and the y-axis indicates model performance on the benchmark
metric. The horizontal line shows the model’s original performance (y-value at x=0).

age Normalized Levenshtein Similarity (ANLS)
and are evaluated on their respective official
websites. ChartQA (Masry et al., 2022) mea-
sures performance with relaxed accuracy, while
TextVQA (Singh et al., 2019) relies on VQA ac-
curacy (Goyal et al., 2017). MME (Fu et al.,
2024) reports the sum of perception and cogni-
tion scores. MMStar (Chen et al., 2024b) eval-
uates models based on overall accuracy. Hallu-
sionBench (Guan et al., 2024) reports the average
of Question Pair Accuracy, Figure Accuracy, and
Overall Accuracy. Evaluation for all benchmarks,
except DocVQA and InfoVQA, is conducted using
VLMEvalKit (Duan et al., 2024).

4.3 Implementation Details

All experiments are conducted on NVIDIA A100
GPUs using VLMEvalKit (Duan et al., 2024),
a framework for evaluating MLLMs on diverse
multimodal benchmarks. We evaluate state-of-
the-art MLLMSs, including InternVL2-8B (Chen
et al., 2024c), Qwen2-VL-7B (Wang et al., 2024a),
MiniCPM-V 2.6 (Yao et al., 2024), and LLaVA-
OneVision (Li et al., 2024a). In Hollow Attention,
the attention range R 4 for visual tokens is set to
256, which typically corresponds to the number of
tokens in a single sub-image. In Probe-Activated

Dynamic FFN, the number of randomly sampled
visual tokens M is set to 10% of the total visual
tokens per sample, while the number of activated
parameters K is set to 20% of the original param-
eter count. For the Layer Ranking Algorithm, the
penalty coefficient « is set to 2. During the rank-
ing process, M is set to 100% of the total visual
tokens per sample to minimize fluctuations caused
by uncertainty.

4.4 Redundancy Analysis in FFN and
Attention for Visual Tokens

First, we independently analyze the redundancy
of FFN and self-attention operations on visual to-
kens in existing decoder-only MLLMs. Specifi-
cally, we apply computational reductions for FFN
or self-attention in a subset of layers and evaluate
the MLLM’s performance on multiple mainstream
benchmarks. By gradually increasing the num-
ber of layers where these reductions are applied,
from a single layer to all layers, we obtain perfor-
mance variation curves that reflect the degree of
redundancy in the self-attention and FFN opera-
tions across layers.

The experimental results are shown in Figure 3.
The results indicate that applying the proposed re-
ductions to about half of the layers maintains the
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Figure 4: Performance comparison of the reductions
applied to visual tokens (blue line) versus all tokens
(red line), evaluated on ChartQA by InternVL2-8B.

MLLM’s performance at a level comparable to the
original model on most benchmarks, and in some
cases, even surpasses the unreduced baseline. This
outcome holds true for both the InternVL2 (Chen
et al., 2024¢) and Qwen2-VL (Wang et al., 2024a),
regardless of whether the reductions are applied to
self-attention or FFN operations. However, when
reductions are applied to more than half of the lay-
ers, the performance of the MLLMs begins to de-
cline rapidly across most benchmarks, with FFN re-
ductions causing a sharper drop than self-attention
reductions. In addition, further applying these re-
ductions to text tokens leads to a sharp decline in
model performance, as shown in Figure 4. These
findings reveal that decoder-only MLLMs exhibit
substantial redundancy in the processing of visual
tokens within certain layers.

Current state-of-the-art MLLMSs are built on pre-
trained LLLMs and fine-tuned on vast multimodal
datasets, such as Qwen2-VL (Wang et al., 2024a),
trained on over 1.4 trillion tokens of multimodal
data. Therefore, the redundancy observed in pro-
cessing visual tokens within LLMs cannot be at-
tributed solely to insufficient training. We argue
that this redundancy arises more from the inherent
differences between visual and text tokens. On one
hand, visual and text tokens originate from differ-
ent modalities; on the other, visual tokens undergo
extensive processing through an image encoder,
while text tokens are processed only through linear
mapping. These differences suggest that treating
them equivalently within the LLM may not be the
most efficient approach, especially considering the
high computational demands of MLLMs in prac-
tice. By highlighting such redundancy, we hope
to provide valuable insights for future architecture
design.

4.5 Comparison with Training-free MLLM
Inference Acceleration Methods

Building on the previous conclusions, our frame-
work can accelerate decoder-only MLLM inference
in a training-free manner, with the reduction pattern

output

Layers

input

Visual Tokens Text Tokens

Token Sequence

FFN Attention Reduction

Figure 5: The reduction pattern for Qwen2-VL-7B. No-
tably, the attention from text tokens to all visual tokens
needs to be preserved.

shown in Figure 5. We compare our approach with
current state-of-the-art methods, which achieve ac-
celeration by compressing the number of visual
tokens, specifically FastV (Chen et al., 2025) and
VTW (Lin et al., 2024). As shown in Table 1, our
approach achieves comparable or superior perfor-
mance to these token compression methods while
reducing floating point operations (FLOPs) by ap-
proximately 30%. Additionally, our method and
token compression methods address acceleration
from different perspectives: token compression
methods aim to reduce the number of visual tokens,
whereas our approach focuses on lowering the com-
putation required per visual token. This distinction
indicates that the two methods are orthogonal and
can be combined to achieve further acceleration.
Table 1 demonstrates this synergy: when applying
our approach alongside FastV (Chen et al., 2025) to
reduce FLOPs by about 50%, model performance
significantly surpasses that of FastV (Chen et al.,
2025) alone with a higher compression rate across
most benchmarks.

It is important to emphasize that our primary
objective is to demonstrate the effectiveness of per-
token computation reduction as an alternative accel-
eration approach, rather than to establish its superi-
ority over token compression approaches. In fact,
each approach is suited to different scenarios, as
shown in Table 1. In cases of high information den-
sity within images, especially in text-rich contexts
like OCRBench (Liu et al., 2024c¢), the potential for
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Method FLOPs Ratio OCRBench DocVQA InfoVQA ChartQA TextVQA MME MMStar HallusionBench
InternVL2-8B (32 Layers) 100% 793 91.6 74.4 83.2 71.7 2210 61.3 45.0
+ VTW (Lin et al., 2024) (L=23) 2% 704 87.9 69.3 80.0 69.3 2201 61.2 44.6
+ FastV (Chen et al., 2025) (K=2, R=30%) 72% 793 90.6 71.6 829 77.6 2181 60.7 453
+ Ours (Lra=16, Lrp=17) 2% 801 91.3 74.4 83.1 71.2 2212 61.7 45.6
+ VTW (Lin et al., 2024) (L=17) 53% 64 14.5 30.9 17.9 20.8 2200 59.3 44.8
+ FastV (Chen et al., 2025) (K=2, R=50%) 53% 768 854 66.1 80.6 77.1 2195 59.3 44.9
+ Ours + FastV (K=2, R=30%) 52% 797 90.3 71.6 83.0 77.1 2192 60.9 459
Qwen2VL-7B (28 Layers) 100% 865 94.5 76.6 83.2 84.3 2322 60.7 51.0
+ VTW (Lin et al., 2024) (L=20) 71% 41 13.7 31.1 19.4 15.9 2311 60.7 50.3
+ FastV (Chen et al., 2025) (K=2, R=30%) 72% 829 94.4 75.1 82.6 84.0 2306 59.9 49.8
+ Ours (Lpa=13, Lrp=14) 1% 859 94.5 75.7 83.0 84.6 2309 60.5 51.1
+ VTW (Lin et al., 2024) (L=15) 54% 36 8.4 23.8 16.6 13.7 2174 53.7 39.7
+ FastV (Chen et al., 2025) (K=2, R=50%) 53% 766 934 71.0 79.4 83.6 2309 58.6 49.3
+ Ours + FastV (K=2, R=30%) 53% 832 94.3 74.3 81.8 84.2 2310 59.7 51.1
LLaVA-OneVision-7B (28 Layers) 100% 623 87.5 65.0 80.4 76.0 2002 61.7 39.3
+ VTW (Lin et al., 2024) (L=20) 71% 47 15.2 30.5 19.8 15.3 1991 61.4 40.2
+ FastV (Chen et al., 2025) (K=2, R=30%) 2% 590 854 614 71.0 75.1 2007 60.1 40.1
+ Ours (Lpa=13, Lrp=14) 1% 635 85.6 63.2 80.2 75.0 2019 61.0 40.3
+ VTW (Lin et al., 2024) (L=15) 54% 34 10.5 25.0 18.4 14.2 1897 52.5 29.6
+ FastV (Chen et al., 2025) (K=2, R=50%) 53% 506 78.9 53.8 68.0 725 1974 579 39.2
+ Ours + FastV (K=2, R=30%) 53% 597 84.0 59.3 76.8 74.4 2019 59.9 40.2
MiniCPM-V 2.6 (28 Layers) 100% 846 90.6 64.6 80.4 79.2 2276 57.5 48.3
+ VTW (Lin et al., 2024) (L=20) 1% 130 16.8 31.0 21.3 20.4 2250 573 349
+ FastV (Chen et al., 2025) (K=2, R=30%) 2% 800 85.5 59.3 784 79.0 2252 56.3 46.1
+ Ours (Lga=13, Lrp=14) 71% 847 90.0 63.8 79.8 79.6 2274 57.5 46.7
+ VTW (Lin et al., 2024) (L=15) 54% 113 12.7 27.6 18.3 18.1 2053 53.5 30.1
+ FastV (Chen et al., 2025) (K=2, R=50%) 53% 749 725 522 729 71.0 2189 544 46.5
+ Ours + FastV (K=2, R=30%) 53% 805 84.7 58.9 78.2 78.8 2228 55.1 46.7

Table 1: Comparison of training-free methods for accelerating MLLM inference. The Lr 4 and Ly in our method
represent the number of layers for attention reduction and FEN reduction, respectively. FLOPs Ratio indicates the
proportion of floating-point operations retained after applying the acceleration method compared to the full model.
The best results are highlighted in bold, while the second-best results are underlined.

visual token compression is limited, making per-
token computation reduction more effective. Con-
versely, in scenarios with lower information density,
such as MME (Fu et al., 2024), reducing the num-
ber of visual tokens offers a higher upper bound
for acceleration. This complementarity between
approaches suggests that the optimal choice of ac-
celeration strategy should be context-dependent,
with the potential for combined implementation in
hybrid solutions.

4.6 Ablation Studies

Ablation Studies on the Extent of Reduction in
Self-Attention and FFN. To comprehensively eval-
uate the impact of reducing self-attention and FFN
operations, we conduct ablation studies focusing
on two factors: the proportion of activated param-
eters in Probe-Activated Dynamic FFN and the
attention range in Hollow Attention, as illustrated
in Figure 6. The results show that as the extent of
reduction decreases (i.e., as the proportion of acti-
vated parameters or the attention range increases),
more layers can be reduced without significantly
impacting model performance. These two hyperpa-
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(a) Hollow Attention (b) Probe-Activated Dynamic FFN

Figure 6: Ablation studies on (a) the attention range in
Hollow Attention and (b) the proportion of activated
parameters in Probe-Activated Dynamic FFN, evaluated
on ChartQA by InternVL2-8B. The x-axis indicates the
percentage of layers with reductions applied, while the
y-axis reflects the model’s performance.

rameters are selected by trading off efficiency and
effectiveness.

Ablation Study of Layer Ranking Strategies.
We compared three layer ranking strategies: (1)
Position-based Strategy, which assigns the highest
rank to the last layer and progressively decreases
the rank toward the first layers; (2) Search-only
strategy, which relies solely on Algorithm 1, with
no layers pre-assigned ranks; and (3) Hybrid strat-
egy, where the last L, layers are pre-assigned the
highest rank, with the remaining layers ranked by
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Figure 7: Performance comparison of different layer
ranking strategies, evaluated on ChartQA by InternVL2-
8B. The first half of the orange line (Position-based)
overlaps with and is obscured by the green line (Hybrid).

Algorithm 1. As shown in Figure 7, when reduction
is applied to only a few layers, the position-based
strategy outperforms the search-only strategy, in-
dicating that later layers tend to exhibit higher re-
dundancy in visual token processing. Additionally,
the limited size of our validation set may not fully
capture the true behavior of the models. As the
number of reduced layers increases, the search-only
strategy begins to yield better results. Therefore,
we adopt the hybrid strategy, which combines the
position-based strategy with the search-only strat-
egy, to achieve better performance and reduce the
number of evaluations required by Algorithm 1.

5 Conclusion

In this paper, we present a systematic investiga-
tion into the redundancy of visual token processing,
which plays a crucial role in the trade-off between
performance and efficiency in mainstream MLLM
architectures. Through careful analysis of existing
MLLMs, we propose a new framework consisting
of two key components: computational reductions
for visual tokens and a layer ranking algorithm.
These reductions are applied across various layer
proportions to evaluate their impact on MLLM per-
formance. Extensive experiments reveal that cur-
rent decoder-only MLLMs exhibit significant re-
dundancy in visual token processing within certain
layers. This structured and clustered redundancy
can be effectively leveraged, providing valuable in-
sights for future architectural design. Furthermore,
this work opens new perspectives on training-free
acceleration strategies for MLLMs, suggesting that
future improvements in model efficiency might ben-
efit from considering both token-level compression
and computation-level optimization.

Limitations

Determining the layer rank for reduction through
search in the validation set presents two limitations.

First, it requires constructing a validation set and
performing hundreds of evaluations. Additionally,
to reduce computational resource demands, we use
a limited-scale validation set and a greedy search-
based algorithm, which may fail to identify the opti-
mal combination of layers for reduction. Therefore,
improvements to the Layer Ranking Algorithm or
exploration of alternative features for determining
layer reduction priorities warrant further investiga-
tion.
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