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Abstract

Recent research in information extraction (IE)
focuses on utilizing code-style inputs to en-
hance structured output generation. The intu-
ition behind this is that the programming lan-
guages (PLs) inherently exhibit greater struc-
tural organization than natural languages (NLs).
This structural advantage makes PLs particu-
larly suited for IE tasks. Nevertheless, exist-
ing research primarily focuses on Python for
code-style simulation, overlooking the poten-
tial of other widely-used PLs (e.g., C++ and
Java) during the supervised fine-tuning (SFT)
phase. In this research, we propose Multiple
Programming Languages with large language
models for information extraction (abbreviated
as MPL), a novel framework that explores
the potential of incorporating different PLs in
the SFT phase. Additionally, we introduce
function-prompt with virtual running to sim-
ulate code-style inputs more effectively and ef-
ficiently. Experimental results on a wide range
of datasets demonstrate the effectiveness of
MPL. Furthermore, we conduct extensive ex-
periments to provide a comprehensive analysis.
We have released our code for future research !

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Hoffmann et al., 2022; Smith et al., 2022;
Ouyang et al., 2022; Touvron et al., 2023) trained
on massive natural language have demonstrated
their superiority in a wide range of natural lan-
guage processing tasks, such as machine transla-
tion (Li et al., 2023f; Zhang et al., 2023) and di-
alogue systems (Yang et al., 2024b; Nananukul
and Wongkamjan, 2024). Nevertheless, researchers
have found that LLMs do not achieve desirable per-
formance on information extraction tasks, such as
named entity recognition and relation extraction
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. 1 Code-style Simulation
class Entity:

def __init__ (self, name: str):
self.name = name

class Person(Entity):
'" Description:Person entities are usually person
names or alias, such as Alice, Joe and Bob."""
def __init_ (self, name: str):
super().__init__(name=name)

2 Docstrings Usage

Joe and Williams went to the park last night... "
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Figure 1: The typical procedure of code-style infor-
mation extraction system, which mainly contains two
components: the code-style simulation and the docstring
usage.

(Li et al., 2023a; Xu et al., 2023; Han et al., 2023).
Since IE requires extracting structured knowledge
from complex and variably expressed natural lan-
guage, relying solely on natural language instruc-
tions, even with tailored prompts, may not be suffi-
cient for generating structured outputs effectively
(Li et al., 2023d; Guo et al., 2023; Li et al., 2024c¢).

Recent studies have increasingly focused on ex-
ploring code-style input for IE tasks, as program-
ming languages (PLs) are more formal and struc-
tured than natural languages (NLs) (Van Roy and
Haridi, 2004; Dunn, 2019), making them better
suited for structured generation tasks. Broadly
speaking, existing works (Wang et al., 2022b; Guo
et al., 2023; Li et al., 2023d; Sainz et al., 2023; Bi
et al., 2024; Li et al., 2024¢) mainly involve two
components: 1) Code-style Simulation—where
the textual input is reformulated into a code-style
representation using approach like class-prompt,
which includes base class and subclass to rep-
resent the main task and fine-grained labels, along
with additional elements to maintain standard code
formatting. 2) Docstring Usage—which involves
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using docstrings or guidelines for two main
purposes: adding task and label descriptions within
each class definition and providing explicit instruc-
tions for the task’s inputs and outputs. The above
procedures are briefly shown in Figure 1. Overall,
existing works formulate IE tasks as code-style in-
puts, enabling LLMs to generate structured outputs
more effectively and achieve strong performance
in IE tasks.

Although class-prompt is commonly used to
reformulate a given IE task into code-style in-
put, it often requires defining numerous repeti-
tive elements to maintain a standard format, such
as the constructor __init__ and the attribute as-
signment self.name = name. Besides, some
label descriptions are repeated multiple times in
docstrings due to the structural requirements.
These redundancies not only result in verbose code
but also significantly increase input length, neg-
atively impacting both performance and training
efficiency. To address these challenges, we propose
function-prompt with a virtual running compo-
nent, a more lightweight approach that wraps the
task definitions, label descriptions and textual in-
put into a single function, allowing LLMs gen-
erate the outputs by virtually executing the above
function.

Additionally, previous work on code-style IE
systems has primarily focused on Python, over-
looking the multilingual nature of programming
languages. Specifically, a wide range of commonly
used PLs possess distinct inherent features, that
could make them more suitable for specific IE tasks.
For instance, Python’s clean and readable syntax
(Sarkar, 2016; Holst and Dobslaw, 2021) facilitates
handling complex nested structures and enhances
clarity, making it a standard choice for code-style
in IE systems. However, Python’s dynamic typing
can lead to ambiguous types, which may introduce
errors that are only detected during runtime. In
contrast, C++ enforces strong typing, requiring ex-
plicit declarations of variable types (Stroustrup,
2013, 2014), which helps prevent type-related er-
rors early in development. Additionally, Java’s
object-oriented nature (Blanchet, 1999; Poo et al.,
2008) simplifies the representation of complex data
structures, demonstrating the advantages of consid-
ering a variety of languages for diverse IE needs.
In this paper, we propose Multiple Programming
Languages with large language models for infor-
mation extraction (shortened as MPL), a novel per-
spective that explores the integration of different

PLs in the code-style IE system. To be specific,
for a given textual input, we use three program-
ming languages to simulate the coding process, i.e.,
Python, C++ and Java. These PLs are chosen for
their common use and distinct characteristics, and
the code-style inputs will be used in the supervised
fine-tuning (SFT) process upon LL.Ms, aiming at
exploring the cooperation between different PLs
when dealing with IE tasks.

We conduct comprehensive experiments across
a variety of IE tasks to evaluate the effectiveness of
MPL. Specifically, we use widely used IE datasets
for named entity recognition, relation extraction
and event extraction to create datasets for SFT in
the code-style format. We find that with the help of
the simple and efficient function-prompt, MPL
achieves significantly better performance compared
to previous works that relied on larger model archi-
tectures or extensive external pre-training datasets.
Additionally, our extensive experimental analysis
of code-style simulations, LLM usage, and comple-
mentarity between different PLs provides valuable
insights, serving as practical guidelines for future
research. To sum up, our main contributions are as
follows:

* We are the first to utilize multiple program-
ming languages with LLMs for IE tasks,
aiming to explore the potential of combin-
ing different PLs. MPL’s strategy involves
generating various code-style inputs from
a single textual input and performing SFT
on LLMs. Additionally, we developed the
function-prompt with virtual running for
more efficient and effective code-style sim-
ulations.

* We carry out thorough experiments and anal-
ysis using diverse IE datasets, where MPL
consistently achieves strong outcomes. Our
experiments also extend to exploring differ-
ent aspects of code-style simulation, LLM se-
lection, and the interaction between various
PLs, providing valuable insights for ongoing
research.

2  Proposed Method

In this paper, we propose MPL, a new framework
that leverages multiple programming languages
with large language models for information extrac-
tion. First, we briefly introduce the commonly
used class-prompt, and then we propose a new

2404



Task: Named Entity
Recognition

Definition: Named
entity recognition
(NER) involves
identifying and...

Label Set: FAC, GPE,
VEH,...

def Named_Entity_Recognition(InputText: str):

Task Definition: Named entity recognition (NER)
involves identifying and classifying named entities in
text into predefined categories.

Label Set:

TFAC': A facility is a functional, primarily man-made

structure. Examples: "statue of liberty",...

return EntitylList

vector<Entity*> Named_Entity_Recognition(const string&
InputText) {/*

Task Definition: Named entity recognition (NER)
involves identifying and classifying named entities in
text into predefined categories.

Label Set:

“FAC': A facility is a functional, primarily man-made

InputText = "Europe's divide over Iraq
loomed ever larger Tuesday with France
and Germany denouncing the U.S. move
toward war while British Prime Minister
Tony ..."

EntitylList =
Named_Entity_Recognition(InputText)
EntityList.append(GPE("Europe"))
EntityList.append(GPE("Iraq"))

int main() {

string InputText = “"Europe's divide
over Iraq loomed ever larger Tuesday
with France and Germany denouncing the
U.S. move toward war while British Prime
Minister Tony ...";

vector<Entity*> EntitylList =
Named_Entity_Recognition(InputText);

CGPET: ...
Input Text: Europe's */ .
divide overlraq return EntityList;}
loomed ever larger
Tuesday with France
and Germany
denouncing...

public class Main {
public static List<Entity>

text into predefined categories.
Label Set:

“FAC : A facility is a functional, primarily man-made
structure. Examples: "statue of liberty",...

“GPET: ...
i
return EntityList;}

Textual Input

Named_Entity_Recognition(String InputText) { /**
Task Definition: Named entity recognition (NER)
involves identifying and classifying named entities in

Function Definition

EntityList.push_back(new GPE("Europe"));

structure. Examples: "statue of liberty",...
‘ ++ EntitylList.push_back(new GPE("Iraq"));

public static void main(String[] args) {

String InputText= "Europe's divide
over Iraq loomed ever larger Tuesday
with France and Germany denouncing the
U.S. move toward war while British Prime
Minister Tony ...";

List<Entity> EntityList =
Named_Entity_Recognition(InputText);
(( EntitylList.add(new GPE("Europe"));

EntityList.add(new GPE("Iragq"));
ool

Virtual Running

Figure 2: Our framework utilizes multiple programming languages, i.e, Python, C++, and Java, to convert elements
from IE tasks and target textual inputs into code-style formats. To enhance the simulation process and help LLMs in
processing textual inputs and generating outputs more naturally, we introduce the function-prompt with function
definition and virtual running components. Better viewed in color.

design named function-prompt, which simulates
the coding process in a more lightweight and ef-
fective way. Next, we introduce how to transform
textual input into code-style representations across
multiple PLs. Finally, we provide training details
to clarify the implementation.

2.1 Class-prompt

The Class-prompt comprises two hierarchical lev-
els: base class and subclass, representing the
label definitions of a given IE task at different gran-
ularities. An overview is shown in Figure 1. The
Base class serves as the parent class of all fine-
grained entity, relation and event labels, denoted
as Entity, Relation and Event. For instance,
all entity labels are grouped under the Entity
base class. Typically, the base class contains
a constructor __init__ and the attribute assign-
ment self.name = name. The subclass utilizes
class inheritance to represent more specific labels,
such as a PERSON entity type being a subclass
of Entity, defined as class PERSON(Entity).
Some approaches also incorporate event triggers
within the corresponding event subclass when
applicable. Besides, docstrings or guidelines
are often used within subclass to wrap the task

definitions and label descriptions, providing nec-
essary information for understanding the given IE
task and fine-grained labels easily and accurately.

2.2 Function-prompt

Although class-prompt effectively reformulates
IE tasks into a standard code-style representations,
it requires defining numerous repetitive elements
to maintain the standard code format, and label de-
scriptions often need to be repeated multiple times
in docstrings or guidelines due to the nature
of programming languages. These drawbacks sig-
nificantly increase the length of the code-style in-
puts, negatively impacting both performance and
training efficiency. To address these issues, this
paper introduces function-prompt, designed to
simplify the coding process while preserving the
structural benefits of code-style input. The over-
all framework is shown in Figure 2. Specifically,
function-prompt mainly involves the following
two parts:

Function Definition. Taking NER as an ex-
ample, we first define a function that takes
InputText as an input variable. Next, we add
the task definition and label descriptions in the
docstring, providing crucial information for un-
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derstanding the given task and candidate labels.
Specifically, we use “Task Definition" and “La-
bel Set" to clearly highlight the target task and
its corresponding candidate labels. At the end
of the function, a return statement outputs the
prediction, making our code-style input both com-
plete and more reflective of actual coding prac-
tices. Besides, compared to the class-prompt, our
function-prompt eliminates the need for repet-
itive additional elements and label descriptions,
thereby providing a simpler and more lightweight
method for simulating code-style inputs.

Virtual Running. Unlike previous approaches
that solely rely on docstrings to guide models
in processing inputs and generating outputs—a
method that is somewhat unnatural for code-style
inputs—our function-prompt incorporates a vir-
tual running step. This step involves taking the
textual input as input to the function and execut-
ing it virtually. Virtual running not only makes
interaction with LLMs more intuitive under the
code-style representation but also enhances their
ability to generate structured outputs efficiently.
During the generation phase, outputs are stored
and displayed using a list. For instance, with
the NER task, the Named_Entity_Recognition
function runs virtually, and each identified entity is
subsequently appended to an EntitylList.

2.3 Multiple Programming Languages for
Information Extraction

Instead of relying solely on Python, this study em-
ploys a broader range of programming languages,
including Python, C++, and Java, to simulate the
code-style inputs. MPL represents a given textual
input from multiple programming languages per-
spectives and learns complementary information.
For a given task and a textual input, we show dif-
ferent code-style inputs in Figure 2, and the whole
input for each programming language is provided
in the Appendix C.

To convert a given IE task and textual input into a
code-style representation, we develop transforming
functions for each programming language. These
functions reformulate the textual input to align with
the syntax and structure of the respective program-
ming languages. In this process, we follow two key
guidelines: 1) ensuring that all necessary informa-
tion, such as the task name and definition, candi-
date labels and descriptions, along with the virtual
running component, is wrapped within the chosen
programming language; 2) maintaining consistency

in the logic of the code design and the execution
flow across Python, C++, and Java. Following
these principles, we generate code-style inputs that
convey similar semantic meanings while adopting
diverse formats for IE tasks.

2.4 Training and Testing

During the training phase, these code-style inputs
are used in the supervised fine-tuning (SFT) phase
for IE tasks. We apply the standard Next To-
ken Prediction loss, training our models solely
on the actual output tokens while excluding the
input sequences. For example, in the NER task
shown in Figure 2, we compute the loss only af-
ter EntityList = , and the output order follows
the label definition order. All the code-style in-
puts with different programming languages are ran-
domly shuffled before feeding into the model. Dur-
ing the testing phase, unless specified otherwise,
inputs from three programming languages are used
to derive predictions, which are then aggregated
through a voting mechanism to determine the final
results Z (referred to as the default setting).

3 Experimental Setup

3.1 Dataset

In this paper, we use the following widely used
datasets across various IE tasks. These tasks in-
clude Named Entity Recognition (NER), Rela-
tion Extraction (RE), Event Argument Extraction
(EAE) and Event Extraction (EE). Specifically, we
use ACEO5-NER3, BC5CDR (Wei et al., 2016),
DIANN (Fabregat et al., 2018), NCBID (Dogan
and Lu, 2012), WNUT2017 (Derczynski et al.,
2017) CoNLLO3 (Sang and De Meulder, 2003),
and OntoNotes 5.0 (Pradhan et al., 2013) for NER,
ACEO5-RE for RE. As for event-related tasks,
we use ACEO5-EAE and RAMS (Ebner et al.,
2019) for EAE, and ACEOS5-EE for EE. The above
datasets cover a wide range of topics and are suit-
able for the SFT phase. Consistent with previous
works (Sainz et al., 2023; Li et al., 2024c¢), the
Micro-F1 score is used to evaluate performances.
The star (*) is used to indicate that the OntoNotes
5 dataset was aligned to the GOLLIE (Sainz et al.,
2023) setup, which differs significantly from that
used by KnowCoder in both training and testing.

*We also evaluate the model using a single PL during
testing and observed only a slight performance degradation,
please refer Section 4.3 for more details.

3https://catalog.1dc.upenn.edu/LDC2006T06
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CodeLLaMA-7B | CodeLLaMA-13B

GoLLIE MPL |GoLLIE MPL SLM KnowCoder GoLLIE-34B MPL-8B
ACEO5-NER| 88.1 89.6 89.4 90.6 86.6 86.1 89.6 91.4
BCSCDR 87.5 87.9 87.9 87.8 91.9 89.3 88.4 89.6
CoNLL03 92.8 93.1 93.0 93.2 93.0 95.1 93.1 93.5
DIANN 79.4 84.8 82.6 85.7 74.8 94.7 84.1 85.4
NCBID 854 87.2 86.5 88.4 90.2 83.8 85.8 88.1
OntoNotes5*| 83.4 83.7 84.0 84.7 84.6 - 84.6 85.7
WNUT2017 | 52.0 53.1 50.5 52.6 60.2 66.4 54.3 52.6
ACEO5-RE | 63.6 65.8 67.5 66.0 66.1 64.5 70.1 70.8
ACEOS-EAE| 66.0 71.2 67.8 72.9 54.8 70.3 68.6 72.8
RAMS 48.7 48.9 49.6 494 | 48.6 - 51.2 50.9
ACEOS-EE | 722 70.7 70.9 70.1 73.4 74.2 71.9 72.7

Avg.Score 744 76.1(+1.7)| 754 76.5(+1.1)| 74.9 - 76.5 77.6(+1.1)

Table 1: We conducted extensive experiments on CodeLLaMA-7B , CodeLLaMA-13B and LLaMA3-8B, where
MPL-8B denotes the backbone is LLaMA3-8B. The values in brackets represent the performance differences
between our MPL approach and the corresponding GoLLIE model. To minimize randomness, we tested each model
five times and reported the average performance. Additionally, we conducted t-tests to compare our results with
previous results, confirming that our results are statistically significant with a p-value of less than 0.05.

3.2 Training Details

We use the base version of StarCoder-v2 (Lozhkov
et al., 2024), LLaMa2-7B (Touvron et al., 2023),
CodeLLaMA-7B, CodeLLaMA-13B(Roziere et al.,
2023) and LLaMA3-8B # in our experiments >. We
use QLoRA (Dettmers et al., 2024) with lora_rank
= 96 and lora_alpha = 192 for efficient training,
the dropout ratio is set to 0.1. The models were
trained with batch size of 8 and a learning rate
of le-4 with a cosine scheduler and 0.05 warmup.
The maximum length of input is 2048, the training
epoch is 5.

3.3 Compared Models

We mainly compare our method with GoLLIE
(Sainz et al., 2023) and KnowCoder (Li et al.,
2024c), both of which have recently achieved SoTA
results and involve supervised fine-tuning phase on
LLMs. GoLLIE uses specific data processing and
guideline expansion operations, while KnowCoder
uses 33 specific domain IE datasets in SFT stage.
Besides, KnowCoder includes a schema under-
standing phase that contains millions of instances
across various external knowledge to further pre-
train LLMs. We also compare MPL with previous

“https://ai.meta.com/blog/meta-llama-3/

SWe also use Qwen2.5-7B (Yang et al., 2024a) and
QwenCoder2.5-7B (Hui et al., 2024) to further test MPL’s
generalization ability with different LLM backbones, and the
results are reported in Appendix E.

data-specific supervised fine-tuning, which uses
small language models as backbone networks, such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), denoted as SLM. We present these
reference models in the Appendix B.

Furthermore, we have designed several model
variants to conduct ablation studies. Specifically, to
determine whether simply increasing data size can
yield significant improvements, we trained a model
with a 3x larger dataset based on python-style in-
puts, denoted as Pythons.. We trained a model
named as MPL,,,pcq, Which randomly selects
one PL instance per input, resulting in a dataset
one-third the size of the full multiple PL dataset.
MPL1pieq aims to investigate if employing the
same data size in multiple PL settings can achieve
satisfactory performance. Additionally, we report
the performance of models trained with a single
programming language during the SFT phase for a
detailed analysis.

4 Results and Analysis

We conducted extensive experiments to verify the
effectiveness of MPL, below are our results and
findings.

4.1 Main Results

The main results are shown in Table 1, from which
we can see that: 1) MPL achieves the best over-
all performance compared to both SLM-based and
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‘ Average Score ‘

Language Capability

| Python MPL | MMLU (NL) HumanEval Pass@I (PL)

StarCoder-v2 72.7 73.8
LLaMa2-7B 75.9 76.6
LLaMA3-8B 76.4 77.6

38.3 35.4
45.3 12.2
66.7 37.2

Table 2: The results of various backbone LLMs trained with Python and MPL. We also report the the natural
language ability (shortened as NL) and programming language ability (shortened as PL) of each backbone LLMs.
These results show that the natural language ability is more important than programming language ability in the

case of information extraction tasks.

LLM-based SoTA models. Notably, MPL-8B out-
performs the largest GoLLIE model (34B param-
eters) by 1.1% and surpasses the previous SLM-
based SoTA by 2.7%. Besides, MPL demonstrates
competitive performance against KnowCoder, de-
spite KnowCoder incorporates a schema under-
standing phase with millions of instances and uses
33 domain-specific IE datasets in the SFT stage. 2)
For the same backbone, MPL consistently outper-
forms GoLLIE, achieving a 1.7% improvement for
CodeLLaMA-7B and 1.1% for CodeLLaMA-13B.
Moreover, MPL trained with CodeLLaMA-13B
even achieves performance comparable to GoLLIE
trained with the CodeLLaMA-34B model. These
findings verify strength of MPL across various
IE tasks, supporting both the motivation behind
our research and the effectiveness of our model.
3) MPL consistently improves across different
model configurations, including CodeLLaMA-7B,
CodeLLaMA-13B and LLaMA3-8B. This suggests
that MPL generalizes well across various model
sizes. Its ability to deliver strong results with dif-
ferent backbones highlights its robustness and ver-
satility for information extraction tasks.

Dataset GoLLIE-34B MPL
WikiEvents-NER 81.3 82.1
Broad_Twitter 50.3 555
MIT_ Movie 624 62.2
WikiEvents-EAE 50.7 47.7

Table 3: Comparison of GoLLIE-34B and MPL across
various zero-shot IE datasets.

4.2 Zero-shot Performance

To assess the generalization capability of MPL be-
yond its training distribution, we evaluate it on
four information extraction (IE) benchmarks that

are excluded from the training set: WikiEvents-
NER (Li et al., 2021), Broad_Twitter (Derczyn-
ski et al., 2016), MIT_Movie (Liu et al., 2013)
and WikiEvents-EAE (Li et al., 2021). The re-
sults of MPL-8B and GoLLIE-34B are presented
in Table 3. On WikiEvents-NER, MPL achieves
the highest score, despite having fewer parameters
and undergoing lighter training. Even on datasets
where GoLLIE-34B performs slightly better, the
performance gap remains minimal. These findings
indicate that MPL exhibits strong generalization
across diverse datasets and task structures.

4.3 Ablation Study

To evaluate the effectiveness of proposed settings
in MPL, we conducted a thorough ablation study,
with results shown in Table 4. 1) Single vs. Multi-
ple Programming Languages: In the first block,
we trained LLaMA3-8B model using a single PL
with the function-prompt. The results reveal that
performance with a single PL significantly lags
behind MPL, highlighting the advantage of using
multiple PLs for IE tasks. 2) Data Construction
Methods: In the second block, we explored differ-
ent data construction methods. When we increased
the Python-style dataset size threefold (Pythonsy ),
we observed severe overfitting and a notable drop
in performance compared to MPL (-1.5% on the
average score). In contrast, randomly sampling one-
third of the MPL training data resulted in a surpris-
ingly competitive performance (-0.5% decrement).
These findings suggest that MPL’s improvements
stem from using multiple PLs with diverse repre-
sentations, rather than merely increasing the dataset
size. 3) Virtual Running Component: In the final
block, we evaluated the virtual running component,
which simulates the coding process more naturally,
and we found that it provided a 0.4% improvement
in performance. Detailed performance metrics are
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provided in Appendix A.

Training Setting Average Score

Python 76.4(-1.2)

C++ 76.6(-1.0)

Java 76.4(-1.2)

Pythonj 76.1(-1.5)

MPLompied 77.1(-0.5)
MPL 77.6

w/o. Virtual Running 77.2(-0.4)

Table 4: Ablation studies on various components in
MPL, we use LLaMA3-8B and function-prompt as
default setting here.

5 Analysis

5.1 Which Backbone Is More Suitable For
Code-style Input?

Intuitively, IE tasks are knowledge-intensive and
require not only strong natural language (NL) un-
derstanding to capture semantic meaning but also
robust programming language (PL) capabilities to
generate structured knowledge. In this subsection,
we evaluate which LLM backbone is most suited
for code-style inputs in the context of IE tasks.
The tested LLMSs include StarCoder-v2, LLaMa2-
7B, and LLaMA3-8B. For a deeper analysis, we
roughly measure the language capabilities based
on the performance in the MMLU (Hendrycks
et al., 2021) (measuring NL ability) and Hu-
manEval (Chen et al., 2021a) (measuring PL abil-
ity) ©.

From Table 2 we can see that: 1) StarCoder-v2
performs the worst in IE tasks due to its limited nat-
ural language understanding capabilities, despite
excelling in PL tasks. On the other hand, LLaMa2-
7B achieves significantly better results, even with
weaker PL capabilities. 2) LLaMA3-8B achieves
the best result, owing to its superior NL and PL
understanding, making it the ideal backbone for
code-style inputs. In conclusion, the NL ability is
more important than PL ability in the case of IE
with code-style inputs. However, proper PL under-
standing ability could further enhance the overall
performance.

The results of MMLU and HumanEval are cited from
StarCoder-V2 Tech Report, LLaAa2 Tech Report and LLaAa3
Tech Report.

5.2 Disentangling Programming Language
Diversity from Ensemble Effects

To rigorously assess whether the performance gains
of our MPL framework stem from true program-
ming language diversity or from general ensemble
effects, we designed a series of controlled base-
line variants. These include: (1) training with a
single programming language (Python-only); (2)
ensembling multiple models trained with differ-
ent random seeds using the same language; (3)
prompt augmentation by varying label order or for-
mat while tripling data volume; and (4) ensembling
independently trained models using different pro-
gramming languages (Python, C++, Java). These
variants isolate different sources of potential perfor-
mance improvements, including random initializa-
tion effects, superficial prompt perturbations, and
structural diversity introduced through program-
ming language variation. Our unified MPL de-
sign incorporates multi-language supervision dur-
ing training, aiming to embed more diverse code-
level semantics into the model’s representation.

Model Variant Avg. F1
Single PL (Python only) 76.40
Seed Ensemble (Python x 3 seeds) 76.60
Label Reordering + 3x data 76.22
Prompt Format Variation + 3x data ~ 76.63
PL Ensemble (Python, C++, Java) 76.73
MPL (ours) 77.60

Table 5: Performance comparison of MPL with various
ablation baselines.

As summarized in Table 5, ensembling mod-
els trained with different random seeds (76.60 F1)
or applying prompt variations with expanded data
(76.22-76.63 F1) yields only marginal gains over
the single-language baseline (76.40 F1). In con-
trast, ensembling across different programming
languages improves performance more noticeably
(76.73 F1), suggesting that language diversity con-
tributes beyond initialization noise or prompt form.
Notably, our unified MPL training outperforms all
variants (77.60 F1), achieving a +1.2 improvement
over the Python-only baseline. These results con-
firm that programming language diversity intro-
duces deeper structural and syntactic variability,
fostering more robust task understanding and gen-
eralization. The observed advantage cannot be fully
explained by general ensembling or superficial vari-
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ations, validating the core design principle of MPL.

CodelLLaMA-7B

Figure 3: Performance and training statistics for differ-
ent LLMs with various input formats. Avg. Score rep-
resents the average score across all datasets, while Avg.
Len denotes the average input length after tokenization
with the corresponding LLM’s tokenizer. Notably, the
same prompt yields different Avg. Len values across
models due to variations in their tokenizer configura-
tions. Detailed counts are provided in Appendix D

5.3 Function-prompt vs. Class-prompt

Another contribution of this research is the intro-
duction of function-prompt as the alternative to
class-prompt. In this subsection, we provided an
in-depth analysis comparing the performance and
training efficiency of these two prompts. Specif-
ically, we report the average score and the aver-
age input length among all training datasets. Fig-
ure 3 presents the experimental results using dif-
ferent input formats. In terms of performance,
our function-prompt consistently outperforms
the class-prompt across various LLLMs. Regard-
ing training efficiency, the average input length
of function-prompt is reduced around 20% com-
pared to class-prompt, highlighting its efficiency
in processing inputs.

5.4 Complementarity Between Different
Programming Languages

This subsection presents detailed performance anal-
ysis of different PLs and aggregation methods
within our MPL framework. We investigate single
PL predictions and two aggregation methods: Vot-
ing (Default), which combines predictions from all
three PLs to determine the final output, and Union,

where a prediction is considered correct if any of
the PLs produce the correct result, representing the
union of all predictions. The results are shown in
Table 6 and we can see that: 1) The performance
benefit of Voting over individual PL predictions is
minimal. This suggests that MPL effectively cap-
tures and integrates the diverse semantic meanings
and formats inherent in different PLs, leading to ro-
bust performance. Consequently, selecting a single
PL during testing can yield desirable results with
reduced inference costs. 2) Aggregating results via
Union significantly improves average scores, con-
firming our hypothesis that different PLs provide
complementary strengths for varied IE tasks and
datasets. Although Voting has been the default,
these findings suggest exploring more effective ag-
gregation methods could be beneficial.

Model Prediction Setting | Avg.Socre
Python 75.6
MPL e | 734
(CodeLLaMA) Voting 76.1
Union 78.4(+2.3)
Python 77.2
MPL e |73
(LLaMa3) Voting 77.6
Union 79.5(+1.9)

Table 6: The average score with different prediction
settings. The results are all obtained from well-trained
MPL-8B models.

Besides, we compute the jaccard similarity coef-
ficient (Jaccard, 1912) to evaluate the similarities
between different PLs’ predictions. First, we com-
pute the Jaccard similarity between each pair of
PLs, and then we show the average coefficients in
Table 7. We also analysis the performance gap be-
tween Voting and Union for a more comprehensive
evaluation. From the results we can observe that:
1) For simple tasks like NER, the models perform
well and the predictions across PLs are quite simi-
lar, showing minimal differences between ensem-
ble methods. 2) For more complex tasks such as
RE and EE, we not only observe a significant drop
in overall model performance but also a substantial
discrepancy in prediction similarity. This indicates
that different languages excel at handling different
tasks and datasets, leading to lower prediction simi-
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larity and more substantial performance differences
between different ensemble methods. This finding
strongly supports our motivation that different PLs
have distinct characteristics and excel in different
tasks. Through the design of MPL, we effectively
harness the potential for cross-linguistic enhance-
ment, thereby improving overall performance.

S'ilrz:lci;:::i(:y MPL | Union-Voting

ACEO5-NER| 0.98 91.4 2.25
BC5CDR 0.99 89.6 1.37
CONLLO03 0.99 93.5 1.45
DIANN 0.98 85.4 0.08
ACEO5-RE 0.93 70.8 16.25
ACEOS-EAE| 0.94 72.8 2.93
RAMS 0.88 50.9 3.55
ACEO5-EE 0.97 72.7 3.67

Table 7: We calculate the jaccard similarity between
each pair of PLs and report the average coefficients, the
higher, the similar. We also show the performance gap
between voting and union.

6 Related Work

Information Extraction involves entity recognition,
relation extraction, event extraction and other re-
lated tasks (Li et al., 2024a; Vajjala and Balasubra-
maniam, 2022; Li et al., 2023b,c; Gao et al., 2024,
Lu et al., 2021; Wang et al., 2022a). There are
plenty works focusing on information extraction in
the era of large language model. Earlier research
mainly evaluated the performances on various large
language models under few-shot and zero-shot set-
tings. For example, Li et al. (2023a); Han et al.
(2023); Li et al. (2024b) evaluated LLMs’ perfor-
mance and other dimensions to provide systemi-
cally analysis, while Wadhwa et al. (2023); Xu et al.
(2023); Zhu et al. (2023); Jiang et al. (2024) dis-
cussed the opportunities and challenges for IE field
research in the era of large language model.
Recent studies have explored the use of code-
style inputs (Chen et al., 2021b; Roziere et al.,
2023; Li et al., 2023e; Zheng et al., 2023) for IE
tasks, aiming to structure these tasks more formally
and facilitate LLMs in generating structured out-
puts more accurately. CodelE(Li et al., 2023d;
Wang et al., 2022b) introduced code-style repre-
sentations for various IE tasks under few-shot set-
tings. Code4UIE(Guo et al., 2023) proposed a

retrieval-augmented code generation framework,
integrating class-prompting and multiple exam-
ple retrieval strategies to enhance few-shot per-
formance. CodeKCG (Bi et al., 2024) reformu-
lated natural language into code-style formats for
generative knowledge graph construction, incor-
porating rationale-enhanced generation as an in-
termediate step to provide additional contextual
information for unseen examples. Additionally,
some studies have explored fine-tuning LL.Ms with
code-style inputs. GoLLIE(Sainz et al., 2023) in-
troduced fine-grained label descriptions and candi-
date selection to improve supervised and zero-shot
performance. KnownCoder(Li et al., 2024c) first
designed a schema understanding phase with mil-
lions of pre-training instances to enhance LLM
comprehension of code-style inputs, followed by a
supervised fine-tuning phase on 33 domain-specific
datasets, referred to as the schema-following phase.

7 Conclusion

In this paper, we propose MPL, a novel framework
that leverages multiple programming languages
with large language models for information extrac-
tion. We first propose function-prompt with vir-
tual running component, a more lightweight and
effective code-style simulate method compared to
class-prompt. Then, MPL reformulates a given
IE task and textual input into a code-style input
with three programming languages, i.e., Python,
C++ and Java to explore the potential of coopera-
tion between them. Extensive experimental results
on various IE datasets not only validate the effec-
tiveness of MPL but also provide a thorough anal-
ysis to help readers better understand our method.
To facilitate future research, we will release our
code and necessary files later.

Limitation

Although our research explores the potential of us-
ing multiple programming languages and achieves
significantly better performance than previous
works, training efficiency remains a notable draw-
back, leading to more than twice the training cost
compared to the single-PL setting. Future work
will focus on reducing training time under the MPL
framework while maintaining performance.
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