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Abstract

Recent research shows that supplementing
Large Language Models (LLMs) with knowl-
edge graphs can enhance their performance.
However, existing methods often introduce
noise in the retrieval and reasoning pipeline,
hindering LLMs’ ability to effectively inte-
grate external knowledge for complex multi-
hop question answering. To address this, we
propose RefKG, a novel framework designed
to enhance the reasoning capabilities of LLMs
through reflective engagement with knowledge
graphs. RefKG autonomously conduct retrieval
and reflection on knowledge graphs. It con-
sists of three modules: Query Decoupling,
LLM-Driven Knowledge Graph Exploration,
and Inference with Knowledge Reconstruction.
We also introduce a multi-task tuning strat-
egy that not only integrates external knowl-
edge into LLMs but also trains them to lever-
age this knowledge for answering questions.
This significantly improves their performance
on knowledge-intensive tasks. Experiments on
fact verification and knowledge graph question
answering demonstrate RefKG’s effectiveness.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in solving various
NLP tasks (Du et al., 2024a; Yang et al., 2022;
Shi and Zhou, 2023; Zhang et al., 2024), such as
machine translation (Zhang et al., 2023) and infor-
mation extraction (Sainz et al., 2023; Ren et al.,
2022). However, given the ever-evolving nature
of real-world knowledge (Zhang et al., 2023; Du
et al., 2024b; Zhao et al., 2022), LLMs exhibit lim-
itations in domain-specific expertise or in timely
updating their knowledge bases. This shortfall of-
ten results in hallucinations within their responses,
where the generated content deviates from factual
accuracy (Huang et al., 2023).
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Figure 1: Comparison between previous method and
our method. While conventional methods often intro-
duce noisy knowledge during retrieval, our method em-
ploys an Expert Model for knowledge refinement, sig-
nificantly reducing the acquisition of noisy information.

To alleviate the issue of hallucinations in LLMs
on knowledge-intensive tasks such as Knowledge
Graph Question Answering (KGQA) (Gupta et al.,
2018), a promising strategy involves augmenting
LLMs with external knowledge sources (Tan et al.,
2023), like knowledge graphs (KGs) (Luo et al.,
2018; Hu et al., 2018; Lee et al., 2024). This
approach retrieves relevant facts from knowledge
bases to help LLMs generate more accurate re-
sponses. However, existing solutions still suffer
from several shortcomings.

First, due to the scale and complexity of knowl-
edge graphs, retrieval and reasoning processes of-
ten introduce irrelevant or noisy information, com-
plicating the model’s ability to answer complex
queries (Lan et al., 2021), as illustrated in Figure 1.
Second, recent investigations (Li et al., 2023b; Nie
et al., 2023) have predominantly performed black-
box testing on proprietary models such as Chat-
GPT. These studies often employ in-context learn-
ing techniques (Liu et al., 2022), where external
knowledge is incorporated into the prompts to steer
the model’s response generation.
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Although these training-free methods enable the
integration of external knowledge, they do not en-
hance the interactive capabilities between LLMs
and knowledge graphs, thereby limiting the po-
tential of LLMs to efficiently acquire and deploy
knowledge, especially when supervised signals are
available. Additionally, black-box models cannot
be deployed privately, which significantly limits
their flexibility and adaptability.

In this paper, we introduce RefKG, an innova-
tive framework specifically crafted to enhance the
reasoning capabilities of LLMs through reflective
engagement with knowledge graphs. In particu-
lar, RefKG is structured as a three-step framework:
1) A Query Decoupling Module that decouples a
complex query into multiple sub-queries that share
a common knowledge background. 2) A LLM-
Driven Knowledge Graph Exploration Module that
iteratively and reflectively retrieves relevant evi-
dence subgraphs from a knowledge base and re-
fines the knowledge through an expert model. 3)
An Inference with Knowledge Reconstruction Mod-
ule that transforms structured knowledge into a
natural language format that is more easily under-
stood by the LLM, and integrates it with the ques-
tion to derive the answer. Compared to approaches
that directly use retrieved results in prompts (Kim
et al., 2023a), our approach maximizes the reflec-
tion capabilities of LLMs (Asai et al., 2023) to crit-
ically assess and refine the evidence subgraph. Fur-
thermore, we have formulated a knowledge-driven
multi-task tuning strategy that provides RefKG with
foundational expertise in knowledge-intensive rea-
soning. This is achieved by fine-tuning the model
on a specially synthesized corpus, equipping it with
the necessary skills for advanced reasoning tasks.
Together, the three-step process enables our ap-
proach to autonomously retrieve, reflect, and utilize
knowledge in solving knowledge-intensive tasks.
In summary, our main contributions are three-fold:

• We propose RefKG, a novel framework crafted
to enhance the reasoning capabilities of LLMs
through reflective engagement with knowl-
edge graphs. In particular, our approach sim-
plifies complex queries through decomposi-
tion, enabling effective retrieval, reflection
and reasoning within knowledge graphs.

• We develop an LLM-Generated corpus
for knowledge-intensive multi-task tuning,
equipping LLMs with initial expertise in
knowledge-intensive reasoning, setting the

stage for advanced task-specific learning.
• We extensively evaluate RefKG on fact verifi-

cation and knowledge graph question answer-
ing tasks. The experimental results affirm that
RefKG outperforms previous KG-augmented
methods across various open-source LLMs.

2 Related Work

KG Retrieval-Augmented Methods. Knowl-
edge graphs (KGs) organize relationships between
entities in a structured manner, and leveraging KG
retrieval to enhance large language models (LLMs)
has proven effective in mitigating hallucination is-
sues (Agrawal et al., 2023; Pan et al., 2023). Recent
research in KG retrieval can be broadly classified
into two categories: (1) Semantic Parsing-Based
Methods: For example, SSKGQA (Li and Ji, 2022)
generates query graphs based on questions to elim-
inate incorrect query structures, while RnG-KBQA
(Ye et al., 2022) ranks and generates logical forms
(LFs) from candidate queries. However, these meth-
ods require generating executable SPARQL state-
ments and additional label information. (2) In-
formation Retrieval-Based Methods: For instance,
UniK-QA (Oguz et al., 2022) combines retrieved
triplets with questions in a Seq2Seq framework to
generate answers. However, it rely heavily on the
accuracy of the retrieved subgraphs or triplets, lack-
ing mechanisms to filter irrelevant results, which
can lead to error accumulation. DiFaR (Baek et al.,
2023a) improves retrieval accuracy by leveraging
query-triplet similarity but struggles with complex
multi-hop questions. In contrast, our approach en-
hances the KG retrieval process by utilizing LLMs’
semantic capabilities to guide retrieval and applies
robust quality control to the results.

LLMs Reasoning for KGQA. Recent work has
focused on using LLMs for Knowledge Graph
Question Answering (KGQA), with methods like
KAPING (Baek et al., 2023b) and KGGPT (Kim
et al., 2023a) prompting LLMs to generate answers
by inserting retrieved triplets into predefined tem-
plates. However, these methods neglect the chal-
lenge that triplets from knowledge graphs are not
always in natural language, complicating LLM in-
ference. Additionally, they rely on black-box APIs,
limiting model training and deployment. Retrieve-
Rewrite-Answer (Wu et al., 2023) addresses this
by fine-tuning open-source LLMs on KG-to-text
corpora, converting triplets into more readable text.
However, none of these methods filter the extracted
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triplets, potentially introducing irrelevant informa-
tion and leading to incorrect results.

3 Methodology

As shown in Figure 2, our proposed RefKG is
structured with three modules: Query Decoupling,
LLM-Driven Knowledge Graph Exploration, Infer-
ence with Knowledge Reconstruction. Besides, we
enhance the model’s ability to utilize knowledge
through Knowledge-Driven Multi-Task Tuning.

3.1 Query Decoupling
Inspired by the divide-and-conquer paradigm, we
initially decouple a complex query into multiple
sub-queries, each of which shares the contextual
semantics but contains only a single-hop atomic
query. In knowledge-intensive tasks, we assume
entities contain the essential information necessary
for the decomposition process. By anchoring enti-
ties, LLMs can capture the underlying mechanisms
of knowledge-intensive problem decoupling.

Specifically, given a knowledge-intensive query
q, a collection of relevant knowledge entities E ,
and a predefined decoupling template P , our goal
is to predict the hop number H , derive a sequence
of sub-queries qsub = [q1, ..., qH ], and identify the
corresponding entity subsets Esub = [e1, ..., eH ]
for each subquery. It can be formulated as:

{qi, ei}Hi=1 = LLM(p′), p′ = P(q, e), (1)

3.2 LLM-Driven Knowledge Graph
Exploration

As shown in Figure 3, the evidence subgraph re-
trieval consists of Evidence Subgraph Retrieval and
Knowledge Refinement.

Evidence Subgraph Retrieval. Our approach
leverages the LLM as a navigator, encouraging it
to autonomously select the search trajectory on the
related subgraph Gsub, continuously advancing to
form a chain of reasoning. Specifically, we divide
the retrieval reasoning process into multiple iter-
ations, ultimately forming a complete chain Pt,
formulated as:

Pt = {(ehead1 , r1, e
tail
1 )

LLM−−−→ . . .
LLM−−−→

(eheadT , rT , e
tail
T ), (eheadt , rt, e

tail
t ) ∈ Gsub}

(2)

For each iteration, the LLM conducts inter-
pretable reasoning on the graph by targeting re-
lationships as objectives for selecting paths. We

formulate the relation selection task as an optimiza-
tion problem, with the objective of maximizing
the probability of extracting a set of relationships
r from the knowledge graph G by generating an
inference chain Pt:

Pθ(r|q, e,G) =
∑

pt−1∈Pt−1

Pθ(r|pt−1, q, e,G)

· Pθ(pt−1|q, e,G),
(3)

The new relation r are incorporated into the rea-
soning path to form new reasoning paths pt, with
N such paths together constituting a complete ev-
idence subgraph Gevi = {pnt }Nn=1. To improve
the stability and coverage of relation selection, our
approach incorporates the Top-k most relevant re-
lations into the reasoning chain, rather than relying
on a single relation.

Evidence Subgraph Refinement. To address
the noisy data of the evidence subgraph retrieved
from large knowledge graphs, we trained an expert
model to refine and rerank the generated evidence
subgraph, enhancing both the accuracy and effec-
tiveness of the external knowledge.

Given a sub-query qi and its corresponding ev-
idence subgraph Gsub,i ∈ Gsub,we utilize an LLM
to jointly encode the query and subgraph together,
resulting in a hidden layer state hi. Then we inte-
grate a single Multi-Layer Perceptron (MLP) after
an LLM for regression training, aimming to map
the hidden layer state hi to a corresponding score
si (more details in Appendix A.6). The formula for
this mapping is expressed as follows:

si = MLP(hi), hi = LLM(qi,Gsub,i) (4)

We use the Mean Squared Error (MSE) loss as
the objective function, formulated as:

MSE =
1

n

n∑

i=1

(si − ŝi)
2 (5)

where si represents the actual scores, and ŝi de-
notes the predicted scores by the model. Then, we
rerank the obtained evidence triplets by score and
set a threshold α to filter out triplet reasoning paths
that are irrelevant to the question.

3.3 Inference with Knowledge Reconstruction
To improve the LLM’s capacity to integrate exter-
nal knowledge, we reconstruct the evidence sub-
graph into a natural language format.
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Figure 2: An overview of our proposed framework RefKG. The framework consists of three modules: Query
Decoupling, Evidence Subgraph Retrieval and inference with Knowledge Reconstruction. We enhance the model’s
ability to utilize knowledge through Knowledge-Driven Multi-Task Tuning, enabling the decoupling, navigation,
refinement, and reconstruction of knowledge.

For an evidence subgraph Gevi containing n
triplets, We transform them into a textual prompt p′

by a predefined template P , and then transform the
input p′ into a trained LLM to generate the textual
evidence evi:

evi = LLM(p′), p′ = P(Gevi), (6)

Gevi = {(eheadn , rn, e
tail
n )}Nn=1,

Then we perform reasoning in two types of
knowledge-intensive tasks, question answering
tasks and fact verification tasks. We unify them
into a single probabilistic model, formulated as:

Pθ(a|q,G) = Pθ(a|evi, q,G)Pθ(evi|q,G) (7)

where a denote the answer, evi denote the evi-
dence transformed from knowledge graph. And the
details of prompts templates for each step of RefKG
are thoroughly outlined in Appendix A.10.

3.4 Knowledge-Driven Multi-Task Tunning
3.4.1 Training Corpus
Corpus Generation. To address the limitations
of existing corpora that do not fully meet our train-
ing needs, we have developed a multi-task ap-
proach for corpus generation. To create training
data, we focus on three specific tasks: (1) Query
Decoupling, (2) Evidence Subgraph Retrieval, and
(3) Inference with Knowledge Reconstruction. For
each task, we design a pre-defined template T and
insert relevant feature elements x, forming a text

prompt p. This prompt p is then processed by Chat-
GPT1 to generate the corresponding training data
y. Further details are provided in Appendix A.3.

Quality Control. In light of the lack of explicit
labels and the challenge of applying general met-
rics, we have developed specific evaluation meth-
ods for assessing the quality of the generated out-
comes: (1) For Query Decoupling: We evaluate
the decoupling quality based on the entity set E
extracted from the original question and the en-
tity sets Ediv = [ediv,1, ..., ediv,H ] derived from
the decomposed sub-queries. The criteria for con-
sidering the decoupling results as high-quality are
as follows: (a) E ̸= ∅. (b) E =

⋃H
i=1 ediv,i. (c)

If |Ediv| > 1, then ∀ediv,i ∈ Ediv, ediv,i ⫋ E. If
|Ediv| = 1, then Ediv = E. (2) For Inference with
Knowledge Reconstruction: We perform a unified
assessment of the two-step pipeline process. For
the answers A generated through these two steps,
we identify instances where the feedback from the
generator corresponds with the factual ground truth
as indicators of high-quality data.

3.4.2 Multi-Task Tunning
Previous research has demonstrated that multi-task
learning is effective when tasks are diverse but
related, particularly when they share a common
knowledge background, despite requiring different
skills (Ni et al., 2023). Based on this insight, we
have designed tasks that are related in knowledge

1ChatGPT is from https://openai.com/
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Figure 3: In the Evidence Subgraph Retrieval process, RefKG initiates from entities within the related subgraph to
select the most probable relations, thereby constructing an inference pathway in triplets-form. In the Knowledge
Refinement phase, RefKG uses a trained expert model to score and rerank the retrieved knowledge, filtering out
noisy triplets.

but involve distinct skill sets. In the training phase,
we synergistically infuse both linguistic and entity
knowledge into LLMs by focusing on the optimiza-
tion of three tasks: Query Decoupling, Evidence
Subgraph Retrieval, and Inference with Knowledge
Reconstruction

The auto-regressive training objective focuses
on training the LLM to predict subsequent tokens
based on previous tokens. Specifically, for the
prompt pi of different tasks, the objective function
for generating the target answer z = [z1, ..., zT ] is:

Li(θ) = −
T∑

t=1

log pθ(zt|z<t,pi) (8)

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate RefKG on a fact-
verification benchmark: FactKG (Kim
et al., 2023b), and two KGQA benchmarks:
MetaQA (Zhang et al., 2018) and WebQSP (Yih
et al., 2016). FactKG and WebQSP are both
highly challenging benchmarks, while MetaQA is
relatively less difficult. Further dataset details are
provided in Appendix A.2.

Baselines. For FactKG, we compare RefKG with
two types of baselines: (1) Claim Only: These
baselines utilize the claim as the input without any
evidence retrieved from the knowledge graph, in-
cluding classifiers trained on the training set such

as BERT, BlueBERT, and popular LLMs. (2) With
Evidence: These baselines incorporate both the
claim and retrieved evidence as inputs. This group
includes fully supervised models like GEAR (Zhou
et al., 2019) and 12-shot model KG-GPT (Kim
et al., 2023a). For MetaQA and WebQSP, we
compare RefKG with four types of baselines: 1)
Embedding-based methods. 2) Retrieve-augmented
methods. 3) Prompting-based LLMs methods, and
4) Fine-tuned LLMs methods. The details of each
baseline are described in Appendix A.4.

Implementation Details. We perform our exper-
iments across a diverse range of LLMs, includ-
ing Llama-2 7B (Touvron et al., 2023), Bloom
7B (Workshop et al., 2022), Baichuan-2 7B (Yang
et al., 2023) and Internlm-2 7B (Team, 2023). For
evidence subgraph retrieval, we configure the num-
ber of relations k to be either 2 or 5. For knowledge
refinement, we establish a score threshold α of 0.6.
See Appendix A.5 for more details.

4.2 Main Results

Results on FactKG. The results are shown in
Table 1. We can make the following observations:

First, RefKG with Bloom-7B outperforms all
baseline methods in terms of the overall accu-
racy, attaining a new state-of-the-art status on this
benchmark. This success can be attributed to our
framework’s dual strategy of employing knowledge
graphs as external resources and harnessing the
innate reasoning powers of LLMs. By encourag-
ing LLMs to engage deeply with and reflect on
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Method One-hop Conjunction Existence Multi-hop Negation Overall
Claim Only

BERT∗ 69.64 63.31 61.84 70.06 63.62 65.20
BlueBERT∗ 60.03 60.15 59.89 57.79 58.90 59.93
Flan-T5∗ 62.17 69.66 55.29 60.67 55.02 62.70
Baichuan-2 7B 29.88 26.21 18.55 18.43 17.73 24.29
Llama-2 7B 13.17 2.58 20.40 10.08 24.35 9.64
Internlm-2 7B 39.98 40.54 28.71 48.00 34.55 40.40
Bloom 7B 3.24 16.61 2.16 13.80 7.69 10.37

With Evidence
KG-GPT†[EMNLP23] - - - - - 72.68
GEAR∗[ACL19] 83.23 77.68 81.61 68.84 79.41 77.65

RefKG (Ours)
Baichuan-2 7B 81.14 83.75 80.83 73.52 77.63 80.30(+2.65)
Llama-2 7B 84.13 88.46 72.83 71.83 83.64 81.26(+3.61)
Internlm-2 7B 84.18 86.12 76.15 76.41 80.06 82.04(+4.39)
Bloom 7B 85.65 87.94 81.14 77.81 82.80 84.04(+6.39)

Table 1: Performance of different models on the FactKG benchmark. Performance marked with ∗ are sourced from
(Kim et al., 2023b) and those marked with † are sourced from (Kim et al., 2023a). We applied our method, RefKG,
to experiments on four open-source large language models (Baichuan-2, Llama-2, Internlm-2, Bloom), testing
it against five types of questions (One-hop, Conjunction, Existence, Multi-hop, Negation). The green numbers
indicate the improvement values compared to the GEAR method, Bold numbers represent the highest values, and
underlined numbers represent the second-highest values.

retrieved information, RefKG significantly enhance
the performance.

Second, fine-tuned 7B-parameter LLMs exhibit
much better performance in fact verification tasks
than LLMs without fine-tuning. Notably, RefKG
enhances the performance of Llama 2, Bloom,
Internlm 2 and Baichuan 2 by 71.62%, 73.67%,
41.64% and 56.01%, respectively.

Third, in the context of knowledge graph re-
trieval methods, RefKG outperforms KG-specific
supervised models like GEAR and training-free ap-
proaches such as KG-GPT. This underscores the
effectiveness of our approach, which involves fine-
tuning LLMs with a rich set of instructions. More-
over, RefKG demonstrates commendable results
across all five tasks, with the exception of the Exis-
tence category. This exception might stem from the
limited entity information available, which poses
challenges for effective query decoupling.

Results on WebQSP. As shown in Table 2,
RefKG demonstrates competitive performance,
achieving a Hits@1 score of 85.2% within fine-
tuned LLMs methods. Moreover, unlike prompting-
based LLMs methods that typically rely on care-
fully crafted prompts to guide black-box large mod-
els in generating answers, RefKG surpasses them
by fine-tuning a 7B-parameter LLM.

Method Hits@1
Embedding

EmbedKGQA(Saxena et al., 2020)[ACL20] 66.6
NSM(He et al., 2021)[WSDM21] 68.7
TransferNet(Shi et al., 2021)[EMNLP21] 71.4

Retrieval
GraftNet(Sun et al., 2018)[EMNLP18] 66.4
PullNet(Sun et al., 2019)[EMNLP19] 68.1
SR+NSM(Zhang et al., 2022)[ACL22] 68.9

LLM (Prompting)
KAPING(Baek et al., 2023b)[NLRSE23] 73.9
KB-BINDER(Li et al., 2023b)[ACL23] 74.4
ChatGPT+ToG(Sun et al., 2024)[ICLR24] 76.2
FRAG(Gao et al., 2025) 76.7
GPT4+ToG(Sun et al., 2024)[ICLR24] 82.6

LLM (Fine-tuned)
InstructGraph(Yu et al., 2022)[ACL24] 73.3
UniKGQA(Jiang et al., 2022)[ICLR23] 77.2
Retrieve-Rewrite(Wu et al., 2023)[IJCKG23] 79.4
DECAF(Yu et al., 2022)[ICLR23] 82.1
RefKG (Ours) 85.2

Table 2: The performance of the models on WebQSP. The
best results are in bold.

Results on MetaQA. As shown in Table 3,
RefKG reaches state-of-the-art performance on the
Hop-1 test set, recording a 98.1% accuracy. This
exceptional performance is attributed to the richer
relational context available in Hop-1 compared to
Hop-2 and Hop-3, suggesting that the strategic use
of LLMs for relation selection minimizes errors
at this juncture, thereby enhancing overall results.
Additionally, RefKG achieves performances close
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Methods 1-hop 2-hop 3-hop Avg.
Embedding

KVMemNN(Xu et al., 2019)[NAACL19] 96.2 82.7 48.9 75.9
EmbedKGQA(Saxena et al., 2020)[ACL20] 97.5 98.8 94.8 97.0

NSM(He et al., 2021)[WSDM21] 97.1 99.9 98.9 98.6
Retrieval

GraftNet(Sun et al., 2018)[EMNLP18] 97.0 94.8 77.7 89.9
PullNet(Sun et al., 2019)[EMNLP19] 97.0 99.9 91.4 96.1

LLM (Prompting)
ChatGPT 60.0 23.0 38.7 40.6

KG-GPT(Kim et al., 2023a)[EMNLP23] 96.3 94.4 94.0 94.9
StructGPT(Jiang et al., 2023)[EMNLP23] 97.1 97.3 87.0 93.8

KB-BINDER[ACL23] 93.5 99.6 96.4 96.5
LLM (Fine-tuned)

UniKGQA(Jiang et al., 2022)[ICLR22] 97.5 99.0 99.1 98.5
Retrieve-Rewrite(Wu et al., 2023)[IJCKG23] - 97.7 - 97.7

RefKG (Ours) 98.1 99.4 99.0 98.8

Table 3: The performance of the models on MetaQA
(Hits@1). The best results are in bold.

Methods Accuracy Rate (%)
RefKG (full) 81.26 0.00
-triplet only 61.15 -24.74
-w/o Knowledge Refinement 78.55 -3.33
-w/o Knowledge Reconstruction 68.99 -15.10
-w/o JI tunning 50.62 -37.71
RefKG (Lora-ft) 72.45 -10.84

Table 4: Ablation study on the FactKG using llama2-7b.
“Rate” quantifies the reduction in accuracy. JI tunning
denotes the Joint Inference tunning.

to SOTA on the Hop-2 and Hop-3 test sets, under-
scoring its versatility and robust adaptability across
a variety of tasks. This demonstrates RefKG’s con-
sistent and reliable performance across both single-
hop and multi-hop question answering tasks.

4.3 Ablation Study

Is text form better than triplet form? As il-
lustrated in Table 4, our experiments suggest that
replacing natural language text with triplets results
in a performance decline of about 20%. We hypoth-
esize that triplets may lack crucial semantic details,
hindering the model’s ability to process the infor-
mation effectively. In contrast, providing evidence
in natural language aligns better with the LLM’s
pre-training corpus, enhancing the model’s ability
to utilize the information more efficiently.

How does Knowledge Refinement enhance in-
ference performance? As illustrated in Table 4,
removing Knowledge Refinement from the RefKG
framework results in a performance drop of ap-
proximately 2.71%. This highlights the impor-

Model Base Model RefKG (Ours) Difference
Llama-2 7B 34.12 81.26 -47.14
Bloom 7B 37.65 84.04 -46.39

Internlm-2 7B 39.41 82.04 -42.63
Baichuan-2 7B 31.73 80.30 -48.57

Average 35.73 81.84 -46.11

Table 5: Comparison of Multi-task Tuning and untrained
base model.
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Figure 4: Comparison of Multi-task Tuning and Single-
task Tuning.

tance of reflection in the model’s analytical pro-
cess. Through reflection, the model can indepen-
dently identify and discard incorrect relations and
evidence, leading to more accurate inferences.

What role does multi-task tuning play in RefKG?
We first conducted comparison experiments using
an untrained base model for the entire process, with
results presented in Table 5. The findings reveal
a 46.11% average performance drop, indicating
that untrained models struggle with our multi-task
framework and lack the capacity to handle complex
knowledge-based tasks.

Then we conducted an experiment to evalu-
ate the performance gap between multi-task fine-
tuning and single-task fine-tuning. Specifically,
we train the LLM on multiple independent single
tasks and then combine the trained LLMs into a
unified system for inference. We refer to this ap-
proach as single-task tuning. As shown in Figure 4,
single-task tuning weakens the model’s overall ca-
pabilities compared to multi-task tuning, leading
to a decline in task performance, with an average
accuracy drop of 3.21%.

We attribute the advantages of multi-task tuning
to three key factors: (1)Multi-task tuning enables
the model to share hidden layers across different
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Figure 5: A case study on FactKG. The left figure illustrates the process of RefKG handling a claim, while the right
figure depicts the modification made to the knowledge graph, resulting in the change of RefKG’s response.

Figure 6: Impact of varying the number of Top-K re-
trieval with Llama-2 and Bloom on FactKG.

tasks, thereby facilitating the sharing of learned fea-
tures and representations. (2)Training on multiple
tasks simultaneously mitigates overfitting, enhanc-
ing the model’s ability to generalize. (3)Multi-task
tuning optimizes data utilization and lowers com-
putational costs.

4.4 Further Analysis

Impact of numbers of Top-K Retrieval. As
shown in Figure 6, we investigated the impact of
Top-K values ranging from 1 to 5. The Bloom
model consistently improves as the Top-K value
increases, while the Llama model shows a decline
in performance with higher Top-K settings. This
suggests that an increase in the number of paths
selected, and consequently, more evidence being
generated, may overwhelm the Llama model, com-
plicating its ability to distill crucial information
from an extensive pool of evidence. Interestingly,
when the Top-K value is set to 1, where only the
most probable relation is chosen, RefKG still per-
forms well. This indicates that the LLM’s ability

to select the most relevant relation from a limited
set is often sufficient for accurate results.

Qualitative Analysis We conduct a case study
as presented in Figure 5. Based on the given state-
ment, our method RefKG performs sentence decom-
position to identify triplets and transform them into
evidence. Since no relevant fact is found in the
knowledge graph for the statement “William An-
ders was born in Kashmar”, our model outputs

“False”. This underscores RefKG’s capability to pre-
cisely detect the absence of supporting evidence for
incorrect statements and to consequently deliver an
accurate verdict.

Furthermore, we explore whether RefKG can
adapt to newly updated knowledge. By manually
adding a new path into the original KG, our model
adeptly identifies and processes the triplets into
evidence, resulting in a diametrically opposed con-
clusion. This case demonstrates the model’s ability
to seamlessly adjust to updated factual knowledge,
negating the necessity for further training or adjust-
ments. This flexibility highlights RefKG’s potential
for maintaining relevance and accuracy in the face
of evolving knowledge bases.

Noise Analysis. We randomly selected 100 sam-
ples from the FactKG dataset and conducted a de-
tailed analysis of the noise introduction and reduc-
tion in the decoupling, retrieval, scoring, and recon-
struction steps, as shown in Table 8. We defined
three statistical metrics:

• Noise introduction: Refers to the intro-
duction of incorrect knowledge, conflicting
knowledge, or loss of correct information at a
particular step.
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• Noise reduction: Refers to successfully re-
moving incorrect or irrelevant knowledge at a
particular step.

• Correctness: Indicates whether the cur-
rent knowledge information contains correct
knowledge.

The details of the noise flow in the four stages
are as follows:

In the Query Decoupling: A few cases may ex-
perience partial entity information loss, introducing
noise.

In the Subgraph Retrieval: To retrieve as much
relevant knowledge as possible, some irrelevant or
conflicting knowledge may be introduced. Conflict-
ing information can interfere with results, while
irrelevant information has minimal impact.

In the Knowledge Refinement: Incorrect and
irrelevant triples are scored and removed, but a few
correct answers may be mistakenly filtered out.

In the Knowledge Reconstruction: While con-
verting triples into textual information, the model
performs implicit reasoning, possibly discarding
incorrect or conflicting information. This process
may also result in the loss of a few correct pieces
of information.

The statistical results show that noise introduc-
tion is often difficult to completely avoid when han-
dling complex problems. Through the collaborative
operation of various tasks, particularly during the
Knowledge Refinement and Knowledge Recon-
struction stages, we effectively control noise, sig-
nificantly mitigating its cumulative effects across
tasks and reducing its impact on overall perfor-
mance. This further validates the robustness and
effectiveness of our approach in complex knowl-
edge reasoning scenarios.

5 Conclusion

In this paper, we proposed the RefKG framework,
which engages with knowledge graphs in a reflec-
tive manner to identify the most likely relational
paths and evidence, using this curated evidence to
derive answers. To Infuse the LLM with the abili-
ties to decouple, navigate, refine, reconstruct, and
reason over knowledge, we developed a knowledge-
driven multi-task tuning approach and built a cor-
responding training corpus. The experimental re-
sults prove its effectiveness on fact verification and
knowledge graph question answering. Our method
can be deployed on any open-source LLM, and the

experimental results indicate that it achieves excel-
lent performance in fact verification and knowledge
graph question answering.
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Limitations

In this section, we faithfully discuss the limitations
of our approach and potential avenues for future
research.
Cumulative Error Effect. Although our frame-
work can handle some complex multi-hop or nega-
tion questions, it involves multiple subtasks. The
workflow of the pipeline generates a cumulative er-
ror effect. For example, if the model misidentifies
entities in the first step of sentence decomposition,
subsequent answers obtained will inevitably be in-
correct. Therefore, future work could focus on
reducing error rates by introducing efficient and ac-
curate retrieval methods or instruction fine-tuning
methods.
Larger Model Sizes. Limited by computational re-
sources, we only applied RefKG to the 7B LLM and
conducted full-parameter fine-tuning of the model
under this configuration without testing larger mod-
els. We hope to conduct experiments on models
with larger parameter sizes such as OPT (175B) in
the future.

Ethical Considerations

Our approach RefKG has been validated on publicly
available datasets FactKG and MetaQA. However,
it is unclear how RefKG performs on other specific
datasets or domains. Therefore, using RefKG in
some highly sensitive and high-risk datasets or do-
mains may result in the generation of offensive
information or other unexpected consequences. We
recommend practitioners to conduct thorough test-
ing and inspection before applying our method to
real-world scenarios.
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A Appendix

A.1 Large Language Models
We conducted extensive experiments on multiple
7B open-source LLMs, including popular models
such as Llama-2, Bloom, Vicuna, Internlm-2 and
Baichuan-2.
Llama-2 is an LLM optimized for dialogue
scenarios based on Llama 2, particularly suitable
for handling KGQA tasks. Vicuna is an LLM
fine-tuned based on Llama 1.
Bloom is an LLM trained on the Megatron-LM
GPT2, utilizing unique decoder structures, nor-
malization of the word embedding layer, linear
bias attention position encoding with the GeLU
activation function, and other advanced techniques.
Baichuan-2 is developed by Baichuan Intelligence,
is a highly influential AI large-scale model. It
integrates intent understanding, information
retrieval, and reinforcement learning technologies,
achieving high-performance results through
supervised fine-tuning and alignment with human
intent.
Internlm-2 is capable of efficiently supporting
ultra-long contexts of up to 200,000 characters,
achieving a leading level among open-source
models in tasks such as Longbench and E-eval. Its
comprehensive capabilities have shown all-around
advancements over the previous generation of In-
ternlm, and it possesses strong code interpretation
and data analysis abilities.

A.2 Datasets
We conduct extensive experiments on three
datasets: FactKG (Kim et al., 2023b),
MetaQA (Zhang et al., 2018) and WebQSP (Yih
et al., 2016).

FactKG is a fact-verification benchmark based
on KG, containing 108K natural language state-
ments verifiable via DBpedia (Lehmann et al.,
2015), categorized into five reasoning types: One-
hop, Conjunction, Existence, Multi-hop, and Nega-
tion.Furthermore, FactKG contains various linguis-
tic patterns, including colloquial style statements
as well as written style statements, to increase prac-
ticality.

MetaQA is a comprehensive benchmark for as-
sessing question-answering systems, particularly
those utilizing knowledge graphs. It comprises
over 400K questions, including one-hop, two-hop,

and three-hop reasoning. This dataset is crucial
for evaluating knowledge graph-based question an-
swering, especially in handling complex multi-hop
reasoning and noisy inputs.

WebQuestionsSP is a KGQA benchmark con-
taining full semantic parses in SPARQL queries
for 4,737 questions (3,098 train, 1,639 test). It is
built on Freebase and includes multi-hop questions,
linked through topic entities, reasoning chains, and
SPARQL queries. It provides semantic parses in
SPARQL with standard Freebase entity identifiers,
which can be directly executed on Freebase to re-
turn answers to questions.

A.3 Corpus Generation

Recognizing ChatGPT’s exceptional abilities in un-
derstanding and generating text, as highlighted in
recent research (Li et al., 2023a; Tahmid Rahman
Laskar et al., 2023), we use the GPT-3.5-turbo API
($0.002 / 1K tokens) to generate training corpora,
with the following steps:

Query Decoupling. Given a question q and a
set of entities e, we insert them into a predefined
generation template pdec to obtain a text prompt.
This text prompt is then input into ChatGPT
to produce an output sequence z = [z1, ..., zT ],
which includes sub-queries and their respective
entity subsets.

Knowledge Reconstruction. Given an evidence
subgraph Gevi stored in triplet form, we first
linearize it into a text format by concatenating
the head entity, relation word, and tail entity to
form textual triplets. We insert this sequence of
triplets into a predefined template pevi: “Your task
is to transform a knowledge graph in triplets (or
tuples) format into a single sentence, preserving
the original words or expressions from the triplets
as much as possible. The knowledge graph is:
{graph}. The sentence is:”. This prompt is then
fed into ChatGPT, resulting in an output sequence
z = [z1, ..., zT ] that contains the textualized
evidence.

Joint Inference. Given a query q and an evidence
sequence evi, we insert both into a predefined tem-
plate pinf , input it into ChatGPT, and the model
will produce inference results and explanations
based on the input.
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A.4 Baselines

We compare RefKG with four types of baselines: 1)
Embedding-based methods, 2) Retrieve-augmented
methods, 3) Prompting-based LLMs methods, and
4) Fine-tuned LLMs methods. The details of each
baseline are described below.

Embedding-based methods.

• KVMemNN (Xu et al., 2019) utilizes a Key-
Value memory network to store triples and
conducts multi-hop reasoning through itera-
tive operations on the memory.

• EmbedKGQA (Saxena et al., 2020) ap-
proaches reasoning on knowledge graphs as a
sequential link prediction problem by leverag-
ing the embeddings of both entities and ques-
tions.

• NSM (He et al., 2021) employs a sequential
model to replicate the multi-hop reasoning
process.

• TransferNet (Shi et al., 2021) uses a graph neu-
ral network to capture the relevance between
entities and questions for reasoning. process.

Retrieve-augmented methods.

• GraftNet (Sun et al., 2018) retrieves relevant
subgraphs from knowledge graphs using en-
tity linking.

• PullNet (Sun et al., 2019) trains a retrieval
model that combines an LSTM and a graph
neural network to retrieve a question-specific
subgraph.

• SR+NSM (Zhang et al., 2022) introduces a
relation-path retrieval mechanism to retrieve
subgraphs for multi-hop reasoning.

Prompting-based LLMs methods.

• KB-Binder (Li et al., 2023b) is the first to en-
able few-shot in-context learning over KBQA
tasks.

• KAPING (Baek et al., 2023b) propose to aug-
ment the knowledge directly in the input of
LLMs.

• KG-GPT (Kim et al., 2023a) is a multi-
purpose framework leveraging LLMs for tasks

employing KGs. It comprises three steps: Sen-
tence Segmentation, Graph Retrieval, and In-
ference, each aimed at partitioning sentences,
retrieving relevant graph components, and de-
riving logical conclusions, respectively.

• StructGPT (Jiang et al., 2023) proposes an in-
voking linearization-generation procedure to
support LLMs in reasoning on the structured
data.

• ToG (Sun et al., 2024) enables LLM agent
to interactively explore related entities and
relations on KGs and perform reasoning based
on the retrieved knowledge.

• FRAG (Gao et al., 2025) is a flexible modu-
lar KG-RAG framework that enhances LLM
reasoning by estimating query complexity and
applying tailored retrieval pipelines.

Fine-tuned LLMs methods.

• KD-CoT (Wang et al., 2023) retrieves perti-
nent knowledge from knowledge graphs to
formulate faithful reasoning plans for LLMs.

• UniKGQA (Jiang et al., 2022) integrates
graph retrieval and reasoning into a unified
model with LLMs, achieving state-of-the-art
performance on KGQA tasks.

• DECAF (Yu et al., 2022) synergizes semantic
parsing and LLMs reasoning to jointly gener-
ate answers, achieving notable performance
on KGQA tasks.

• Retrieve-Rewrite-Answer (Wu et al., 2023)
propose an answer-sensitive KG-to-Text ap-
proach that can transform KG knowledge into
well-textualized statements most informative
for KGQA. A. Also, they propose a KG-to-
Text enhanced LLMs framework for solving
the KGQA task.

• InstructGraph (Wang et al., 2024) is a frame-
work that empowers LLMs with the abilities
of graph reasoning and generation by instruc-
tion tuning and preference alignment.

A.5 Implementation Details

The details of training hyperparameters are pre-
sented in Table 6.
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Hyper-parameters FactKG MetaQA WebQSP
training strategy full full lora

epoch 3 3 50
sequence length 2048 256 2048

learning rate 1e-5 2e-5 5e-5
batch size 1 1 16

gradient accumulation 4 4 1
optimizer AdamW AdamW AdamW

weight decay 0.01 0.01 0.01
deepSpeed stage 3 3 3

Table 6: Hyper-parameters of training.

FactKG. We extracted a subset of 40,000 data
from the training set to generate our training cor-
pus. Following quality control measures, we pro-
duced a total of 86,786 data instances, divided into
three categories: 31,999 for question decomposi-
tion, 29,702 for evidence generation, and 24,085
for evidence reasoning. For the task of evidence
subgraph retrieval, we configure the number of re-
lations k to be either 2 or 5, and the score threshold
α to 0.6. For a full-parameter fine-tuning of a 7b
model using two A800-80G graphics cards, the
memory consumption is approximately 140G, and
it takes about 24 hours.

MetaQA. We extracted a subset of 30,000
data from the training set to create our training
corpus. In the hyperparameter configuration, we
set the number of selected relations k to 3, and
the score threshold α to 0.7. Since the number of
entities related to each question in the WebQSP
dataset is smaller compared to FactKG, we directly
treat the topic entity as the sole member of the
entity set, in order to train the LLM’s ability to
predict the number of hops. For a full-parameter
fine-tuning of a 7b model using two A800-
80G graphics cards, the memory consumption
is approximately 140G, and it takes about 16 hours.

WebQuestionsSP. We first extract SPARQL
queries and their corresponding topic entities from
the training set. Next, we parse these SPARQL
queries and decompose them into multiple hops.
By designing precise SPARQL query statements,
we perform searches in Freebase, thereby obtaining
inference chains represented in the form of triplets.
By populating predefined task templates with the
obtained ground truth data, we construct training
datasets for each stage. And we set the number of
selected relations k to 3, and the score threshold
α to 0.6. Since the number of entities related to

Stage Total Existence Multi-hop Other
Query Decoupling 62 10 18 34

Evidence Subgraph Retrieval 13 7 1 5
Joint Inference 25 6 3 16

Table 7: Statistics on 100 incorrect samples.

each question in the WebQSP dataset is smaller
compared to FactKG, we directly treat the topic
entity as the sole member of the entity set, in order
to train the LLM’s ability to predict the number of
hops. Due to the small size of our training dataset,
which contains only 3,098 entries, we use Lora for
fine-tuning to prevent overfitting during the train-
ing process. For a lora fine-tuning of a 7b model
using four A800-80G graphics cards, the memory
consumption is approximately 240G, and it takes
about 14 hours.

A.6 Training Details for Expert Model

We trained the Expert LLM using 30,000 annotated
data entries, as detailed below:

Evidence score annotation. For each sub-query
qi and triplet format evidence t, we first employ the
semantic similarity model DistilBERT to assign
a similarity score, denoted as s, to represent the
supportiveness of the evidence triplet toward the
query.

For each sub-query qi, we sort all evidence
triplets t based on their scores, from highest to
lowest. This set includes triplets that are relevant
to the query as well as some that are noise. We
then match these triplets with the ground truth. If
a triplet from the ground truth is ranked among
the top k, we retain it as part of the training data;
otherwise, we filter it out.

It’s important to note that we don’t directly use
all the collected annotated data for training. Instead,
we first conduct a complete inference process with
this data. If the final inference result is correct, we
retain the annotated data as the gold score; if it’s
incorrect, we discard it. This approach ensures the
high quality of the annotated data. Additionally, to
minimize the influence of noise during the training
process, we have eliminated anomalously high and
low scores.

A.7 Error Analysis.

For the error analysis of the FactKG, see Table 7.
To explore the execution efficiency of each step,

we perform an error analysis on FactKG. It was
noted that errors predominantly arise in the Query
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Type Decoupling Retrieval Refinement Reconstruction
Noise Introduction 9 24 2 3
Noise Reduction - - 16 6

Correctness 92 87 85 84

Table 8: Noise analysis of the FactKG.

Dataset Number of triplets Number of calls Inference time

FactKG 10.11 4.8 2.4
WebQSP 19.76 4.4 2.1
MetaQA - 5.1 1.9

Average - 4.8 2.1

Table 9: Evaluation of computational efficiency.

Decoupling stage, primarily due to the model’s
struggle in correctly identifying entities within sen-
tences, a difficulty that is particularly pronounced
in Multi-hop claims. This issue can lead to the
alteration of entities mentioned in a sentence. A
potential solution to mitigate such errors involves
enhancing the model’s sensitivity towards entity
recognition.

A.8 Noise Analysis
We randomly selected 100 samples from the Fac-
tKG dataset and conducted a detailed analysis of
the noise introduction and reduction in the decou-
pling, retrieval, scoring, and reconstruction steps,
as shown in Table 8.

A.9 Evaluation of Computational Efficiency
We randomly selected 100 samples from each of
the three datasets for the efficiency analysis, as
shown in Table 9. We computed the average num-
ber of triples involved in each question, the average
number of LLM calls, and the average inference
time (in seconds).

A.10 Prompts
The 9-shot prompt templates for Query Decoupling,
Evidence Subgraph Retrieval, and Joint Inference
are respectively presented in Table 10, Table 11,
and Table 12.

A.11 Qualitative Analysis
More qualitative results on FactKG and MetaQA
are respectively presented in Table 13 and Table 14.
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Prompt for query decoupling

Please decompose the given sentence into multiple single-hop sub-sentences, which can be rep-
resented by a triplet. Each entity subset should contain no more than two elements, entities can
be duplicated across different subsets, and the union of multiple subsets should equal the original
entity set. Generate the results in the format of (number). (Sentence), (entity set), using "##" to
separate different entities. Refer to the following examples to complete the task:

Examples)
Sentence A: The City of Soldotna is the owner of the AIDAluna.
Entity set: [’AIDAluna’ ## awareaware’"The City of Soldotna"’]
Answer: 1. The City of Soldotna is the owner of the AIDAluna., Entity set: [’AIDAluna’ ## ’"The
City of Soldotna"’]

Sentence B: Born in Gevelsberg, Alan Shepard was awarded the "Distinguished Service Medal".
Entity set: [’Alan_Shepard’ ## ’Distinguished_Service_Medal_(United_States_Navy)’ ## ’Gevels-
berg’]
Answer: 1. Alan Shepard was awarded the "Distinguished Service Medal"., Entity set:
[’Alan_Shepard’ ## ’Distinguished_Service_Medal_(United_States_Navy)’] 2. Alan Shepard
was born in Gevelsberg., Entity set: [’Alan_Shepard’ ## ’Gevelsberg’]

......
Your Task)
Query: ««QUERY»»
Entity set: ««ENTITY_SET»»
Answer:

Table 10: Prompt for query decomposition. ««QUERY»» and ««ENTITY_SET»» will be replaced with the
corresponding query and entity set in the FactKG dataset.

Prompt for evidence subgraph retrieval

I will give you a set of words.

Find the top ««K»» elements from relational words set which are most semantically related to the
given sentence. You may select up to ««K»» words. If there is nothing that looks semantically
related, pick out any ««K»» elements and give them to me.

Examples)
Sentence A: The City of Soldotna is the owner of the AIDAluna.
Words set: [’status’, ’owner’, ’builder’, ’shipOwner’, ’shipBuilder’, ’operator’, ’shipOperator’,
’shipClass’]
Top 2 Answer: [’owner’, ’shipOwner’]
Sentence B: Born in Gevelsberg, Alan Shepard was awarded the "Distinguished Service Medal".

Relational words set: [’birthPlace’, ’mission’, ’awards’, ’rank’, ’region’, ’state’, ’birthYear’,
’country’, ’type’]
Top 2 Answer: [’birthPlace’, ’awards’]
... Now let’s find the top ««K»» elements.
Query: ««QUERY»»
Relational words set: ««RELATION_SET»»
Top ««K»» Answer:

Table 11: Prompt for subgraph retrieval. «<QUERY»» and ««ENTITY_SET»» will be replaced with the correspond-
ing query and Relational words set in the FactKG dataset. ««K»» will be replaced with the chosen hyperparameter
k.
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Prompt for joint inference

You should verify the claim based on the textual evidence. Each evidence is derived from one or
several sentences generated from knowledge graph triplets.
Verify the claim based on the evidence. (True means that everything contained in the claim is
supported by the evidence.) Choose one of {True, False}, and give me one sentence explanation.

Examples)
Claim A: The City of Soldotna is the owner of the AIDAluna.
Evidence: Lack of evidence.
Answer: {False}, there is no evidence that The City of Soldotna is the owner of the AIDAluna.

Claim B: Brandon Carter was born in England and graduated from the University of Cambridge
where the current Chancellor is Leszek Borysiewicz.
Evidence: Brandon Carter attended the University of Cambridge.Brandon Carter was born in
England.Leszek Borysiewicz served as the Vice-Chancellor of the University of Cambridge.
Answer: {True}, everything of the claim is supported by the evidence.

Now let’s verify the Claim based on the Evidence.
Query: ««QUERY»»
Evidence: ««EVIDENCE»»
Answer:

Table 12: Prompt for joint inference.««QUERY»» and ««EVIDENCE»» will be replaced with the corresponding
query on the FactKG dataset and evidence set generated in 3.3.

Type Claim Evidence Subgraph Graph Textual Evidence generation Prediction

One-hop Do you know Agra Airport IATA
Location Identifier is AGR. [Agra_Airport, iataLocationIdentifier, "AGR"], Agra Airport has an IATA

location identifier of "AGR". True

Conjunction Doris Bures is the leader of Austria
where Alfons Gorbach died in Styria.

[Austria, leader, Doris_Bures],
[Alfons_Gorbach, placeOfDeath, Styria],
[Doris_Bures, birthPlace, Austria]

Austria is the leader and birthplace of Doris Bures.
Alfons Gorbach was born and died in Styria. True

Existence At least Dawn Butler had a successor!
[Dawn_Butler, successor, Paul_Boateng],
[Dawn_Butler, birthPlace, England],
[Dawn_Butler, predecessor, Sarah_Teather]

Dawn Butler has a successor named Paul Boateng.
Dawn Butler was born in England.
Dawn Butler has a predecessor named Sarah Teather.

True

Negation I understand that Acura is not
a division of Honda.

[Acura, owningCompany, Honda],
[Honda, division, Acura],
[Acura, owner, Honda]

Acura is owned by Honda
and is also a division of Honda. False

Multi-hop It is located in Alan B Miller Hall
in the United States.

[Alan_B_Miller_Hall, location, Williamsburg,_Virginia],
[Williamsburg,_Virginia, country, United_States]

Alan B Miller Hall locates in Williamsburg,Virginia.
Williamsburg,Virginia is in the United States. True

Table 13: Qualitative results from FACTKG.

Task Question Evidence Subgraph Graph Textual Evidence generation Prediction

Brian Backer appears in which movies? (Moving Violations, starred_actors, Brian Backer) Moving Violations, starring Brian Backer,
is a film. Moving Violations

1-hop who is the writer of the film Habit? (Habit, written_by, Larry Fessenden) Habit, written by Larry Fessenden. Larry Fessenden

what kind of film is The Old Dark House? (The Old Dark House, has_genre, Comedy)
(The Old Dark House, has_genre, Horror)

The Old Dark House is a Comedy.
The Old Dark House is a Horror genre. Comedy

what genres do the movies written
by Anders Nilsson fall under?

(The Third Wave, written_by, Anders Nilsson),
(The Third Wave, has_genre, Action)

The Third Wave, written by
Anders Nilsson, is an action genre. Action

2-hop what are the primary languages in
the movies directed by David Mandel

(EuroTrip, directed_by, David Mandel)
(EuroTrip, in_language, German)

EuroTrip, directed by David Mandel,
is a film in the German language. German

who is listed as director of
Joseph Stein written films

(Fiddler on the Roof, written_by, Joseph Stein),
(Fiddler on the Roof, written_by, Joseph Stein)

Fiddler on the Roof, written by
Joseph Stein and directed by
Norman Jewison, is a film.

Norman Jewison

what genres do the films that
share writers with Karate-Robo Zaborgar
fall under?

(Karate-Robo Zaborgar, written_by, Noboru Iguchi),
(RoboGeisha, written_by, Noboru Iguchi),
(RoboGeisha, has_genre, Action)

Karate-Robo Zaborgar and RoboGeisha
are written by Noboru Iguchi and they
both belong to the genre of Action.

Action

3-hop
the movies that share writers
with the movie Naqoyqatsi
were released in which years?

(Naqoyqatsi, written_by, Godfrey Reggio),
(Powaqqatsi, written_by, Godfrey Reggio),
(Powaqqatsi, release_year, 1988)

Naqoyqatsi and Powaqqatsi were
written by Godfrey Reggio and
were released in 1988.

1988

who is listed as screenwriter of
the movies directed by the
The Battle of Shaker Heights director?

(The Battle of Shaker Heights, directed_by, Kyle Rankin),
(Infestation, directed_by, Kyle Rankin),
(Infestation, written_by, Kyle Rankin)

The Battle of Shaker Heights
and Infestation, directed by Kyle Rankin,
were written by Kyle Rankin.

Kyle Rankin

Table 14: Qualitative results from MetaQA.
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