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Abstract

Pre-trained language models (PLMs) fragment
numerals and units that express quantities in
arbitrary ways, depending on their subword
vocabulary. Consequently, they are unable to
contextualize the fragment embeddings well
enough to be proficient with dense retrieval in
domains like e-commerce and finance. Arith-
metic inequality constraints (“laptop under 2
Ib”) offer additional challenges. In response,
we propose DeepQuant, a dense retrieval sys-
tem built around a dense multi-vector in-
dex, but carefully engineered to elicit and ex-
ploit quantities and associated comparison in-
tents. A novel component of our relevance
score compares two quantities with compati-
ble units, conditioned on a proposed compari-
son operator. The uncertain extractions of nu-
merals, units and comparators are marginal-
ized over in a suitable manner. On two public
and one proprietary e-commerce benchmarks,
DeepQuant is both faster and more accurate
than popular PLMs. It also beats several com-
petitive sparse and dense retrieval systems that
do not take special cognizance of quantities.

1 Introduction

Transformer-based contextual text encoders (De-
vlin et al., 2019; Lewis et al., 2019; Reimers and
Gurevych, 2019) have greatly enhanced dense re-
trieval (Mitra and Craswell, 2018; Zhao et al.,
2024) in recent years. In several retrieval appli-
cations, such as in finance and e-commerce, quan-
tities enjoy a central role. A quantity consists of
a numeric component and possibly a unit, which
implies the type of the quantity. E.g., a laptop may
weigh 2.5 (numeral) 1bs (unit of weight). Units
can be written in many ways (pound, lb, ft, feet).
Numerals can have diverse styles (use of comma
vs period, or mantissa-exponent vs decimal).
Current transformer-based text encoders use
byte-pair or subword (Gage, 1994; Sennrich et al.,
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2016) dictionaries to fragment the input text. Be-
cause this process is not tailored to quantities,
numerals and possibly units are fragmented, and
transformer networks have limited means to con-
textualize the fragments back into meaningful rep-
resentations, resulting in limited numeracy (num-
ber representations that are effective for inference
and generation) (Wallace et al., 2019).

Additional complications arise in quantity cog-
nizant search, because the quantities in the query
are often associated with comparison intents.
These are exceedingly common in e-commerce,
e.g., XL shirt under 20 dollars, 2-way 6 amp
switch, or phone with 10 hour battery. In the
first query, the inequality constraint is explicit; in
the third, a tablet with a 12-hour battery will be
satisfactory (if not too expensive). In the second
query, 2 requires a categorical match. Such “com-
mon sense” is often baked into PLMs. A PLM
may even be able to model that a light car weighs
about a ton, whereas a light laptop weighs under
two pounds. If only PLMs were endowed with
better quantity representations, and these could be
exploited in search, such queries would perform
better.

Our goal is to build a dense retriever with
modest-sized PLM as its encoder to fetch docu-
ments matching the quantitative inequality con-
straints in the natural language queries. We wish
to capture the semantics of quantities in the same
dense space as ordinary words, on both the query
and corpus sides.

Our contributions: We present DeepQuant,
a quantity and comparison-cognizant dense re-
trieval system. Like several recent quantity-
oriented retrievers, DeepQuant preprocesses the
quantity spans in a custom module before inject-
ing quantity-derived features into a transformer-
based encoder PLM. The PLM is fine-tuned to
reconstruct masked quantities and their units, as
well as contextual arithmetic comparison opera-
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tors expressed in natural language. Through an
attention-like structure that assists diagnostics and
explainability, quantity constraints in the query
are matched and scored against quantities in cor-
pus documents. DeepQuant uses generic neu-
ral building blocks that are end-to-end trainable
from relevance judgments. Apart from two pub-
lic data sets, we experiment with a proprietary
data set (ECom) from a major e-commerce com-
pany, showing broad gains against sparse and
dense retrievers and fine-tuned LMs without spe-
cial devices to handle quantities, and a large
zero-shot PLM. Anonymized prototype code and
data are available at https://anonymous. 4open.
science/r/proj-D9FE/

2 Related work

An emerging body of work (Ho et al., 2019,
2020, 2021, 2022; Li et al., 2021; Almasian et al.,
2024b) seeks to address the gap between text in-
dexes and quantity-rich queries. Underlying lex-
ical search (sparse retrieval) or execution engines
(e.g., Apache Solr, SPARQL implementations) at
last stage inference of these systems provide lim-
ited structured query interfaces (like SQL) involv-
ing quantities and hence are not suited for end-user
interaction.

Open-domain question answering, where the
answer is a distribution over quantities, has
been attempted on unstructured text (Roy et al.,
2015) and tables with quantities (Ibrahim et al.,
2016). Semantic interpretation, e.g., text2sql
(Katsogiannis-Meimarakis and Koutrika, 2023), is
applicable more for a structured (e.g., RDBMS)
rather than unstructured text corpus. In spe-
cific verticals such as agronomics, strict schema-
adherent data can be extracted from text (Rybinski
et al., 2023, SciHarvester) for structured query
execution. Also, none of these works addresses
quantity comparisons.

Representing numbers meaningfully in lan-
guage models (LM) is a parallel development
(Geva et al., 2020; Sundararaman et al., 2020;
Thawani et al., 2021; Liang et al., 2022). Chen
et al. (2023, ComNum) prepared a dataset for
comparing numbers, which can be used to fine-
tune LMs. Numeracy can be enhanced by lay-
ing anchors via unsupervised pre-training (Sharma
et al.,, 2024). Alternatively, mathematical priors
can help compute aggregated digit embeddings ex-
plicitly incorporating them into transformer mod-

els (Sivakumar and Moosavi, 2025).

DeepQuant  incorporates  insights  from
Spokoyny et al. (2021), who adopted the
(mantissa, exponent, unit, type) representation as
a ‘measurement’ and pioneered reconstruction of
masked measurements from context. They were
not concerned with retrieval. Apropos of retrieval,
apart from a disjoint comparison of text and quan-
tity, Almasian et al. (2024a, Section 3.3) propose
a templated corpus augmentation method that
highlights comparisons and unit surface forms.
This is a data engineering approach: once a LM is
tuned on this augmented corpus, scoring remains
the same as in BM25 (Jones, 1972), ColBERT
(Santhanam et al., 2022) or SPLADE (Formal
et al., 2021). In contrast, we engineer both the
encoding and scoring networks substantially, with
clear payoffs.

3 DeepQuant

We describe DeepQuant in detail, guided by Fig-
ure 1. To keep it simple, most of the exposition
will make the assumption that the query has ex-
actly one quantity associated with one compari-
son intent. This is the case in all but a vanish-
ing minority of queries in all our data sets. How-
ever, DeepQuant applies equally to multiple com-
parisons; see Appendix G.

3.1 Notation and problem statement

The query is denoted (). Depending on context,
we may regard () as a set, bag (multiset), or se-
quence of tokens, or a set of contextualized to-
ken embeddings. A query token is denoted ¢, and
its contextualized token embedding is denoted q.
Similarly, a document or passage in the corpus is
denoted D, containing tokens d and their embed-
dings d.

While basic sparse and dense retrievers con-
sider all these tokens at par, we will partition each
bag (say, {@Q}) into two kinds of tokens: ordi-
nary text tokens {Q¢} and quantity-expressing
tokens {@Q4}. D is subjected to the same pro-
cedure. However, the encoder we use will contex-
tualize all tokens together, in their original sequen-
tial order.

As in classical learning to rank (Liu, 2009),
the retriever’s scoring module score(D|Q) will be
trained using a limited corpus of manually labeled
relevance judgments. Given a query () and rele-
vant document Dg,, we sample some number of
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Figure 1: DeepQuant block diagram. (LM tokenization is elided to reduce clutter.) B Quantity span b in doc-
ument D is processed by CQE (or any other accurate quantity extractor) to extract mantissa, exponent and unit.
Quantity-specific embeddings are slipstreamed/superposed on a special token [num] embedding before being
injected into the transformer encoder. §J Prediction networks for mantissa, exponent, unit and comparison operator
are attached to the output embedding for [num]. & These prediction networks are trained while fine-tuning the
PLM. B Predicted comparator op is used to define the relevance [ of span b to analogous quantity span a in the
query. [ Textual and quantity-based relevance scores are combined. [ The overall score is trained end-to-end
using more relevant documents Dg, and noise-contrastive samples of less relevant documents Dg for query Q.

other documents Dg presumed less relevant, and
use these in a noise-contrastive (Jozefowicz et al.,
2016) retrieval loss L. During inference, docu-
ments will be retrieved in decreasing order of their
scores. (Interactive chat systems such as Chat-
GPT, after this retrieval step, will typically use the
top-scoring documents as part of the generation
context, but we focus only on the retriever stage.)

3.2 Injecting quantity spans into the encoder

The first step in DeepQuant’s encoder pipeline is
to extract quantities from queries and documents.
We rely on a state-of-the-art quantity extractor,
CQE (Almasian et al., 2023), and adapt its out-
put to obtain a (mantissa, exponent, unit) triple.
E.g., for input laptop storage 256gb, CQE will
identify the numeral span 256, unit span gb and
extraction triple! (ms = 2.56, €5 = 2, us = GB).
A standard transformer-based encoder might
have tokenized? the above text as lap, top,

1256 is canonicalized to 2.56 x 10? and gb to GB.
2Subword splice “##’ elided to reduce clutter.

stor, age, 25, 6, gb. In DeepQuant, we re-
place "256" with special token [num], which is no
longer fragmented by the transformer’s tokenizer.
In other words, the tokenized input will be lap,
top, stor, age, [num], GB. Tokens x other than
[num] are looked up as usual in a base embedding
matrix B and vector B|z, :] injected into the trans-
former.

However, at the [num] token, we create a new
vector to inject into the transformer by adding
together a base embedding for the extracted ex-
ponent and mantissa. Exponent e, is clipped to
és € [—20,20], and its corresponding exponent
embedding is looked up in another embedding ma-
trix as E[és, :]. For representing the mantissa we
choose a prototype based strategy (Sundararaman
et al., 2020), with a Gaussian kernel. The real
number mg is thereby mapped to a vector akin
to a positional embedding 7. Thus, the vector
injected into the transformer at token [num] will
be B[[num],:] + (E[és,:]||ms) where ‘||”” denotes
concatenation.
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3.3 Training loss for quantities

We extend NumGPT (Jin et al., 2021) to define
a training loss for quantities, because, as they
showed, token-based pretraining does not find
good representations for numbers. We reused their
loss components for the mantissa and exponent,
and add a third component for the unit. The
transformer encoder will output a contextualized
vector for the input token [num], which we call
y[[num],:]. Note that this is expected to include
unit clues, if any, in the input text. E.g., if the input
were lap, top, stor, age, [num], gb, the repre-
sentation of token "gb"” would be suitably assimi-
lated into the output vector for token [num]. This
output vector y[[num], ] is input to three output
networks, which produce logits for the mantissa,
exponent and unit. Losses for mantissa and ex-
ponent are computed as by Jin et al. (2021); loss
for the unit is standard categorical cross-entropy.
Collectively, we call these losses Lgyant-

3.4 Comparison operator prediction

We denote the query (text) as () and candidate
document/passage (text) as D. Suppose a,b are
[num] tokens in @, D respectively. Let yg.,ys
be the contextualized output vectors at these po-
sitions. In principle, the relevance of D wrt () de-
pends on comparison hints in () and the specific
quantities in ¢ and D.

E.g., for Q= laptop under $600, Dg=
Lenovo ThinkPad 512GB storage 560 USD is
more relevant than Do = Apple MacBook 128 GB
price $1200.

To estimate relevance, it is important to asso-
ciate, say, $600 with a comparison operator (or
comparator), from among ope {<, =, >} — here,
the searcher wants “< $600”.

Comparator prediction amounts to estimating
Pr(op |ya,yp). In principle, comparators can be
specified in both ) and D. In practice, docu-
ments, being declarative, will usually state quan-
tities such as $560@ explicitly, rather than assert
comparisons over known quantities. Therefore,
we simplify comparator prediction to the estima-
tion of Pr(op |y,). This decision is guided by our
motivating applications, and also reduces the need
for early interaction. We model

Pr(op |ya) = S{OftMa}X(No(ya)), (1)

where N, is a simple feed-forward network that
outputs 3-way logits over the label space {<,=
, >}. Our relevance score will be defined as a dif-

ferentiable function of Pr(op |y,), and we will
be able to train N, end-to-end with distant super-
vision from (@, Dg, Dg) without needing direct
supervision of op.

3.5 Scoring numeral pairs wrt a comparator

As before, suppose a, b are [num] tokens in (), D
respectively, and let y,, y; be their contextualized
representations. Given a proposed operator op, we
wish to score the belief in the claim “b op a”.
E.g., if ) = laptop under $600, then a corre-
sponds to 6@0 USD and op=<, so if b corresponds
to 500 USD, belief in “b op a” should be high. At
a high level, we compute this belief using a net-
work N(op,ya,ys) € [0,1]. More specifically,
we have three networks Nop(ya, yp) € [0, 1], each
with separate trainable parameters (details in the
Appendix). However, the decisions made by these
three networks should not be independent. If
N<(Yar Yb) = N> (Ya, Yb), We expect N=(Ya, Yp)
to be large. This is encouraged by introducing the
loss term:

Lreg = [1 = N=(ya, Yb)| X )
exp (—|N< (Yo Y) — N> (Ya, )*) . (2)

3.6 Supplementary training for numeral
comparisons

As in math word problems (Sundaram et al.,
2022), spreadsheet manipulation (Ma et al., 2024)
and semantic interpretation (Zhang et al., 2023),
quantities in training corpora may evince strong
clusters and low numeric diversity (e.g., prices).
However, we need to prepare DeepQuant for far
more diversity when deployed, particularly in
the query stream (e.g., apartment under $337k
or schools accepting gre 327). Since quan-
tity spans, values and comparison outcomes are
known during fine-tuning, we impose the follow-
ing cross-entropy loss Lcomp

=YY —[aopb]log N(0p,ya, 1),  (3)
a,b op

where [a op b] = 1 when the comparison holds
true, and O otherwise. It is important to note that
this loss is computed without regard for units, and
only numbers. For example for query Phones
128GB and document Samsung $300, even the
pair (128, 300) contributes to the loss above.
This approach is similar to providing algorithmic
demonstrations (Velickovi¢ and Blundell, 2021;
Velickovié et al., 2022), and the architecture of
DeepQuant helps us integrate it seamlessly.
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3.7 Scoring compatibility of units

Comparing numbers in () and D makes sense only
if these numbers have compatible units. E.g.,
the size of laptop memory in ) should not be
compared to its wattage in ID. Recall that one
of the three output networks after the encoder is
trained to predict the unit for each [num] token
position, say a. Call the output of this network
ug = Nyu(y,). We will compare u,, up as fol-
lows, to find unit compatibility:

exp (ug - up)

)

> pen €XP (Uq - uy)
By design, ) ;. prel(up|u,) = 1. In other words,
units inferred from quantities in the document
compete to match a unit inferred from one quantity
in the query. This attention-like unit compatibil-
ity score will be useful when we define the overall
quantity relevance score.

rel(uplug) =

3.8 Quantity relevance score

Based on our motivating applications, we make
the following assumption: for a given quantity
mention a in the query, inspection of at most one
quantity mention b in the document is adequate to
compute how well b satisfies any necessary com-
parisons with a. (More general scenarios are dis-
cussed in Section 6.)

The first step is to combine numeral relevance
and unit relevance into

rel(ub|ua)Nop(yaayb)> )

where the first term is an estimate of unit com-

patibility and the second term scores the numeric
comparison constraint.

Because we do not know the comparator for

sure, our second step must marginalize over possi-

ble comparators associated with mention a, to get
rel(bla) =

Z Pr(op ‘ya) rel(“b‘“a) Nop(yayyb) 6)
ope{<,=,>}

This formulation decomposes the relevance score
into two components: [ captures the comparator
probability conditioned on the context of a, while
captures the comparator-conditioned relevance
score of the quantity pair.

3.9 Multi-vector relevance score

We start with and enhance a multi-vector dense re-
trieval system such as ColBERT (Santhanam et al.,
2022), where @ and D is each represented by a
bag of contextual token embeddings, which we de-

note as {@Q} and {D}. Given @, ColBERT as-
signs a score to D as

score(D|Q) = Z max_ sim(q,d), (7)
de{D}
qe{Q}

where no distinction is made between quantities
and other tokens.

In DeepQuant, we partition these vector bags
into two bags, one for numeral tokens, the other
for other text tokens:

{Q} ={QxB u{Qo}. ®)

{D} ={Dppu{Do}. )
Bag similarity in DeepQuant is defined as a lin-
ear combination of ColBERT similarities between
numeral bags and text bags:

score({ Dy} U{ Do} | {Q4} U{Q0})
= (1 — a)score({ Dy} | {Q%})
+ ascore({ Do } | {Qo}). (10)

The quantity-based similarity score is defined us-
ing Equation (6), as score({ D4 } | {Q«})

= Z rel(bla).

ac{{Qx}}

Meanwhile, score({ Do } | { Qo }) is computed as
in ColBERT.

In (10), « is not a global hyperparameter, but a
learnt weight parameter that balances the contri-
bution of word and quantity similarities for each
query, because different queries require different
weightings—some rely more on textual/semantic
similarity, while others depend more on numerical
relevance. We use

a = o(Na -y(Q)[[CLST]), (12)
where y(Q)[[CLS]] is the [CLS] vector after en-
coding @, and o is the sigmoid activation.

(1)

be%lg}; B

3.10 Overall fine-tuning loss

During fine-tuning, the whole PLM is updated,
along with other trainable parameters in the net-
works N, N_, N>, N,, N,, N,, as well as em-
bedding matrices B and E. The loss used for
fine-tuning has several parts: (a) retrieval loss
Lyewr, (b) quantity reconstruction loss Lgyane (Sec-
tion 3.3), (c) regularization between quantity com-
parisons L, (Section 3.5), and (d) supplementary
loss for quantity comparisons L¢omp (Section 3.6).

4 Experiments

We report on experiments with two public and one
proprietary datasets, guided by the following re-
search questions.
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RQ1: How does DeepQuant compare with sparse
and dense retrievers that do not implement special
treatment of quantities?

RQ2: How does DeepQuant compare with pre-
trained LMs in zero-shot mode?

RQ3: How do competitors compare when queries
are bucketed by quantity magnitudes, and by «
(that signifies the importance of quantities)?

Dataset Corpus Train Dev Test
FinQuant 300k 200k 10k 420
MedQuant 150k 150k 10k 210
ECom 100k 60k 5k 10k

Table 2: Train/test split of datasets.

4.1 Datasets

We evaluate our method on the recently-
introduced public datasets FinQuant and
MedQuant (Almasian et al.,, 2024a). Fin-
Quant is created from a set of news articles in
the categories of economics, science, sports and
technology, collected between 2018 and 2022.
MedQuant contains TREC Medical Records on
clinical trials. Additionally, we report results
from a proprietary benchmark ‘ECom’ from a
major e-commerce company. These datasets are
consistent with our focus on quantity comparison-
constrained retrieval, unlike complex question
answering benchmarks that test knowledge graph
traversal, arithmetic, logic, or aggregation.

4.2 Baselines

We compare DeepQuant against a spectrum of
baseline retrievers. In what follows, systems
QBM25, QCoIBERT and QSPLADE are from
(Almasian et al., 2024a). We use the sparse re-
triever workhorse BM25 (Jones et al., 2000) and
QBM25, its quantity cognizant extension. For nat-
ural dense retriever baselines, we use ColBERT
(Santhanam et al., 2022) and QColBERT, where
text relevance is computed as in ColBERT, but
numeric relevance uses a sparse scoring style.
SPLADE (Formal et al., 2021) uses contextual
embeddings to compute sparse indices, getting the
best of both worlds. QSPLADE is an extension of
SPLADE that computes quantity-based scores “on
the side” and combine with text relevance.

We also compare with off-the-shelf LMs. We
use RankZephyr (Pradeep et al., 2023), fine-tuned
for retrieval, starting with Mistral7B. RankZephyr
was evaluated in itemwise and listwise mode.

In itemwise mode, (Q,D) are the inputs and
RankZephyr generates a relevance score. Items
are sorted by decreasing score. In (the much
slower) listwise mode, () and candidate docu-
ments are the inputs and RankZephyr directly out-
puts a reranking of the candidates.

Unlike DeepQuant’s LM and RankZephyr, the
largest public LLMs like gpt-4o-mini are not
possible or practical to fine-tune in-house. Ow-
ing to extremely slow response and budget con-
straints, limited experiments were conducted with
gpt-4o0-mini to get an idea of what might be the
best possible LLM performance.

4.3 Implementation details

We use BERT (Devlin et al., 2019) in all variations
of DeepQuant. Similar to Almasian et al. (2024a),
we report precision P@10, mean reciprocal rank
MRR@10, NDCG@10 and recall R@100. All
models are fine-tuned with a batch size of 128
and Adam optimizer (Kingma and Ba, 2017) us-
ing the default parameters provided by Hugging-
Face Transformers (Wolf et al., 2020). Fine-tuning
is carried on for up to 8 epochs, choosing the best
checkpoint based on validation instances. We con-
ducted all in-house PLM experiments on NVIDIA
RTX A6000 GPUs with 48GB RAM.

4.4 Overall comparison

Table 3 compares DeepQuant with the baselines
described above. We observe that DeepQuant ex-
ceeds all baselines, both for precision at top-10
ranks as well as high-recall goals (at rank 100).
Many baselines do not treat words and numbers
differently. QBM25, QSPLADE, QColBERT as-
sume independence between quantities and words
ignoring semantic information related to quan-
tity tokens. For a detailed example, see Ap-
pendix E. DeepQuant shows 7% absolute MRR
improvement beyond the second-best method on
MedQuant and 4% gain on FinQuant. In both
datasets, documents contain multiple quantities
with the same units, which can confuse retrievers
that do not jointly contextualize text and quanti-
ties.

An LLM experiment with RankZephyr-7B in a
zero-shot setting, listwise ranking though better
than pointwise still lags behind several other base-
lines while taking ~12 hours on a single GPU—
substantially higher than the ~20 minutes needed
by other baselines. This indicates even larger
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Model FinQuant MedQuant ECom
s = < 8 o S S S o = S S
5 © el s ©® ® e©l&s © ® @
$ = 2 2|12 = 2 g2/18 = 2 £
BM25 0.06 0.15 0.1 047] 005 0.11 008 037 0.02 001 0.01 0.03
SPLADE 0.21 051 042 074 0.15 037 029 0.63| 0.12 027 024 39
ColBERT 024 057 044 077 0.18 047 036 0.71 | 0.12 029 0.26 040
QBM25 0.20 053 041 055 0.18 044 037 051 0.02 002 0.01 0.02
QSPLADE | 030 0.68 0.53 0.83| 0.19 052 038 070]| 0.13 0.28 026 041
QCoIlBERT | 0.30 0.69 0.56 0.87 | 0.18 0.51 037 0.73] 0.12 0.30 025 041
RankZephyr-
Itemwise | 0.16 039 031 069 | 0.09 0.24 0.19 0.57 - - - -
Listwise 0.23 055 045 069 | 0.15 036 032 0.60 - - - -
GPT-40-mini | 0.17 0.52 0.36 0.69 | 0.13 036 026 0.62 - - - -
DeepQuant | 0.32 0.73 0.59 0.88 | 0.21 059 044 080 0.15 035 029 042
+6.7% +5.8% +5.4% +1.1% |+10.5% +12.7% +15.8% +9.6% |+13.3% +16.6% +11.5% +2.4%

Table 3: Performance comparison between different methods. Percentage improvements over the second-best base-
line are shown in parentheses on a separate line. P@ 10=precision at 10, M@10=MRR @10, N@10=NDCG@ 10,
R@10=recall at 10. (ECom data set has 10k queries with Sk candidates each—too large for RankZephyr-Itemwise
and GPT-40-mini to complete in 40h and many days respectively.)

models (7B vs 110M) struggle with quantity-
constrained queries.

Ablation variant MRR@10
DeepQuant 0.73
—Comparison regularization 0.723
—Supplementary Loss 0.63
—Number Reconstruction Loss  0.59
—Unit Prediction Loss 0.54

Table 4: Effect of removing number reconstruction loss
and supplementary training for number comparisons.

4.5 Drill-down and ablation
4.5.1 Effect of various loss terms

Table 3 indicates that DeepQuant is highly effec-
tive compared against other baselines. In this sec-
tion, we examine the effect of various losses we
propose during finetuning. From Table 4 we ob-
serve that there is sharp decrease in MRR when the
supplementary loss (Section 3.6) is removed. This
reinforces the belief that sparsity in numeric sig-
nal can hurt training. We also observe that number
reconstruction and unit prediction losses do con-
tribute meaningfully to MRR@10. Lastly, we ob-
serve that comparison regularization (Eqn. 2) re-
sults in an additional modest gain.

4.5.2 Effect of quantity magnitudes

We compare the performance of DeepQuant vs.
the best baseline QColBERT after binning the
magnitude of quantities involved in the queries.

For each bin, we show box-plots of the recipro-
cal rank (RR) distribution in Figure 5. We observe
that DeepQuant performs better than QColBERT
in several quantity magnitude buckets.

1.0 o

0.8

Reciprocal Rank

Method
=3 Ours
0.0 BN QColbert

<10 <50 <100 <200 <400 <500
Magnitude

Figure 5: Performance variation across magnitude of
quantities.

4.5.3 Effect of o

DeepQuant estimates o for each query. In
Egn. (10), if « — 0, that means quantities are
more important for the query. Trusting this pre-
dicted o, we bucket queries into ranges of «
and measure within-bucket MRR values for Deep-
Quant and the best baseline QColbert. Figure 6
shows that DeepQuant wins across « buckets, but
the gap is larger for some low-a buckets, vindicat-
ing the design of DeepQuant.

4.5.4 Comparator-bucketed MRR

Figure 7 shows that DeepQuant is better than
QCoIBERT, except on equality queries in Fin-
Quant. The reason for this is that FinQuant (and
MedQuant) require exact matching of quantities
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Figure 6: MRR in various « buckets.

for equality queries. Therefore for query iPhone
$500, document The price of iPhone 11 is $499
is judged as irrelevant. Experiments with a mod-
ified version of FinQuant where gold labels of
equality queries were changed under human super-
vision are described in Appendix H.

I FinQuant-Ours 0o Finquant-QColBERT
|:| [ MedQuant-Ours D 0 Medquant-QColBERT

| | |
0.8 N

=
50

il 8 IHHZ I

Greater Smaller Equal
Figure 7: DeepQuant performance bucketed into <, =
,> query intents on FinQuant and MedQuant. We see
that equality intents perform worst.

4.6 Proprietary data

The ECom data set is rich in equality constraints,
but, unlike what baselines may infer, approxi-
mate (not exact) equality defines relevance. This
leads to two outcomes: first, QBM25, QSPLADE
and QCoIBERT perform very close to BM25,
SPLADE and ColBERT respectively, and sec-
ond, DeepQuant performs relatively better by
soft equality scoring and unified contextualization.
With 10k test queries and 5k candidate documents
per query, RankZephyr, even in Itemwise mode,
takes over 40 h; Listwise ordering is quite imprac-
tical. GPT-40-mini is estimated to take many days.
These latency limitations also establish the need to
implement custom engineered retrieval networks
rather than generic LLMs.

4.7 Anecdotes and analysis

For the query iPhone 11 Pro Max below $1100,
DeepQuant correctly weighs the quantity $1149
in the passage OnePlus 8 costs $599 , the One

Plus 7 T Pro costs $699 , the Samsung Galaxy
S20 Ultra costs $1,199 and iPhone 11 Pro Max
costs $1, 149, and finds it relevant. This is in con-
trast to QColBERT, which considers all quantities
equally across the passage. However, for the query
video playback iPhone over 24 hours, all sys-
tems judge the passage iPhone 11 Pro will last
four hours longer than the iPhone XS. as ir-
relevant. This is because the query requires the
models to know the battery life of iphone XS be-
forehand.

4.8 Multi-constraint queries

Our extensive experience with e-commerce search
suggests that a vast majority of queries, even if
they involve quantities rarely contain more than 1
constraint (specifically, 520 out of 43000 queries).
Moreover, FinQuant and MedQuant contain no
such queries. However as described earlier, un-
like prior art (Almasian et al., 2024a; Ho et al.,
2019, 2020), DeepQuant has no inherent limita-
tion for retrieving such queries. Importantly, as
described in Section 3.4, Eqn (1) and Section 3.9,
Eqn (10), DeepQuant associates comparison intent
with quantities, instead of the whole query like
(Almasian et al., 2024a).

Our formulation is flexible in key ways. In par-
ticular, for multi-constraint queries, it is often the
case that documents may partially violate some
constraint, yet still remain overall relevant. Cru-
cially, not all constraint violations are equally se-
vere: some may be more tolerable than others de-
pending on factors such as query intent, user be-
havior, or nature of gold documents. For exam-
ple, in a query like Smartphone under $500,
storage 512GB, a phone priced at $550 may
still be highly relevant, but a phone with storage
$128GB might be unacceptable. DeepQuant ac-
commodates such cases by learning a soft, data-
driven notion of constraint importance, rather than
relying on rules or hand-crafted heuristics.

Moreover, we are able to train N, end-to-end
with distant supervision from (Q, Dg, Dg) with-
out needing direct supervision of op. To test the
effectiveness of DeepQuant on multi-constraint
queries, we construct a synthetic dataset of such
queries (2 and 3 constraints) from OpenFood-
Facts.? This dataset consists of the nutrition break-
down of several food items. e.g., (banana, energy:
2243, nutrition-score: 14, etc.). To generate such

Shttps://github.com/openfoodfacts

23832


https://github.com/openfoodfacts

Method 2-Comp 3-Comp
MRR@10 NDCG@10 | MRR@10 NDCG@10

ColBERT 42.56 38.75 36.03 32.24

DeepQuant 47.71 4191 41.24 36.02

Table 8: Performance on synthetic multi-constraint queries (2- and 3-attribute) from the OpenFoodFacts dataset.

Method MRR@10
MSMARCO FinQuant
ColBERT (trained on MSMARCO) 0.340 0.337%
DeepQuant (zero-shot) 0.210 0.734
DeepQuant (joint training) 0.332 0.731

Table 9: Evaluation on general-purpose (MSMARCO) and quantity-focused (FinQuant) retrieval. *Best baseline

performance on FinQuant.

queries, we define a small set of multi-constraint
query templates and populate them with relevant
entries from the dataset. We construct a synthetic
eval dataset of 10k queries and a training dataset of
50k positive pairs as documents which satisfy all
the constraints present in the query. Results in Ta-
ble 8 are clearly in favor of DeepQuant. We share
the script used to generate the data.*

4.9 Impact on general retrieval

To assess whether DeepQuant adversely affects
performance on general retrieval tasks without
quantity expressions or intents, we evaluate it on
the MSMARCO passage reranking benchmark,
which contains 8.8 million passages of Web doc-
uments and approximately 500k real user queries
from Bing. Crucially, we do not filter these queries
for quantity comparison intent. We consider the
following experimental settings:

ColBERT (trained on MSMARCO): ColBERT
(Santhanam et al., 2022) trained from scratch
on MSMARCO for 8 epochs with batch size 32
and learning rate 2 x 107°.

DeepQuant (zero-shot): DeepQuant initialized
from the MSMARCO-trained ColBERT check-
point, evaluated on MSMARCO without any
further training.

DeepQuant (joint training): DeepQuant initial-
ized from ColBERT and jointly trained on both
MSMARCO and FinQuant datasets.

The results are shown in Table 9. The Col-

BERT model trained on MSMARCO achieves

the best MRR@10 on that dataset, as expected.

However, DeepQuant—trained jointly on gen-

eral and quantity-focused data—achieves nearly

*https://shorturl.at/oPBv]

the same performance on MSMARCO (0.332 vs.
0.340) while maintaining high performance on
FinQuant (0.731 vs. 0.337). Expectedly, while
DeepQuant exhibits lower zero-shot performance
on MSMARCO (0.210), joint training on both
FinQuant and MSMARCO yields an MRR@10
of 0.332—<close to the ColBERT baseline (0.340).
This demonstrates that the inductive biases intro-
duced by DeepQuant’s quantity-aware modules do
not degrade retrieval quality on general-domain
queries when trained jointly, validating its suit-
ability for unified deployment across both numeric
and non-numeric retrieval scenarios. These find-
ings indicate that incorporating numerical reason-
ing modules into retrieval (via DeepQuant) does
not compromise effectiveness on standard retrieval
benchmarks when trained jointly. Moreover, in
practical deployments, simple query intent clas-
sifiers can be used to selectively route quantity-
based queries to DeepQuant, and all others to a
standard retriever.

5 Conclusion

We introduced DeepQuant, a dense retrieval sys-
tem that is tailored to queries with quantity com-
parison intent, as is overwhelmingly common in e-
commerce and finance search. DeepQuant uses a
PLM fine-tuned for reconstructing masked quanti-
ties with units, as well as end-to-end passage rank-
ing proficiency. It infers the nature of quantity
comparison, and deploys a novel passage scoring
function that incorporates (uncertain) comparison
operators. Experiments on three real-life datasets
establish the promise of our approach.
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6 Limitations

Our work suggests several avenues for further ex-
ploration. Currently, we do not handle unit con-
version, including equivalences between ‘12’ and
‘dozen’, ‘3/4’ and “three-fourth”, etc. A relatively
straight-forward way to extend DeepQuant would
be to use an external tool to create ground truth and
text-number conversions, and generalize masked
quantity reconstruction to diverse units and sur-
face forms. Our set-out goal excluded any compu-
tation, but integraring DeepQuant with some com-
putation capability may be useful. E.g., the query
phone with 10h battery life should score well
with an item that specifies screen-on time: 9
hours; standby time: 3 hours. This is substan-
tially more challenging, as we do not know at in-
dexing time what form of arithmetic is needed on
the document quantities. Extending beyond CQE
as a single point of failure would make DeepQuant
more robust. Toward that end, we may also want
to enhance DeepQuant to deal with a distribution
over possible quantity annotations. A more com-
prehensive evaluation with the most competitive
LLMs like DeepSeek (DeepSeek-Al et al., 2025)
will be of interest. Finally, we could extend from
zero-shot to few-shot retrieval with LLMs.
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Dense Retrieval with Quantity Comparison Intent
(Appendix)

A Mantissa encoding details

Suppose token and state vectors in the transformer
have J elements each. This is partitioned into J,,
elements for the mantissa and J, for the exponent.
Following (Jin et al., 2021) if the mantissa m; € R
extracted from span b in Figure 1 is to be repre-
sented as 17y, € R7™, the jth element is the value
of a Gaussian kernel with mean p; which depends
on j:

10— (-10)
Wy = 1 d+ (—=10), and (13)
1 [f] = exp(—|my — 5] /0?) (14)

where we choose 0 = 1 and J,, to be 90% of
BERT embedding dimension J = 768.

B Fine tuning loss for numeral
reconstruction

Consider the text fragment iphone 15s 389 dol
lars. The standard method that LMs use to en-
code text makes no distinction between words
and quantities—they use byte-pair or wordpiece
dictionaries to tokenize the text. Recent works
(Thawani et al., 2021) suggest that this hinders
appropriate representation of numbers. Moreover,
these works show that using special methods for
encoding numbers can improves the quality of rep-
resentation significantly.

If the base embedding matrix B has J embed-
ding dimensions for each token, we divide the J
dimensions into two parts, J, for the exponent and
Jm for the mantissa, with J, + J,;, = J. Thus
y[[num], :J.] and y[[num], J.:] are designated as
the exponent and the mantissa embedding respec-
tively, at the transformer output. Following Jin
etal. (2021), we impose a MSE reconstruction loss
Lman on the mantissa and a classification loss Lexp
on the exponent, given ground truth quantity ex-
tractions from CQE (Almasian et al., 2023):

Enum = Eexp + Emam (15)

where the exponent is limited to an integer €
[—20, 20].

C Comparison networks N,

The comparison scoring functions are designed
with indexability in mind. For this reason we use
three separate networks N,p,, which score the be-

Query
Samsung Galaxy Z less than $1000

Sample Dg

For comparison, the OnePlus 7 T costs
$549 , the Huawei P30 Pro costs £ 749 ,
the Samsung Galaxy S10+ costs £ 899 ,
the Samsung Galaxy Note 10+ costs $999
and the iPhone 11 Pro Max costs $1,149

Sample Dg

The Galaxy Z Fold 2 was largely about
earning our trust and proving that a
$2,000 folding phone could work in the
| real world .

Figure 10: A tricky win example.

lief “a op b” forop € {<,=,>}.

N(Op, Ya, yb) = Nop,q(ya) : Nop,d(yb) (16)
where Nop. g, Nop.a : R’/ — R’ are LRL feed-
forward networks with 128 hidden units, that take
Ya, Yp as input. Avoiding early interaction and
using dot-product at the output enables the use
of approximate nearest neighbor search (Malkov
and Yashunin, 2018; Guo et al., 2020; Sun et al.,
2023; Simhadri et al., 2023). We use 2-layer feed-

forward networks with each layer of width 128.

D Retrieval fine-tuning loss details

We use the InfoNCE loss (van den Oord et al.,
2019) for optimizing the retrieval objective. Given
a query (@, a relevant document D¥ and a sam-
ple of less relevant documents { D}, we impose

£retr =
| escore(D@ Q)/T 7
— log escore(Dg |Q) /7 1 Z escore(D@ |Q)/7’ (17)

D¢
where score(D,|(Q) are computed as described in
Section 3.9, and 7 is the temperature, chosen as
0.02 based on validation.

E Example win/loss

Figure 10 shows an example of a non-trivial win
for DeepQuant.
E.1 Bucketed query distributions

Figure 11 shows the distribution of queries among
buckets defined by quantity magnitudes for the
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MedQuant dataset Combined with Figure 5, this
explains DeepQuant’s lead over baselines. Fig-
ure 12 shows the distribution of queries among
buckets defined by « as estimated by DeepQuant,
for the FinQuant dataset. (Low o means quantities
are important.) We see a concentration around the
0.5-0.75 range.
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Figure 11: Distribution of queries bucketed by quantity
magnitude as in Figure 5.
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Figure 12: Distribution of queries bucketed by « as in
Figure 6.

F Further details about baselines

BM25: BM25 (Jones et al., 2000) is a sparse vec-
tor space information retrieval model that ranks
documents based on query terms frequency in
each document, adjusted by the terms inverse doc-
ument frequency and documents length.
ColBERT: ColBERT (Santhanam et al., 2022)
captures fine-grained interactions between query
and document tokens. It uses a max-sim late-
interaction operator for improved retrieval accu-
racy over both sparse and bi-encoder dense retriev-
ers by avoiding embedding the whole document
into a single vector.

SPLADE: SPLADE (Formal et al., 2021) is a
learned sparse retrieval model that projects text
into high-dimensional space, producing sparse
representations, by leveraging neural pre-trained

models like BERT (Devlin et al., 2019) to predict
term impacts. The additional terms are then used
to expand query/documents for improved recall.
QBM25, QCoIBERT, QSplade: These (Al-
masian et al., 2024a) quantity aware variants of
BM25, ColBERT, and SPLADE respectively, are
designed to handle queries with numerical condi-
tions. All these methods treat numbers separately
from text, and score the numbers (without using
any context) using handcrafted functions.
RankZephyr: RankZephyr (Pradeep et al., 2023)
is a 7B-parameter, open-source LLM fine-tuned
via instruction tuning with hard-negative mining
for zero-shot Itemwise and Listwise (Liu, 2009)
reranking. In Listwise mode, it is provided all
candidate documents together, can exploit inter-
document dependencies, and jointly reorders these
document. In our experiments we had up to 5000
candidates which would be too long for the LLM’s
input context, so we processed these using a slid-
ing window of 20 candidates at a time. In the faster
Itemwise mode, the query and one document is
submitted to the LLM at a time, and it outputs
a per-document score. These scores are used for
sorting the candidates.

GPT-40-mini: We conduct all experiments with
GPT-40-mini in itemwise mode, since listwise
ranking costs would be prohibitive. = Unlike
RankZephyr, which is finetuned with specific
prompts, we found through trial-and-error the
prompt in Figure 13 to be the most effective. We
injected a single query-document pair into the ap-
propriate placeholders in the prompt, and took the
decoded token as our relevance score.

G Multi-comparator queries

Although we used simple single-constraint queries
to simplify our exposition, DeepQuant naturally
extends to multi-comparator queries such as Lap
top less than $500, storage more than 256GB
and weight less than 21b. This is because, as
per our formulation (Section 3.4), we associate
a comparator with each quantity; see Eqn. (1).
Our scoring function (3.9) works out of the box,
given the summation is over {Q }}, which cap-
tures all the quantities present in the query. More-
over, since our method relies on distant supervi-
sion, we require no supervision on the compara-
tors of associated quantities in queries.
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( System Prompt

You are a search
scorer. Your role is to evaluate
the relevance of documents to a
given query based on both semantic
meaning and numeric  constraints.
You will consider multiple factors,
including keyword overlap, semantic
similarity, and numerical consistency,
to determine a final relevance
score. When processing a query,
extract and interpret numeric values
correctly, ensuring that greater/lesser
comparisons and range constraints are
properly respected. Your goal is to
provide accurate, fair, and robust
scoring that improves ranking quality
in information retrieval tasks.

engine relevance

User prompt

Query: {query}, Document: {doc}. Rate
relevance from 1 to 5. Respond with
only a single number.

Figure 13: Prompt to GPT-40-mini (Itemwise).

Original Curated
DeepQuant 73.2 81.2
QColBERT 80.1 81.3

Table 14: Performance after modified gold relevance

labels for equality queries.

H Curated FinQuant benchmark

As we saw in Figure 7, DeepQuant’s gains were
smallest for equality queries in FinQuant. Closer
manual scrutiny showed that gold labels were ex-
cessively restrictive in these instances. In many
cases, strict equality was clearly not the query
intent, and yet only passages with strictly equal

quantities qualified as relevant.

For this reason, we introduce relaxed relevance
labels for queries that involved equality constraint.
We edited the labels via human supervision, if
warranted. E.g., for query Jeff Bezos worth
177 billion, it is reasonable to match the doc-
ument Bezos, the founder of Amazon.com, is
the worlds richest person with a US$ 176.6
billion fortune, according to the ranking.
However, we did not mark document The central
bank kept rates on hold at 1.00 percent, as
expected. as relevant for the query interest

rates of a bank =1.05 percentage.
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Table 14 shows that DeepQuant essentially

matches QCoIBERT performance on equality
queries once gold labels are sanitized with human
supervision.



