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Abstract

Pragmatics, the ability to infer meaning be-
yond literal interpretation, is crucial for social
cognition and communication. While LLMs
have been benchmarked for their pragmatic un-
derstanding, improving their performance re-
mains underexplored. Existing methods rely
on annotated labels but overlook the reason-
ing process humans naturally use to interpret
implicit meaning. To bridge this gap, we intro-
duce a novel pragmatic dataset ImpliedMean-
ingPreference that includes explicit reasoning
(‘thoughts’) for both correct and incorrect in-
terpretations. Through preference-tuning and
supervised fine-tuning, we demonstrate that
thought-based learning significantly enhances
LLMs’ pragmatic understanding, improving ac-
curacy by 11.12% across model families. We
further discuss a transfer-learning study where
we evaluate the performance of thought-based
training for the other tasks of pragmatics (pre-
supposition, deixis) that are not seen during
the training time and observe an improvement
of 16.10% compared to label trained models.
Code and data are available in the repo !

1 Introduction

Human interactions shape relationships through
shared understandings, influenced not just by ex-
plicit words but by emotional and pragmatic nu-
ances that convey implicit meanings. The ability
to interpret beyond the literal meaning of language,
known as pragmatics, is essential for social cog-
nition, interpersonal awareness, and emotional in-
telligence. It allows individuals to navigate con-
versations fluidly, recognising intentions, cultural
contexts, and unspoken implications.

Recent progress in large language models
(Brown et al., 2020; Team et al., 2024; Yang et al.,
2024a; Achiam et al., 2023; Dubey et al., 2024;
Team et al., 2023) has advanced the capabilities
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a L:mi: Can you make a cake? J
.\ { John: Can birds fly? /ﬁ
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Determine the implication of John’s response

Thought Based Training
é John’s response, “Can birds fly?”, is a rhetorical
question implying an obvious "yes" to Ami’s question

Figure 1: An example of implicature in a response
which demonstrates the effectiveness of thought-based
training by capturing the correct pragmatic meaning

Training Over Label Tokens
John's response is irrelevant to Ami's question

of conversational Al. These systems exhibit robust
performance in natural language generation, rea-
soning tasks like math word problems, code gener-
ation (Wang et al., 2019; Cobbe et al., 2021; Geva
et al., 2021; Clark et al., 2018), etc., largely due
to the exploitation of extensive computational re-
sources and vast language datasets. Despite these
strengths, current LLMs struggle with effective
communication, specifically in capturing the prag-
matic and ambiguous dimensions of user inputs.
Additionally, conventional training strategies pri-
oritise the production of responses that are safe, ob-
jective, and widely acceptable (Glaese et al., 2022).
This approach, while ensuring reliability, diverges
from the goal of replicating truly human-like con-
versational behaviour, where the subtleties of con-
text, emotion, and cultural nuance are critical.
While humans naturally engage in pragmatic rea-
soning, LL.Ms often struggle with this skill, espe-
cially the small LLMs (SLMs) (Amirizaniani et al.,
2024), which are often used in practical scenarios
due to their lower inference costs, reduced latency,
and suitability for local deployment. Given the in-
creased interaction between humans and LLMs, it
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is very important for the LL.Ms to obtain substan-
tial pragmatic understanding of human language
and intent. Recent work has primarily focused on
evaluating LLLMs’ pragmatic understanding, yet ef-
forts to enhance their performance on such tasks
remain limited (Van Dijk et al., 2023). Approaches
that try to improve LLMs in pragmatic reasoning
rely on label-based supervision or policy optimi-
sation over annotated datasets (Wu et al., 2024),
but these methods do not explicitly incorporate the
reasoning process that humans use to grasp implicit
meaning. This is mainly due to the absence of train-
ing mechanisms which can explicitly incorporate
the reasoning process. For instance, as shown in
Figure 1, interpreting the response "Can birds fly?"
as "Yes" to the question "Can you make a cake?"
requires recognising it as a rhetorical question with
an obvious affirmative answer—implying that the
speaker’s answer to the original question is also an
obvious "Yes".

To address this gap, we introduce a novel
approach that leverages explicit reasoning, or
thoughts, to improve LLMs’ pragmatic compre-
hension. Specifically, we perform thought-based
training for the task of implicature recovery, un-
derstanding what is implied in a statement even
though it is not literally expressed. We then show
generalizability on multiple pragmatics domains,
which include implicature, presupposition and ref-
erence. Unlike reasoning tasks such as math word
problems or coding challenges, pragmatic reason-
ing often lacks definitive answers, making it more
challenging. The correct interpretation in a given
scenario is highly influenced by context, culture,
and the individuals involved. This interpretation
is often not described in the raw training data ex-
plicitly and can not be easily captured during the
training process. To mitigate this, an explicit inter-
mediate reasoning process must be provided dur-
ing the training time along with the correct label,
which details the intermediate reasoning process,
mimicking how humans derive correct interpreta-
tion by deliberate system-2 thinking (Weston and
Sukhbaatar, 2023). Hence, we present a first-of-
its-kind pragmatic dataset where each instance in-
cludes a thought explaining the reasoning behind
the correct label, along with a plausible yet in-
correct negative thought justifying the incorrect
label. We integrate this thought-based data into
both preference-tuning and supervised fine-tuning
settings, demonstrating an absolute improvement
of 11.12% in accuracy across three model fam-

ilies. Our findings establish the effectiveness of
thought-based learning in advancing LL.Ms’ abil-
ity to interpret implicit meaning in language. Our
contributions are:

* A training framework incorporating explicit
reasoning (thoughts) 2, leading to an 11.12%
improvement in implicature recovery com-
pared to label-based training approaches (Fig-
ure 2).

* A transfer learning analysis examining the ef-
fects of thought-based supervised fine-tuning
(SFT) and direct preference optimisation
(DPO) on unseen tasks, showing an improve-
ment of 16.10% over label-based training ap-
proaches (Section 7.2).

* Synthetic QA datasets; Syn-Circa and Syn-
ludwig, consisting of ~33.75K, created by
extending CIRCA and LUDWIG to improve
understanding of implicit responses (Section
3.2).

* A novel dataset, named ImpliedMeaning-
Preference, for thought based implicature re-
covery consisting of ~66.2K instances. This
dataset is developed through a human-LLM
collaboration integrating multiple implicature
recovery datasets (Section 3.1).

2 Related Work

Implicature recovery is a central topic in pragmat-
ics, attracting significant attention from linguists
and computational researchers alike. One of the
most influential theoretical contributions to this
field is the formulation of the Gricean Maxims
(Grice, 1975), which outline principles governing
conversational implicature through Quality, Quan-
tity, Relevance, and Manner.

Various approaches have been proposed to anal-
yse and recover implicatures. For instance, Louis
et al. (2020); Ruis et al. (2023) study indirect an-
swers in polar questions, shedding light on how
conversational participants infer unstated meanings.
Zheng et al. (2021) leverage hierarchical grammar
models to interpret both implicatures and deictic
references in structured dialogues. Additionally,
Jeretic et al. (2020) explores the role of Natural
Language Inference (NLI) in understanding scalar
implicatures, while Deng et al. (2014) integrate

2Here, thoughts do not imply human cognition.
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Question: Can you make a cake?
Indirect Answer: Can birds fly?
Correct Label: Yes

Ami: Can you make a cake?
John: Can birds fly?

- Determine the implication.

Y Preferred Thought H -
The reply suggests that baking a Thought i 2
cake is as natural and obvious Dataset e
as a bird's ability to fly. Supervised
GPT-40-Mini Finetuning
(SFT)

TEMPLATE N o
Trained
1) [PERSON] provides related Model
information but does not directly Rejected Thought
affirm the question, implying a 'No." The response implies a general Thought
2) [PERSON] offers context but > conqept but dogs not directly Preferences m——
leaves the core qu.es"m.' ] confirm the ability to perform Direct Preference Output: John's response:
Optimization "Can birds fly?". i -
an birds fly?", is a rhetorical
(DPO) 4

question implying an obvious
"yes" to Ami's question.

,_T

Question: Can you make a cakeﬂ

Indirect Answer: Can birds fly?
Wrong Label: No

Figure 2: This diagram shows the proposed thought-based training framework with two different training mecha-
nisms: 1) SFT (Supervised Finetuning) and 2) DPO (Direct Preference Optimisation). The left side of the diagram
shows the preference data generation steps, and the right side of the diagram shows the training pipeline. We
use preferred thought+label for SFT and preference tune with the rejected thought+incorrect label and preferred

thought+correct label in DPO.

implicature-based reasoning into sentiment analy-
sis.

Further contributions in this domain include
corpus-based studies such as Lahiri (2015), which
provide sentence-level annotations for implicature
detection. Work by Schuster et al. (2019) and
Li et al. (2021) focuses on employing neural net-
works and linguistic signals to predict scalar infer-
ences, highlighting the potential of machine learn-
ing in implicature comprehension. Despite these
advancements, recent benchmarking efforts (Hu
et al., 2023; Sravanthi et al., 2024) consistently re-
veal a persistent performance gap between human
reasoning and LLM capabilities in pragmatics.

Building upon these findings, Wu et al. (2024)
introduces an open-ended evaluation framework
to assess LLLMs’ pragmatic abilities, showing the
superiority of preference-based learning over super-
vised fine-tuning when label-based data is consid-
ered. Going forward, our work incorporates the in-
termediate reasoning steps (thoughts) in fine-tuning
and preference optimisation process for pragmatic
reasoning. Unlike conventional approaches that
reward only label accuracy, our method explicitly
incorporates thought processes into model training,
enabling LL.Ms to develop a deeper understanding
of pragmatics. In the following sections, we present
our datasets, methodology and evaluate the effec-

tiveness of structured reasoning in enhancing LLM
performance in pragmatics tasks like implicature
recovery, presupposition and deixis.

3 Datasets

In this section, we discuss the process of generating
ImpliedMeaningPreference data and synthetic QA
datasets (Syn-Circa and Syn-ludwig).

3.1 Preference Data Generation

Gathering high-quality preference data typically
requires substantial resources and significant hu-
man effort. Existing pragmatic QA datasets, such
as Circa and Ludwig, include human-annotated
mappings between indirect answers and their corre-
sponding direct interpretations (i.e., labels such as
yes and no). To minimise human efforts in prefer-
ence construction, we leverage these existing label
mappings: the original mapped label is treated as
the preferred label, while its complement is consid-
ered the rejected label.

Preferred thought generation: As shown in Fig-
ure 2 we generate the thoughts supporting the cor-
rect label by prompting gpt-4o-mini. <Question,
Indirect answer, Correct label> are given as input
to the model, and the model is tasked to generate an
intermediate reasoning step that helps in mapping
the indirect answer to the label.
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Rejected thought generation: We attempted to
generate rejected thoughts using a similar approach
by providing <Question, Indirect answer, Wrong la-
bel> to the model. However, we observed that most
of the time, the model generated thoughts support-
ing the correct label, which may be due to the inher-
ent safety guardrails present in the model (Achiam
etal., 2023). Therefore, for rejected thought genera-
tion, a linguistic expert is tasked to write templates.
The templates are made to capture the wrong rea-
soning that mimics the misunderstanding humans
can have when one or more of the Gricean maxims
are flouted. For example, in the Figure 1, the maxim
of relevance is flouted, and it can be understood as
John is giving an irrelevant reply to the question
asked by Ami. Each rejected thought is generated
by randomly selecting one of the 50 templates writ-
ten by the linguist. Prompts for the data generation
and sample templates are given in the Appendix,
Section 7.2. A sample of preferred and rejected
thoughts is verified by linguistic experts. Details
discussing the human evaluation can be found in
Appendix A.

3.2 Synthetic QA Datasets

To enhance our preference dataset, we expanded
the existing QA dataset, facilitating the generation
of additional preference annotations. We construct
our synthetic QA datasets based on existing polar
questions and indirect answer datasets (Louis et al.,
2020; Ruis et al., 2023). Circa (Louis et al., 2020)
and ludwig (Ruis et al., 2023) consist of 3,345 and
601 unique questions. For generating syn-circa
and syn-ludwig, we take unique questions from
both the datasets and generate indirect answers that
can be mapped to polar direct answers i.e., each
indirect answer conveys a "yes" or "no" reply to
the question. The responses were generated using
gpt-4o-mini (Achiam et al., 2023) in a few-shot
prompting setting. For each unique question, we
generate five answers using five different tempera-
ture values -0.0, 0.2, 0.4, 0.6 and 0.8 for generating
varied and creative responses. To guide the model
effectively, 3 to 6 examples were randomly selected
from a curated set of 50 examples, serving as con-
textual prompts to steer the generation process. The
prompts for generation are given in Appendix B.
To evaluate that the generated responses adhered
to the desired criteria of being indirect, we use a
BERT-based classifier (Devlin, 2018) trained on
classifying declarative sentences of the questions
and indirect answers. Out of 33.75K instance only

five examples were classified as indirect answers
by the classifier. The effects of this data augmenta-
tion using synthetic datasets is discussed in Section
7.3.

4 Methodology

This section discusses our approach in detail. We
aim to study the impact of incorporating thought
training in two settings: 1) Supervised Fine-
Tuning (SFT) and 2) Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023). We formulate
the task as follows: Given an input consisting of an
indirect answer to a question along with a context,
output the pragmatic interpretation. Let P(x) be
the initial prompt which contains the task descrip-
tion 7.5 and input description I;.,. Where x =
[Tiescs Ldesc)- Let G be the generated output, which
contains a thinking process T,ougnt followed by a
predicted label Pqpe;. Here, G = [Tinought; Piabel)
consisting of tokens (g1, g2, ..., gt—1,Gt)-

In the general supervised fine-tuning process, we
aim to maximize the conditional log-likelihood of
the output tokens given the input tokens. In the
context of our setting, this corresponds to:

|G|

Lopr ==Y logPs(g:| P(x), 91,92, -
t=1

7gt71)

Here L is the total loss (negative log-likelihood
of the sequence), |G| is the length of the output
sequence G, Py(g: | P(x),91,92,---,9t—1) is the
model’s predicted probability of the token g; at
position ¢, given the input prompt P(x) and all
previous tokens g1, go, . . ., g:—1 and 6 is the model
parameters being optimized.

Contrary to SFT, in standard Reinforcement
Learning from Human Feedback (RLHF) setup,
we use the structure of the Markov Decision Pro-
cess consisting of 4 tuples: (States .S, Actions A,
Transition Probabilities 7}, Rewards R). Here, we
define a function policy m, which maps states to
actions (7 : S — A). The goal is to optimize the
policies to maximize the rewards. In our context,
given the current state (Input Prompt), we would
like to optimize the policy (language model) to se-
lect the actions (which token to predict next) such
that the reward function (a function which scores
the generated output based on human preferences)
yields the maximum value. We aim to study the
effects of optimizing policy over the thoughts and
labels together.
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Dataset Name Train Set Val Set Test Set

Yes ‘ No ‘ Total Yes ‘ No ‘ Total | Yes ‘ No ‘ Total
Circa 11,996 | 9,310 | 21,306 | 2,957 | 2,251 | 5,208 | 1,675 | 1,272 | 2,947
Synthetic_Circa 9,955 | 9,517 | 19,472 | 2,502 | 2,468 | 4,970 | 1,322 | 1,394 | 2,716
Synthetic_Ludwig | 2,401 | 2,330 | 4,731 592 608 | 1,200 | 327 333 660

Table 1: Class distribution and totals for Train, Validation, and Test datasets.

This means that the probability of winning gen-
eration (G ) preferred by humans should be more
than the probability of losing generation (Gp),
which humans do not prefer. Therefore, the Bradley
Terry Model for our setup is:

eB(P(),Gw)
T ¢R(P().Gw) 1 oR(P(x).GL)
ey
This finally yields the adapted DPO loss for
our setting, incorporating policy optimization over
thought and labels.
Specifically, Lppo(mp; Tref):

~E.cv ,cr)~pllog(a(BY(Gw) — BY(GL))]
(2)

P(Gw > Gp)

where

_ 1pa( Te(GIP(2))
Y(G) =1 g(mef(G,P(x)))

In the above equation, .. is the reference
model instantiated with the initial version of the
model, 7y is the model obtained after preference
tuning, and S is the regularizing parameter used for
penalizing the scenario when the resulting model is
very far from the base version resulting to the loss
of prior knowledge.

From a linguistic perspective, our approach is
motivated by the need to model pragmatic compe-
tence in language understanding. Pragmatic rea-
soning involves interpreting implied meanings that
go beyond the literal content of utterances, as the-
orized in Grice’s maxims of conversation. Tradi-
tional models often struggle with implicature res-
olution because they lack an explicit mechanism
for reasoning about contextually inferred mean-
ings. By integrating structured thought processes
into both fine-tuning and preference optimization,
our method provides a computational analog to
human inferential processes in discourse interpre-
tation. This, we hope, should enable LLMs to bet-
ter grasp implicatures, handle indirect responses,
and align with human-like conversational norms,

3)

thereby improving their effectiveness in pragmatic
language tasks.

5 Experimental Setup

For our experiments, we consider models from
three different families: 1) Llama-3.2-1B (Dubey
et al., 2024) 2) Qwen-2.5-1.5B (Yang et al., 2024b),
3) Gemma-2-2B (Team et al., 2024). We also re-
port the zero-shot performance of Llama3.1 70B
for comparison with a large language model. Our
experiments kept the learning rate at 5e — 7 with
warmup steps of 500 iterations. We use RMSprop
(Ruder, 2016) as our optimiser following Wu et al.
(2024). All models in both settings are trained for
one epoch (till convergence), and the greedy de-
coding mechanism was used throughout the experi-
ments. For Qwen-2.5-1.5B and Gemma-2-2B, we
use the global batch size of 32; for llama-3.2-1B,
the global batch size was set to 64. For regular-
ization, we use gradient clipping of 1 in DPO and
weight decay of 0.01 in SFT. We use 4 NVIDIA
H100 80GB HBM3 GPUs for all the experiments
in this work, with a total train time of 8 GPU hours.
For all other hyper-parameters, we use the default
values. We report all the training and evaluation
prompts in Appendix, Sections C and D respec-
tively. We use macro precision (P), recall (R) and
F1 scores for evaluation.

6 Results

In Table 2, we report the results of our experi-
ments after training with QA datasets. We note
significant improvement after the inclusion of the
thoughts in SFT and DPO for Llama-3.2-1B and
Qwen2.5-1.5B. For Gemma2-2B, we observe sig-
nificant gains in SFT with thought settings and a
slight performance decline when thought is incor-
porated in the DPO setting. We note that DPO
was not originally used in the training process of
Gemma-2B, unlike Llama-3.2-1B and Qwen2.5-
1.5B. We conjecture that since the model was not
exposed to DPO in the general training, our train-
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ing for implicature recovery could not induce the
thoughts as effectively as in other models.

We note that training with just labels provides
an edge to DPO over SFT across models, aligning
with Wu et al. (2024). While training with thought
alongside labels provides significantly higher gains
for SFT when compared to DPO, with thought-
based SFT outperforming thought-based DPO in
most cases. The ‘thoughts’ contain more explicit
signals and the interpretation of the reasoning re-
quired to reach the right answer, which may be
captured in a more straightforward way in the SFT
setup compared to DPO. Intuitively, the thought-
based training mechanism would require higher
updates in the parameters than the scenario when
we have to optimise over only label tokens. In gen-
eral, the optimisation objective for SFT does not
have any constraints and is more flexible compared
to DPO, which requires a regularising parameter 3
for the KL constraint to prevent divergence from
the base model (untrained) during the training.

Another perspective in the context of this ob-
servation was suggested by Feng et al., 2024; Pal
et al., 2024, which shows the gradient of the DPO
loss with respect to preferred (winning) response
is lower compared to the dispreferred (losing) re-
sponse which essentially hinders the learning ca-
pacity of LLMs to generate the actual human pref-
erences while introducing the tendency of avoiding
human dispreferred responses. This effect may
have been further magnified in our setting which
has more tokens compared to the only label setting.

We also note that our best-performing model,
Gemma2-2B, supervised-fine-tuned with thoughts,
yields comparable performance to LLama3.1-70B,
which highlights the effectiveness of incorporating
thoughts in the training mechanism. In general, the
thought-based training mechanism yielded better
results compared to the setting, which just incorpo-
rates labels, highlighting the importance of learning
thought generation.

7 Analysis

In this section, we discuss various insights about
the proposed method, which describes the advan-
tages of thought-based learning and some general
eITor cases.

7.1 Predictive Analysis

Here, we describe the general predictive trends
observed in our framework. In general, we ob-

serve a significant improvement after incorporating
thought in the generated output. Intuitively, the
causal models are optimized to generate the appro-
priate explanations first and then derive the predic-
tions based on the generated explanation. Proba-
bilistically, the next token for prediction is condi-
tioned on the ‘thought’ and ‘input’ tokens which
can act as a guide for reaching the correct predic-
tions more accurately compared to the scenario
when only input tokens are considered. We discuss
an example in Illustration 1 where the task is to de-
termine if the given response to a question implies
a “Yes" or ‘No". We observe that the model is cor-
rectly predicting the output of ‘Yes’ by generating
thought which are used for resolving the final pre-
dictions compared to the scenario when the model
trained on just labels (without thought) is consid-
ered. The generated thought is also helpful in un-
derstanding if the model is genuinely predicting
the correct output based on the right understanding
or predicting the correct output randomly (further
explanations in Section 7.5).

Given Input: Determine whether a given response to a
question implies a "Yes" or "No"

Context: Y has just told X that he/she is thinking of buying
a flat in New York.

Question: Is it crowded and busy in that area?

Response: It never sleeps.

With Thought Prediction: The response "It never sleeps"
suggests that the area is always active and bustling with
people, implying high population density and activity lev-
els. This strongly indicates that the area would indeed be
crowded and busy.

Prediction: Yes

Without Thought Prediction: No

Correct Label: Yes

Illustration 1: General Prediction for QA

7.2 Transfer Learning Analysis

This section discusses whether thought learning is
transferable to the other datasets and tasks which
are not seen during the training process. The pri-
mary motivation behind this study is to understand
if the thought training done for one of the prag-
matic tasks is helpful in learning other pragmatic
tasks in different datasets.

Specifically, we evaluate our models trained for
implied question answering with the following
datasets: 1) FigQA (figurative Natural Language
Inference) 2) Flute (figurative Natural Language
Inference) 3) IMPPRES (figurative Natural Lan-
guage Inference) 4) Ludwig 5) Pub-presupposition
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Setting Circa Synthetic_Circa Synthetic_Ludwig Overall F1
P R F1 P R F1 P R F1
Llama-3.2 1B
Zero-Shot 7352 60.67 50.83 7935 62.90 57.49 79.38  65.60 61.24 56.52
SFT 68.28 55.57 42.72 7253 53.84 4239 64.68 56.32 49.27 4479
SFT+Thought | 8132 81.87 81.40 (+38.68) | 86.37 8639 86.37 (+43.98) | 82.01 79.42 79.09 (+29.82) | 82.29 (+37.5)
DPO 81.17 60.22 55.37 77.67 61.73 54.62 94.14 93.83 93.78 67.92
DPO+Thought | 7539 73.81 74.16 (+18.79) | 81.77 80.95  80.62(+26) | 89.01 88.82  88.78(-5) | 81.85(+13.93)
Qwen-2.5-1.5B
Zero-Shot 7515 63.15 54.55 8351 7578 74.78 86.73  81.96 81.49 70.94
SFT 7439 62.53 5376 85.04 79.23 78.75 87.00 82.11 81.63 71.38
SFT+Thought | 76.85 70.13 64.99 (+11.23) | 87.90 8430 84.24 (+5.49) | 88.72 86.10 85.96 (+4.33) | 78.40 (+7.02)
DPO 76.96 72.49 68.50 88.10 87.23 87.31 88.77 86.72 86.63 80.81
DPO+Thought | 77.77 7493  71.80 (+3.3) | 90.13 89.02  89.11 (+1.8) | 8822 87.52 87.51 (+0.88) | 82.14 (+1.33)
Gemma2-2B
Zero-Shot 7752 71.94 67.46 79.18 67.82 6491 83.93 7738 76.39 69.58
SFT 8325 81.60 79.15 9342 92.26 92.38 8475 78.14 77.20 82.24
SFT+Thought | 90.69 91.10 90.85 (+11.7) | 95.61 95.63 95.58(+32) | 9348 93.49 93.48 (+16.28) | 93.30 (+11.06)
DPO 8755 82.88 83.77 89.45 87.61 87.18 9457 94.54 94.54 88.50
DPO+Thought | 87.48 80.63 81.54(-2.33) | 84.75 80.00 78.87(-8.31) | 92.59 92.17 92.10(-2.44) | 84.17 (-4.33)
Llama3.1-70B
| Zero-Shot [94.37 93.88 94.09 [ 93.61 93.63 9359 9179 91.69 9166 | 9311 \

Table 2: Comparison of P (Precision), R (Recall), and F1 scores across Circa, Synthetic_Circa, and Syn-
thetic_Ludwig datasets under various settings for QA dataset. The last column reports the mean F1 score across

datasets.
Setting Circa (%) Synthetic_Circa (%) | Synthetic_Ludwig (%) | Mean F1 (%)
P R F1 P F1 P R F1
DPO 7143 67.05 6691 | 7893 78.56 7834 | 73.58 72.96 72.72 72.66
DPO+Thought | 7442 53.36 43.61 | 71.10 52.68 38.83 | 7527 5195 37.33 39.92
SFT 17.13 16.63 16.86 | 12.40 1244 1240 | 31.30 31.40 31.29 20.18
SFT+Thought | 80.12 79.21 77.12 | 87.33 86.00 86.07 | 89.45 89.41 89.39 84.19

Table 3: Data Ablation on Gemma-2B: We report the Precision (P), Recall (R) and F1 scores on all four settings

by training the model with just the Circa dataset.

task 6) Pub-reference task.

Presupposition, implicature, and reference are
pragmatic phenomena that rely on context, shared
background knowledge, and the interactive nature
of communication to convey meaning beyond the
literal content of an utterance. Intuitively, models
trained with explicit reasoning for performing im-
plicature recovery should also perform better on
these related linguistic phenomena. Specially, ref-
erence is a special case of implicature where the
only difference is the usage of deixis terms.

For these experiments, we chose our best-
performing model, Gemma?2-2B. We observe sig-
nificant improvement in performance when the
thought is incorporated into the training mecha-
nism for both the SFT and DPO. We report these
results in Table 4 for three NLI datasets and Table
5 for other pragmatics tasks with a mean improve-
ment of 16.10%.

We observe significant improvements across all
the datasets with thought-based training approaches

when compared to the label-based training ap-
proaches. This highlights that the learning for
implicature recovery is also transferable to other
datasets and pragmatic tasks.

Given Input:

Does Sentence 2 entail or contradict Sentence 1?
Sentence 1: The girl moved as fast as a turtle
Sentence 2: The girl was quick

With Thought Prediction: Sentence 1 states that the girl
moved at a speed similar to a turtle (slow), while Sentence 2
indicates that she was quick. These descriptions contradict
each other.

Prediction: Contradiction

Without Thought Prediction: Entailment

Correct Label: Contradiction

Illustration 2: General Prediction for NLI

In the Illustration 2, we describe a general sce-
nario where the model is able to resolve the figura-
tive language of as fast as a turtle to slow, finally
arriving at the correct prediction of Contradiction.
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Setting FigQA (%) Flute (%) IMPPRES (%) Mean F1 (%)
P R F1 P R F1 P R F1

Zero-Shot 62.14 62.13 62.13 | 77.77 77.77 75.70 | 43.16 37.62 39.19 59.00

DPO 61.77 61.69 61.63 | 76.86 75.55 72.56 | 43.22 37.55 39.03 57.74

DPO + Thought | 63.21 6298 62.80 | 72.20 72.74 71.62 | 4447 41.06 42.08 | 58.83 (+1.09)

SFT 59.59 58.99 5835 | 76.28 73.35 69.40 | 49.37 4875 44.27 57.34

SFT + Thought | 64.09 63.85 63.69 | 78.13 78.30 76.36 | 49.72 49.48 46.72 | 62.25 (+4.91)

Table 4: Transfer Learning for NLI on figurative sentences: FigQA, Flute, and IMPPRES.

Setting Ludwig (%) Presupposition (%) Reference (%) Mean F1 (%)
P R F1 P R F1 P R F1

Zero-Shot 70.92 6521 61.42 | 52.10 50.55 17.41 | 11.31 26.33 15.82 31.55

DPO 73.35 7029 69.99 | 53.89 53.19 26.02 | 22.58 35.62 22.87 39.62

DPO+Thought | 74.07 7271 72.75 | 53.36 55.77 51.51 | 68.41 62.64 62.88 | 62.38 (+22.76)

SFT 61.68 6096 59.73 | 5247 5092 19.02 | 327 630 4.31 27.68

SFT+Thought | 76.42 76.53 76.40 | 54.23 57.64 4427 | 69.08 69.77 69.34 | 63.33 (+35.65)

Table 5: Transfer Learning for the Presupposition, Ludwig and Reference dataset

7.3 Data Ablations

In this section, we discuss the effects of introduc-
ing our synthetically created data in the training.
Specifically, we perform the experiments without
training with any synthetic data and use the Circa
data (similar to the original setting) to train our
best-performing model, Gemma, in all four set-
tings. We report the results in Table 3 and note
that the performances across all settings are sig-
nificantly lower compared to the original training
setup (as reported in Table 2), where we also in-
clude the synthetic data. We observe a reduction of
9.11% in the SFT+Thought setting and 15.84% in
the DPO setting, respectively. A drastic reduction
is observed in the DPO+Thought and SFT settings,
primarily due to the poor legibility of model pre-
dictions where the generated text has very high
hallucination. This shows the utility of synthetic
data, highlighting its role in enhancing the robust-
ness of training mechanisms by providing diverse
and well-aligned examples that may be difficult to
cover otherwise.

7.4 Error Analysis

This section describes the most prominent cases of
error in the given task. We observe that the majority
of errors occur when there is a use of a complex
linguistic phenomenon that requires an additional
layer of interpretation.

In the Ilustration 3, we describe one such sce-
nario. Specifically, sentence 2 shows the presence
of sarcasm, which is evident in the latter part, which
uses the adjective ‘lovely’ for work. The model

Given Input:

Does Sentence 2 entail or contradict Sentence 1?7
Sentence 1: I was going to have dinner with friends today
but I was stuck at work.

Sentence 2: I was so looking forward to dinner with friends
today, but unfortunately, I got stuck at work.

With Thought Prediction: The first sentence states that
the person had plans for dinner with friends but couldn’t
go due to being stuck at work. The second sentence also
mentions having dinner with friends but getting stuck at
work, indicating similar circumstances. However, the first
sentence uses "stuck," while the second uses "lovely."
Prediction: Contradiction

Correct Label: Entailment

Illustration 3: Misinterpretation of sarcasm

fails to understand that the speaker is being sar-
castic about the situation, and the implication is
similar to sentence 1, which leads to an incorrect
prediction of ‘Contradiction’. Similar predictive
behaviour is observed when other special linguis-
tic phenomena like metaphors and hyperbole are
present.

7.5 Thought Analysis

In this section, we discuss various insights related
to the thought generations. The primary aim of
this study is to understand if the model is deriving
the predictions from the correct thought or getting
the predictions right with the incorrect logic. To
analyze this quantitatively, we consider our best-
performing model, Gemma?2-2B-SFT, for evaluat-
ing thoughts using GPT40O-mini. To perform a
human evaluation to ensure the quality of GPT4o-
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mini predictions, we asked two linguistic experts to
annotate if they agreed with the predictions, lead-
ing to a Cohen kappa score of 0.79 on 85 examples
randomly sampled from the data.

We observe that in the cases of correct predic-
tions, the model generates correct thoughts in 96.41
% of the instances and 3.59 % of incorrect thoughts.
For incorrect predictions, we observe 70.92% in-
stances with wrong thoughts while 29.08% in-
stances have the correct thoughts where the model
generates the correct reasoning but could not re-
solve the correct predictions. We discuss an ex-
ample in Illustration 4 pertaining to the scenario
where the model is correctly generating the con-
trast in both the sentences but provides prediction
as ‘Entailment’ instead of ‘Contradiction’.

In general, we observe that most of the correct
predictions have correct thoughts, and a significant
amount of incorrect predictions also have correct
thoughts. This highlights that the model is able to
generate thoughts to a reasonable extent but cannot
cut the threshold of reaching the correct answer.

Given Input: Determine whether a given response to a
question implies a "Yes" or "No".

Context: X and Y are colleagues leaving work on a Friday
at the same time.

Question: Do you have any big plans for the weekend?
Response: I have a number of things to do this weekend

With Thought Prediction: The response indicates that
the person has several activities planned for the weekend,
suggesting they likely have some significant commitments.
Prediction: No

Correct Label: Yes

Illustration 4: Correct Thought
but Incorrect Prediction

7.6 Thought Perturbation Analysis

In this section, we describe our experiments, which
aim to understand the if the improvements are ob-
served due to the presence of correct thoughts lead-
ing to the right label in the training data or is it
just some spurious correlation. For this experiment,
we perturb the correct thought with the incorrect
thought: for SFT, we replace the correct thought
with the incorrect thought and for DPO, we flip
the correct (preferred) and incorrect (dispreferred)
thoughts in preference data. In general, we observe
a significant decrement in the scores compared to
the original setting where we consider the correct
thought. The decrease in the SFT is very drastic,
and the F1-scores went down to as low as 2%. In
the DPO, we also see a considerable decline in the

performance (25% —30%) across all QA tasks com-
pared to the DPO+Thought settings. Even though,
in both cases, there is a decrease in the performance,
DPO models did not suffer a tragic decline in the
accuracies due to the presence of the regularizing
constant (3) in DPO. In other words, the regular-
izing constant 3 prevents the large updates in the
model, which is not the case in SFT, where the
weight updates are unconstrained.

8 Conclusion and Future Work

In this work, we highlighted the effectiveness of
integrating explicit thought processes into two train-
ing paradigms: 1) Supervised Fine-Tuning (SFT)
and 2) Direct Preference Optimization (DPO). Our
findings indicate that while thought integration ben-
efits both training approaches, thought-based SFT
consistently outperforms its DPO counterpart in
pragmatic reasoning tasks. Through a detailed anal-
ysis of model predictions, we uncover key patterns
in implicature resolution and identify specific fail-
ure cases that illuminate areas for further improve-
ment. To reinforce the role of structured reasoning,
we investigate the impact of perturbing thought gen-
eration, revealing a notable decline in performance
when the reasoning process is disrupted. Further-
more, our transfer learning experiments demon-
strate the adaptability of thought-based training,
showing its efficacy in generalizing across previ-
ously unseen datasets and pragmatic tasks. In the
future, our goal is to refine this approach by devel-
oping a process-based reward mechanism that bet-
ter aligns LLMs with human pragmatic inference,
ultimately bridging the gap between computational
and human-like language understanding.

9 Limitations

While our approach improves implicature recovery,
it also presents several limitations. The reliance on
explicit thought generation may introduce biases,
as the quality and accuracy of generated thoughts
depend on both the model’s prior knowledge and
human annotations. Additionally, the increased
computational complexity associated with train-
ing thought-based models may limit scalability in
resource-constrained settings. Further, while trans-
fer learning results are promising, the generaliz-
ability of our approach across diverse linguistic
domains, including highly contextual or culturally
specific implicatures, remains an open question. In
Future, we plan to explore more efficient training
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strategies and broader evaluation frameworks to en-
hance the robustness and applicability of thought-
based learning.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Maryam Amirizaniani, Elias Martin, Maryna
Sivachenko, Afra Mashhadi, and Chirag Shah. 2024.
Can llms reason like humans? assessing theory of
mind reasoning in llms for open-ended questions. In
Proceedings of the 33rd ACM International Confer-
ence on Information and Knowledge Management,
pages 34-44.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Lingjia Deng, Janyce Wiebe, and Yoonjung Choi. 2014.
Joint inference and disambiguation of implicit senti-
ments via implicature constraints. In COLING 2014,
25th International Conference on Computational Lin-
guistics, Proceedings of the Conference: Technical
Papers, August 23-29, 2014, Dublin, Ireland, pages
79-88. ACL.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela

Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Duanyu Feng, Bowen Qin, Chen Huang, Zheng Zhang,
and Wengqiang Lei. 2024. Towards analyzing and
understanding the limitations of dpo: A theoretical
perspective. arXiv preprint arXiv:2404.04626.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? A question answering benchmark with

implicit reasoning strategies. Trans. Assoc. Comput.
Linguistics, 9:346-361.

Amelia Glaese, Nat McAleese, Maja Trgbacz, John
Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,
Laura Weidinger, Martin Chadwick, Phoebe Thacker,
et al. 2022. Improving alignment of dialogue agents
via targeted human judgements. arXiv preprint
arXiv:2209.14375.

Herbert P Grice. 1975. Logic and conversation. In
Speech acts, pages 41-58. Brill.

Jennifer Hu, Sammy Floyd, Olessia Jouravlev, Evelina
Fedorenko, and Edward Gibson. 2023. A fine-
grained comparison of pragmatic language under-
standing in humans and language models. In Pro-
ceedings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 4194-4213. Association for Computa-
tional Linguistics.

Paloma Jeretic, Alex Warstadt, Suvrat Bhooshan, and
Adina Williams. 2020. Are natural language infer-
ence models imppressive? learning implicature and
presupposition. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
8690-8705. Association for Computational Linguis-
tics.

Shibamouli Lahiri. 2015. Squinky! A corpus of
sentence-level formality, informativeness, and im-
plicature. CoRR, abs/1506.02306.

Elissa Li, Sebastian Schuster, and Judith Degen. 2021.
Predicting scalar inferences from “or” to “not both”
using neural sentence encoders. In Proceedings of
the Society for Computation in Linguistics 2021,
pages 446—450.

Annie Louis, Dan Roth, and Filip Radlinski. 2020. "
1’d rather just go to bed": Understanding indirect
answers. arXiv preprint arXiv:2010.03450.

Arka Pal, Deep Karkhanis, Samuel Dooley, Man-
ley Roberts, Siddartha Naidu, and Colin White.
2024. Smaug: Fixing failure modes of prefer-
ence optimisation with dpo-positive. arXiv preprint
arXiv:2402.13228.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.

23787


https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/C14-1009/
https://aclanthology.org/C14-1009/
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.18653/v1/2023.acl-long.230
https://doi.org/10.18653/v1/2023.acl-long.230
https://doi.org/10.18653/v1/2023.acl-long.230
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.18653/v1/2020.acl-main.768
https://arxiv.org/abs/1506.02306
https://arxiv.org/abs/1506.02306
https://arxiv.org/abs/1506.02306

2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728—
53741.

Sebastian Ruder. 2016. An overview of gradient
descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

Laura Eline Ruis, Akbir Khan, Stella Biderman, Sara
Hooker, Tim Rocktidschel, and Edward Grefenstette.
2023. The goldilocks of pragmatic understanding:
Fine-tuning strategy matters for implicature resolu-
tion by llms. In Thirty-seventh Conference on Neural
Information Processing Systems.

Sebastian Schuster, Yuxing Chen, and Judith Degen.
2019. Harnessing the linguistic signal to predict
scalar inferences. arXiv preprint arXiv:1910.14254.

Settaluri Lakshmi Sravanthi, Meet Doshi, Tankala Pa-
van Kalyan, Rudra Murthy, Pushpak Bhattacharyya,
and Raj Dabre. 2024. Pub: A pragmatics under-
standing benchmark for assessing llms’ pragmatics
capabilities. arXiv preprint arXiv:2401.07078.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Bram Van Dijk, Tom Kouwenhoven, Marco R Spruit,
and Max J van Duijn. 2023. Large language models:
The need for nuance in current debates and a prag-
matic perspective on understanding. arXiv preprint
arXiv:2310.19671.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurlPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3261-3275.

Jason Weston and Sainbayar Sukhbaatar. 2023. System
2 attention (is something you might need too). arXiv
preprint arXiv:2311.11829.

Shengguang Wu, Shusheng Yang, Zhenglun Chen, and
Qi Su. 2024. Rethinking pragmatics in large lan-
guage models: Towards open-ended evaluation and
preference tuning. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 22583-22599.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024a. Qwen2.5 technical report. arXiv
preprint arXiv:2412.15115.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024b. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Zilong Zheng, Shuwen Qiu, Lifeng Fan, Yixin Zhu, and
Song-Chun Zhu. 2021. GRICE: A grammar-based
dataset for recovering implicature and conversational
reasoning. In Findings of the Association for Com-
putational Linguistics: ACL/IJCNLP 2021, Online
Event, August 1-6, 2021, volume ACL/IJICNLP 2021
of Findings of ACL, pages 2074-2085. Association
for Computational Linguistics.

A Evaluation of GPT-Generated
Thoughts

To evaluate the quality of the generated thoughts,
we sampled 500 data points, including 200 from
the CIRCA dataset, 150 from a synthetic CIRCA
dataset, and 150 from a synthetic LUDWIG dataset.
These data points were annotated by an external
annotator and one of the authors of this paper. The
evaluation focused on assessing the alignment be-
tween the correct label and its corresponding gen-
erated thought (Correct Label Thoughts - CLT),
as well as the wrong label and its corresponding
generated thought (Wrong Label Thoughts - WLT).
Additionally, the confidence of alignment was rated
on a three-point scale: 1 (Poor), 2 (Average), and 3
(Good).

The results indicate that the correct label and
its corresponding thought aligned 99% of the time,
and similarly, the wrong label and its corresponding
thought also aligned 99% of the time. Furthermore,
both annotators agreed on the alignment 99% of
the time and showed 97% agreement in confidence
ratings. The external annotator was compensated
at a standard rate for the annotation task. Table 6
presents the agreement percentages between the
two annotators for alignment and confidence evalu-
ations.
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Evaluation Metric | Agreement Percentage
CLT Alignment 99.80%
CLT Confidence 97.24%
WLT Alignment 100.00%
WLT Confidence 98.82%

Table 6: Agreement percentages between the two anno-
tators for alignment and confidence evaluations.

B Prompts and Templates Used for
Generating Thoughts

In this section, we provide the prompts used for
generating thoughts corresponding to the correct
labels using GPT-40 mini, as well as the structured
templates employed for generating thoughts related
to the wrong labels.

Prompt: Generate a one line rational to support [label]
label to the answer-Y:

context : [context]

question-X : [question]

answer-Y : [answer]

Prompt For Generating Correct Label Thoughts

Example Templates for label “Yes”:

1) Y’s response directly states their interest or intent,
making the affirmative answer obvious.

2) Y explicitly agrees with the question, providing an
unambiguous ’yes.’

3) The reply given by Y is positive and directly answers the
question, ensuring clarity in the response.

Example Templates for label ‘“No”:

1) Y’s response touches on related information but does not
directly affirm the question, suggesting the answer may be
’no.’

2) While Y provides some context, the core question
remains unanswered, implying that the response could be
interpreted as a ‘no.’

3) Y offers additional information but avoids directly
addressing the question, indicating an implicit negative
response.

Templates for Generating Wrong Label Thoughts

C Prompts Used for Training and
Evaluation

In this section, we provide the prompts used for
training the models using Supervised Fine-Tuning
(SFT) with label tokens and SFT with thoughts. We
first present a generic prompt that serves as a foun-
dational structure for training. This prompt is then
adapted to fit the specific chat templates of each

model, ensuring compatibility with their respec-
tive architectures and tokenization formats. The
modifications may include adjustments in prompt
wording, system instructions, formatting, or token
placement to optimize the model’s performance
across different setups.

Prompt for Training Data With Context :

QA Context Input:

You are reasoning driven assistant.

Given the following context, question and response, you
task is to determine whether the response to a question
implies a "Yes" or "No." Focus on the meaning implied in
the response.

Pretext : [pretext]

Question: Does the response imply a "Yes" or a "No"? Do
not output anything other than "Yes" or "No".

QA context Output:
prediction: [label]

Prompt for Training Data Without Context:

QA Input:

You are reasoning driven assistant.

Given the following question and a response, you task is
to determine whether the response to a question implies
a "Yes" or "No". Focus on the meaning implied in the
response.

Pretext : [pretext]

Question: Does the response imply a "Yes" or a "No"? Do
not output anything other than "Yes" or "No".

QA Output:
prediction: [label]

Prompt for Training QA Data with Label Tokens

Prompt for Evaluating NLI :

NLI Input:

You are reasoning driven assistant.

Your task is to analyze the relationship between two
sentences by first providing an explanation. Use the
explanation to derive the prediction, which can be either
"Entailment" or "Contradiction".

Pretext : [pretext]

Question: Analyze the relationship between the two
sentences below and provide an explanation of your
reasoning process. Derive the final prediction based on
your explanation and give it in the below format:

NLI Output:
Explanation: [rationale],
prediction: [label]

Prompt for evaluating NLI tasks

Similarly, for the Direct Preference Optimiza-
tion (DPO) task, we incorporate both the correct
label thought and the wrong label thought during
training. By including both perspectives, the model
learns to distinguish between well-reasoned cor-
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Prompt for Training Data to Generate Thought :

QA Context Thought Input:

You are reasoning driven assistant.

Your task is to analyze whether a given response to a
question implies a "Yes" or "No" by providing a one-line
thought. The thought should focus on the reasoning process
and should not include the final prediction.

Input: [pretext]

Task: Analyze the given context, question, and response.
Provide a one-line reasoning thought without deriving the
final prediction. Use the format below:

Thought: " "

QA context Thought Output:
Thought: [rationale]

Prompt for Training Data to Generate both Thought
and Label

QA Context Thought Input:

You are reasoning driven assistant.

Your task is to determine whether a given response to a ques-
tion implies a "Yes" or "No" by first providing a one-line
explanation. Use the explanation to derive the prediction,
which can be either "Yes" or "No” Input: [pretext]

Task: Analyze the given context, question, and response.
Provide a one-line of your reasoning process. Use the
explanation to derive the prediction: "Yes" or "No" and
give in the below format:

Explanation: ""

Prediction: ""

QA Context Thought Output:
Explanation: [rationale],
Prediction: [label]

Prompt for Training QA Data with Thoughts

rect responses and incorrect alternatives, thereby
improving its ability to align with human prefer-
ences. This approach enhances the model’s reason-
ing capabilities, ensuring that it not only recognizes
correct answers but also understands why certain
responses are less appropriate.

D Prompts Used for Evaluating Model
Generated Thoughts

In this section, we provide the prompts used for
evaluating the thoughts generated by models which
are trained using a thought-based training mecha-
nism.

Prompt: Your task is to verify whether the given sentences
follow the ground truth. Only output yes or no.

Ground Truth: [Input]

Reasoning: [Correct Thought]

Given Sentences: [model generated thought]

Prompt For Evaluating Model Generated Thoughts
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