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Abstract

Although substantial efforts have been made
to mitigate catastrophic forgetting in contin-
ual learning, the intrinsic mechanisms are not
well understood. In this work, we demonstrate
the existence of "pseudo forgetting": the per-
formance degradation on previous tasks is not
attributed to a loss of capabilities, but rather
to the failure of the instructions to activate the
appropriate model abilities. We show that the
model’s performance on previous tasks can be
restored through two simple interventions: (1)
providing partial external correct rationale, and
(2) appending semantically meaningless suf-
fixes to the original instructions, to guide the
generation of correct rationales. Through em-
pirical analysis of the internal mechanisms gov-
erning rationale generation, we reveal that mod-
els exhibiting pseudo forgetting show reduced
instruction dependence during rationale gener-
ation, leading to suboptimal activation of their
inherent capabilities. Based on this insight, we
propose Rationale-Guidance Difficulty based
Replay (RGD-R) framework that dynamically
allocates replay data based on the model’s abil-
ity to correctly leverage the intrinsic capabil-
ities. Experimental results demonstrate that
RGD-R effectively mitigates pseudo forgetting
while maintaining model plasticity.

1 Introduction

Continual learning enables Large Language Mod-
els (LLMs) (Brown et al., 2020; Yang et al., 2023)
to incrementally learn from a sequence of tasks,
helping LLMs adapt to the dynamic nature of
real-world data and improve their capabilities over
time (Zheng et al., 2024; Li et al., 2024b). How-
ever, LLMs still face catastrophic forgetting, where
performance on previous tasks deteriorates when
learning new ones (McCloskey and Cohen, 1989).

Despite the extensive methods proposed to mit-
igate catastrophic forgetting (Wang et al., 2024,

* Corresponding author

Pseudo 
Forgetting

LLM

Capability of Old Task 1

Without any guidance

With appropriate guidance

Performance 
Degradation

on Old Task 1 

Performance 
Recovery

on Old Task 1 

Capability Utilization

Capability Activation

Catastrophic 
Forgetting

Meaningless Suffix

Partial Correct 
Rationale

Instruction 
of task 1

Capability of New Task 2

Figure 1: Pseudo forgetting. 1. The performance degra-
dation on previous tasks stems from instructions failing
to properly activate the model’s inherent capabilities
rather than genuine forgetting of task-relevant abilities.
2. Performance can be restored through appropriate
prompting, demonstrating no actual forgetting occurs.

2023b; Zhao et al., 2024), limited studies investi-
gate the intrinsic mechanisms underlying this phe-
nomenon. Kotha et al. (2024) proposed the “task
inference” hypothesis, which suggests that fine-
tuning biases the model toward utilizing newly ac-
quired capabilities, rather than causing a loss of
previously learned abilities. While this hypothesis
is validated on synthetic datasets and small trans-
formers, direct empirical evidence from natural
language datasets and LLMs is missing. Similarly,
Jiang et al. (2024) investigate forgetting in LLMs
through the perspectives of instruction-following
and task-related knowledge. They highlight that
the forgetting stems from a decline in instruction-
following capabilities rather than an actual loss
of task-related knowledge. Nevertheless, they em-
ploy disparate experimental settings—instruction-
following for model training versus prefix comple-
tion for knowledge probing—which weakens the
persuasion of their conclusions.

In this paper, as shown in Figure 1, we argue that
the observed performance degradation on previous
tasks stems not from a genuine loss of task capabil-
ities, but rather from the instructions’ failure to ef-
fectively activate the model’s intrinsic abilities—a
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phenomenon we term "pseudo forgetting". To val-
idate this hypothesis, we conduct probing experi-
ments on LLMs across a range of natural language
tasks under instruction-following settings. We find
that, given partial rationale as external guidance or
augmented with a task-irrelevant instruction suf-
fix, the forgetting model can complete the rationale
and recover performance close to its pre-forgetting
level, providing strong empirical support for our
hypothesis. To investigate the underlying causes
of pseudo forgetting, we employ attribution scores
to quantitatively analyze the model’s reliance on
the instructions during rationale generation. Our
analysis reveals that the pseudo-forgetting model
exhibits significantly reduced reliance on instruc-
tions, which prevents the model from effectively
utilizing its internal capabilities.

Building on the above insights, we believe that
when learning new tasks, replaying data related to
previous tasks to strengthen the model’s reliance on
corresponding instructions offers a simple and ef-
fective solution to mitigate pseudo forgetting. How-
ever, how to allocate replay data efficiently is lim-
ited studied (Wang et al., 2024). Thus, we first in-
troduce the Rationale-Guidance Difficulty (RGD)
metric, which measures the model’s ability to lever-
age the correct internal capability under a given
instruction. We then propose Rationale-Guidance
Difficulty based Replay (RGD-R) to optimize the
data utilization in replay-based continual learning
algorithms. Specifically, during continual learning,
the RGD score for each previous task is dynami-
cally computed and used to determine the ratio of
required replay data. Experimental results demon-
strate that RGD-R effectively alleviates pseudo for-
getting while preserving the model’s plasticity1.

Our contributions can be summarized as follows:

1. We directly demonstrate the existence of
pseudo forgetting in the continual learning of
LLMs (Section 2.1), followed by an analysis
of the underlying cause (Section 2.2).

2. Building on this insight, we introduce RGD
score, which measures the model’s ability to
leverage the correct intrinsic capabilities un-
der a given instruction (Section 3.1).

3. By adopting RGD, we develop RGD-R, a
novel replay-based framework designed to
maximize the efficiency of replay data via dy-
namic data allocation (Section 3.3).

1Code and data are available at here.

2 Unveiling Pseudo Forgetting : the
evidence and cause

Pseudo Forgetting

Pseudo forgetting is a phenomenon where
performance degradation on previously
learned tasks in continual learning occurs
not through the loss of task capabilities, but
rather through the diminished effectiveness
of original task instructions in activating the
model’s intact intrinsic capabilities, result-
ing in incorrect rationales and outputs.

In Section 2.1, we directly demonstrate that
models do not genuinely forget task capabilities
by restoring their performance on previous tasks
via employing two methods to provide appropriate
guidance. In Section 2.2, we quantify the model’s
reliance on instructions during rationale generation,
revealing that pseudo forgetting occurs because
original instructions fail to activate the model’s ap-
propriate intrinsic capabilities.

2.1 Evidence for Pseudo Forgetting
For a forgetting model, two fundamental questions
naturally arise:

1. Q1: How does the model perform when pas-
sively provided with external correct ratio-
nale?

2. Q2: Can changing prompt (eg. adding task-
irrelevant prefixes or suffixes) enable the
model to generate the correct rationale ac-
tively?

A1: With a partially correct rationale guidance,
the model demonstrates potential for passively
recovering task performance.
Experiment Setting To address Q1, we select
the model from the final stage of sequential learn-
ing and choose the test set of tasks with a high for-
getting rate for this experiment. To offer external
correct capability guidance, as shown in Figure 3,
the first k portions of the ground truth rationale af-
ter the <|assistant|> token, where k is the ratio
range from 0 to 1 (k ∈ [0, 1])2. Notably, our exper-
iments in the Appendix C.1 show that providing a
small ratio (k ≤ 0.2) of the correct rationale does
not directly convey task-critical information to the
model, but rather guides the model in shaping the
overall direction of its predictions.

2See Appendix B.1 for detailed implementation code.
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(a) Llama2-13B

(c) Mistral-7B (d) Qwen2-0.5B

(b) Llama2-7B

Figure 2: Changes in the model’s task performance after forgetting when the first k portions of the appropriate
rationale are provided. 1. A forgetting model can regenerate the “forgotten rationale” and gradually recover its
“pre-forgetting” task performance when passively guided with partial “appropriate rationale.” 2. The degree of
recovery of the task performance is related to the task difficulty and the scale of the model.

<|user|>

Task: What is the logical relationship (contradiction, entailment or neutral) 

between the "sentence 1" and the "sentence 2"? Choose one from the option.

OPTIONS:

- neutral

- entailment

- contradiction

sentence 1: Case Study Evaluations.

sentence 2: Case Study preparations.

Answer:

<|assistant|>

The sentence 1 'Case Study Evaluations' implies a

Figure 3: Prompt example with additional the first 10%
words of the correct rationale guidance (k = 0.1). The
black parts are the original instruction; The blue parts
are the added part of the correct rationale, which does
not contain information directly related to the answer.

Results and Analysis The result is illustrated
in Figure 2. Firstly, under the guidance of cor-
rect rationale, a forgetting model demonstrates
promising potential to recover task performance
to pre-forgetting levels. Specifically, the perfor-
mance on different forgotten tasks improves consis-
tently across varying model scales as the value of k
increases. Secondly, the potential for recovery of
task performance is related to the task difficulty
and the scale of the model. For instance, in the
RTE task, Llama2-13B returns to its pre-forgetting
performance level at k = 0.3, while the MNLI task
requires k = 0.4 to achieve the same recovery level.
Meanwhile, to restore performance on MNLI and
RTE to pre-forgetting levels steadily, Qwen2-0.5B,
Mistral-7B, Llama2-7B, and Llama2-13B require
k values of 0.8, 0.6, 0.5, and 0.4, respectively.

However, as shown in Table 9 of Appendix C.1,
since the externally provided partial rationales in-
troduce no task-relevant information only when
k ≤ 0.2, we propose the following two potential
explanations for the observed results:

(1). Complete catastrophic forgetting: LLMs re-
quire external reasoning guidance to restore
performance (even Llama2-13B at k = 0.4),
suggesting they may simply leverage pro-
vided solution components rather than retain
problem-solving abilities.

(2). Capability activation failure: LLMs’ im-
proved performance under minimal guidance
indicates preserved capabilities, as critical rea-
soning steps were self-generated rather than
externally provided (e.g. k = 0.1 in Figure 3).
Specifically, when k = 0.2, both 13B and 7B
scale models demonstrate partial recovery of
performance on the forgotten tasks.

To determine which of these two explanations is
correct, we conduct further investigation into Q2.

A2: With the addition of task-agnostic
instruction suffixes, the model can actively
recover its original task performance.

We employ Greedy Coordinate Gradient-based
Search (Zou et al., 2023) to search for a meaning-
less suffix that helps the original instruction guide
the forgetting model toward proper rationale gener-
ation actively, as shown in Figure 4.
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<|user|>

Task: What is the logical relationship (contradiction, entailment or neutral) 

between the "sentence 1" and the "sentence 2"? Choose one from the option.

OPTIONS:

- neutral

- entailment

- contradiction

sentence 1: Case Study Evaluations.

sentence 2: Case Study preparations.

Answer: 

<|assistant|>
! involving ! ! dass ! ! ! $\{ ! ! ! ! ! ! ! ! Given ! !

Figure 4: Prompt example with task-irrelevant suffix
searched by Greedy Coordinate Gradient (Zou et al.,
2023). The forgetting model outputs Health and Well-
ness due to the influence of the previous task, Yahoo,
but correctly outputs entailment before forgetting or
augmenting with this suffix.

Greedy Coordinate Gradient-based Search
(GCG) Given a sequence x1:n, the probability
of generating a sequence xn+1:n+T can be written
as:

p(xn+1:n+T | x1:n) =
T∏

i=1

p(xn+i | x1:n+i−1) (1)

Under the above notation, the loss of generating a
target sequence T = x1:Ntarget (eg. partial correct
rationale) given an instruction I = x1:Nins and an
initial suffix S = x1:Nsuffix

can be written as

L(S) = − log p(T | [I, S]) (2)

To minimize the above loss, GCG (Zou et al.,
2023) leverages gradients with respect to the one-
hot token indicators to identify promising token
replacements. Specifically, for each token position
i, in the suffix, the gradient ∇Lei(S) is computed,
where ei is the one-hot vector representing the cur-
rent token at position i. Then, for each token po-
sition, the top-k tokens with the largest negative
gradients are identified as candidate replacements.
Finally, the candidate replacement that minimizes
the loss is selected and applied to the suffix.

Notably, this approach ensures the validity of
the experiments: (1) semantically meaningless suf-
fixes devoid of task-specific information, ensuring
the generated rationale reflects parametric capa-
bilities; (2) instruction-following setting remains
unchanged, aligning the detected capabilities with
those learned via instruction fine-tuning, in contrast
to the probing experiments in Jiang et al. (2024),
which is under prefix completion setting.

Experimental Settings We evaluate models
from the final stage of sequential learning (Ma−f ).

Figure 5: Recovery rate of forgotten tasks. 1. For each
task, we sample 100 forgotten instances. 2. The labels
‘Answer’, ‘Before R (0.2)’, and ‘Ground Truth R (0.2)’
denote respectively: the ground truth answer, the first
0.2 portions of the rationale generated by the model
before forgetting, and the ground truth, serving as op-
timization target for GCG. 3. The recovery rates of
different models on various tasks surpass 90% (even
reaching 100% in specific tasks), indicating the forget-
ting models preserve previously acquired capabilities.

For each task, we sample 100 instances where
models exhibit correct predictions before forget-
ting but fail after forgetting, represented as Df =
{(Ii, Ai)}. For GCG, as shown in Table 8, we
explore three optimization targets T : (1) Answer
guidance; (2) Partial ground truth rationale guid-
ance; (3) Partial pre-forgetting rationale guidance,
where the rationale is generated by the model be-
fore forgetting. To prevent the incorporation of
task-specific information provided by (2) and (3),
we restrict the search target to only the first 20%
of the rationale, i.e., k = 0.2. The suffix searched
for each sample (Ii, Ai) is denoted as Si. See Ap-
pendix B.3 for the detailed implementation.

Evaluation Metric To quantitatively evaluate the
extent of task performance recovery of the forget-
ting model on the forgotten task, we formally define
the recovery rate (R.Ra) computed as follows:

R.Ra =
1

|Df|
∑

Ii,Ai∈Df

I(Ma−f ([Ii, Si]), Ai) (3)

where I(Ma−f ([Ii, Si]), Ai) is an indicator func-
tion that equals 1 when Ma−f predicts correctly
and 0 when it predicts incorrectly.

Results and Analysis As shown in Figure 5, ap-
pending task-irrelevant suffixes to original instruc-
tions enables forgetting models to actively gener-
ate correct rationale, leading to 90% recovery rate
across tasks. This provides direct evidence that the
model dose not forget previously acquired capabil-
ities. Specifically, the recovery effectiveness may
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(a) Llama2-7B (b) Mistral-7B

Figure 6: Comparison of instruction dependency scores
of pseudo-forgetting model for generating correct and
incorrect rationales on MNLI task.

correlate with sample complexity. While Mistral-
7B demonstrates complete recovery (100%) on
MNLI, its average recovery rate on QQP is 95.44%,
with a similar trend observed in Llama2-7B. Ta-
ble 10 presents suffix cases searched via GCG
based on different models and test samples.

Summary

The results of the two experiments provide
direct evidence of pseudo forgetting: the
model does not truly forget task-specific
capabilities, rather, the original instructions
fail to guide the model in leveraging the
appropriate abilities to solve the task.

2.2 Cause of Pseudo Forgetting

In this section, we investigate the cause of pseudo
forgetting to further validate our hypothesis. We
demonstrate that the pseudo-forgetting model ex-
hibits a reduced reliance on the original instructions
during rationale generation, preventing the model
from correctly leveraging its intrinsic capabilities.

Attribution Algorithm We use attribution
scores (Li et al., 2024a; Wang et al., 2023a; Dai
et al., 2022) to quantify and analyze the extent to
which the model relies on instructions during the
rationale generation stage. Formally, let Q(l)

IR de-
note the dependency score at layer l, capturing the
dependency between the instruction I and the ratio-
nale R. The detailed algorithmic description and
implementation are provided in Appendix B.4.

Experimental Settings We use Mb−f and Ma−f

to denote the model trained on the old task and
continually trained on the final task, correspond-
ing to the stages of before and after pseudo for-
getting. The probing dataset is the same as that
used in Section 2.1. Each sample can be denoted

(a) Llama2-7B (b) Mistral-7B

Figure 7: Comparison of relative instruction dependency
scores across different states of Llama2-7B and Mistral-
7B on MNLI task.

as (I,Rb−f , Ra−f , Rg, Ab−f , Aa−f , Ag), where I
represents the instruction, Rb−f , Ra−f , Rg repre-
sent the rationale generated by Mb−f , Ma−f , and
Llama3.1-70B-Instruct (as the ground truth), re-
spectively. Ab−f , Aa−f , Ag represent the corre-
sponding predicted answers.

Experiment 1 Firstly, we investigate the differ-
ences in the pseudo-forgetting model’s (Ma−f ) in-
struction dependency when generating incorrect
(Ra−f ) versus correct (Ra−f ) rationale.

As shown in Figure 6 and Figure 10, we can
conclude that the pseudo-forgetting model gen-
erates incorrect rationales primarily due to the
reduced instruction dependency. Specifically,
for Ma−f , the instruction dependency when gen-
erating incorrect rationales (blue line) is generally
lower than that when generating correct rationales
(orange line). The difference is noticeable in shal-
low layers, aligning with the findings in Wu et al.
(2024) that shallow layers learn more and stronger
instruction-following patterns.

Experiment 2 Secondly, to confirm that the re-
duced instruction dependency is indeed caused by
pseudo forgetting, we examine the impact of dif-
ferent models (Mb−f vs Ma−f ). Specifically, we
compare the relative instruction dependency scores
when different models generate rationales:

∆Attr(Rgen|Rg) = |Q(l)
IRgen

−Q
(l)
IRg

| (4)

where Rgen is Ra−f (Rb−f ) if we calculate Equa-
tion (4) on Ma−f (Rb−f ). This approach ensures
that the only variable in the experiment is the oc-
currence of pseudo forgetting.

As shown in Figure 7 and Figure 11, the dis-
crepancy between Rg and Ra−f on Ma−f (blue
line) is larger compared to the difference between
Rg and Rb−f on Mb−f (orange line). This finding
further supports our hypothesis that a key factor
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contributing to pseudo forgetting is the model’s
reduced reliance on the original instruction dur-
ing rationale generation. While certain layers
display differences or larger “before” delta scores
compared to the “after” condition, we leave the
analysis of this observation to future work.

3 Addressing Pseudo Forgetting:
Rationale-Guidance Difficulty based
Replay

Based on these findings, we argue that replay-based
algorithms, which incorporate a small portion of
data from previous tasks during continual learn-
ing, can effectively reinforce the model’s depen-
dency on corresponding instructions, thereby offer-
ing a simple yet effective solution to pseudo for-
getting. However, how to allocate the replay data
ratio for each task remains underexplored (Wang
et al., 2024). Thus, in Section 3.1, we introduce
the Rationale-Guidance Difficulty (RGD) metric
to measure the impact of pseudo forgetting on the
model. Then, in Section 3.3, we propose Rationale-
Guidance Difficulty based Replay (RGD-R), which
leverages RGD to dynamically determine the re-
play data proportion for each task, optimizing re-
play data utilization during continual learning.

3.1 Rationale-Guidance Difficulty
We first introduce the Rationale-Guidance Diffi-
culty (RGD) metric, which measures the difficulty
for the model to correctly utilize its internal capa-
bilities in generating appropriate rationale under a
given instruction. A higher RGD score signifies
greater difficulty for a prompt in guiding the model
to generate the correct rationale, and vice versa.
For a data triplet (I,Rg, Ag), the RGD score is
calculated as follows:

RGD(I,Rg, Ag) =
PPLa−f (Rg|I)
PPLb−f (Rg)

, (5)

where I , Rg, and Ag denote the prompt, the ground
truth rationale, and the ground truth answer, respec-
tively. PPLb−f (Rg) represents the difficulty for the
model with normal access to its capabilities to gen-
erate the correct rationale, and PPLa−f (Rg|I) de-
notes the difficulty for the pseudo-forgetting model
to generate the same rationale given prompt I .

RGDD =
1

|D|
∑

i

RGD(I,Rg, Ag)i, (6)

where (I,Rg, Ag)i is the i-th sample in dataset D,
and |D| is the total number of samples.

3.2 Theoretical Analysis

Here, we give a simple proof that under a reason-
able assumption, the RGD score can measure the
difficulty of the capability activation process. First,
Wu et al. (2024) finds that the underlying mecha-
nism of instruction following likely involves model
θ first recognizing instruction i, then utilizing the
activated capabilities c1, . . . , cn to generate ratio-
nale r. We can formalize this process as:

Pθ(r|i) =
∑

n

p(r | cn) · p(cn | i). (7)

Assumption. (Independence of Task Abilities) Un-
der normal circumstances, each capability c can
only be activated by task-specific instruction i,
which subsequently supports the generation of the
corresponding rationale r. The capabilities of tasks
across different domains are independent from one
another. This can be formulated as:

∀m ̸= n, p(r | cn) · p(cm | i) = 0. (8)

Given this assumption, we can formalize the
probability of the model θ to activate the correct
task capability c∗ given instruction i as:

Pθ(c
∗ | i) = p(c1, . . . , cm | i) =

∑

m

p(cm | i), (9)

and the process of generating the correct rationale
r∗ based on the model’s internally activated capa-
bilities can be formally expressed as follows: :

Pθ(r
∗) = p(r∗ | c1, . . . , cn) =

∑

n

p(r∗ | cn) (10)

Given Equation (8), we can rewrite Equation (7)
as:

Pθ(r
∗|i) =

(∑

n

p(r∗ | cn)
)
·
(∑

m

p(cm | i)
)

(11)

Hence, the following equation holds:

Pθ(c
∗ | i) = Pθ(r

∗|i)
Pθ(r∗)

(12)

Consequently, following the same principle, the
RGD score can approximate the difficulty of a
given instruction in activating the model’s correct
capability to generate the corresponding rationale.

3.3 RGD-based Replay framework

To optimize the data utilization in replay-based
methods, we propose the Rationale-Guidance

23647



Difficulty-based Replay (RGD-R) framework. Dur-
ing continual learning, RGD-R dynamically deter-
mines the required replay data ratio for each pre-
vious task based on the RGD score calculated via
Equation (6). Specifically, when training the model
on the i-th task, the replay data ratio for the j-th
previous task can be calculated as:

αj =
RGDDj∑i−1

k=1 RGDDk

, j ∈ [1, i− 1] (13)

where
∑i−1

j=1 αj = 1, and RGDDj represents the
RGD score of the j-th previous task. Thus, the
amount of replay data allocated to this task is αj ·N ,
where N represents the total amount of replay data.

In the RGD-R framework, tasks that suffer more
severely from pseudo forgetting are replayed with
more training samples. This adaptive strategy fa-
cilitates the recovery of the model’s dependency
on the corresponding instructions, enabling more
effective utilization of the correct task-specific ca-
pabilities.

3.4 Experiments
3.4.1 Experiment Setting
Datasets Following Razdaibiedina et al. (2023a)
and Wang et al. (2023c), we conduct experiments
on Long Sequence Benchmark, with train/valida-
tion/test splits of 1000/500/500 samples respec-
tively. See Appendix A for more details.

Metrics Following prior works (Zhao et al.,
2024; Zhang et al., 2023b) Let ai,j be the test-
ing performance on the j-th task after training on
i-th task, the metrics for evaluating are: (1) Fi-
nal Average Performance (FAP) is the average
performance of all tasks after the final task tT is
learned, i.e., FAPT = 1

T

∑T
t=1 aT,t; (2) Forgetting

Rate (F.Ra) measures how much knowledge has
been forgotten across the first T − 1 tasks, i.e.,
FT = 1

T−1

∑T−1
t=1 (maxT−1

k=i ak,t − aT,t); (3) Back-
ward Transfer (BWT) measures the impact that
continually learning on subsequent tasks has on pre-
vious tasks, i.e., BWTT = 1

T−1

∑T−1
t=1 (aT,t − at,t).

(4) Forward Transfer (FWT) measures how much
the model can help to generalize and learn the
new task, i.e., FWT = 1

T

∑T
t=2 at−1,t. Better

scores on FAP, F.Ra, and BWT indicate improved
model stability, while a better FWT score reflects
enhanced model plasticity.

Baselines To validate the effectiveness of RGD
in measuring pseudo forgetting and RGD-R in mit-
igating this phenomenon, we conduct comparative

Method FAP↑ F.Ra↓ BWT↑ FWT↑
Qwen2-0.5B

SEQ 20.73 53.18 -53.04 21.46
EA 64.13 5.43 -4.90 33.34
RGD-R 65.99 3.64 -3.29 31.87

Qwen2-7B
SEQ 70.97 11.78 -11.68 67.53
EA 78.34 3.84 -2.67 69.87
RGD-R 79.76 2.21 -1.05 69.63

Mistral-7B
SEQ 51.48 30.19 -29.97 47.91
EA 72.15 7.59 -6.96 51.17
RGD-R 74.91 4.37 -3.92 50.77

Llama2-7B
SEQ 62.79 17.87 -17.85 43.95
EA 76.10 3.52 -2.49 50.91
RGD-R 77.03 2.65 -1.25 51.06

Llama2-13B
SEQ 68.38 13.54 -13.2 51.69
EA 76.98 4.73 -3.70 56.92
RGD-R 78.25 3.68 -2.29 57.83

Table 1: Performance of different models on Long Se-
quence Benchmark. The decoding strategy is greedy
search. RGD-R effectively alleviates model forgetting
and maintains model plasticity simultaneously.

experiments across the following baselines focus-
ing on replay data allocation, where samples for
each task are randomly selected from the training
set: (1) Sequential Training (SEQ) refers to learn-
ing new capabilities without replay data; (2) Equal
Allocation (EA) replays the same amount of data
for each previous task. More training details are
provided in Appendix B.2.

3.4.2 Main Results
LLMs exhibit inherent resistance to pseudo for-
getting, which improves with larger model sizes.
Larger models show lower forgetting rates, such as
F.Ra of Qwen2-7B and Qwen2-0.5B with SEQ are
11.78 and 53.18, respectively.

The equal allocation method significantly alle-
viates pseudo forgetting. Compared to SEQ, EA
improves the final performance (FAP) of Qwen2-
0.5B, Mistral-7B, and Llama2-13B by 43.40, 20.67,
and 8.60, respectively, while reducing the forget-
ting rate (F.Ra) by 49.54, 22.6, and 9.86. These
results support our hypothesis that LLMs do not
truly forget the previously learned capabilities.

RGD-R further alleviates pseudo forgetting
and ensures the model plasticity simultaneously.
Compared to EA, RGD-R demonstrates superior
effectiveness in mitigating pseudo forgetting (FAP,
F.Ra, BWT) and promoting asynchronous knowl-
edge transfer (FWT) across different models. This
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(a) MNLI (b) QQP

Figure 8: Comparison of relative instruction dependency
scores across different states of Mistral-7B on MNLI
and QQP tasks. 1. ‘pseudo forgetting’ and ‘random
replay’ represent Mistral-7B exhibiting pseudo forget-
ting and Mistral-7B after capability recovery through
random data replay, respectively. 2. The replay-based
method leads to lower relative instruction dependency
scores, indicating that it helps the model rely more on
instructions during rationale generation.

highlights the efficacy of the RGD score in measur-
ing the impact of pseudo forgetting and confirms
that RGD-R successfully optimizes the utilization
of replay data in replay-based continual learning
algorithms, leading to better overall performance.

3.4.3 Analysis
Data Replay Restores Instruction Dependence
To demonstrate that the replay-based method in-
deed enhances the instruction dependence, we
repeat the attribution experiment in Section 2.2.
Specifically, we compare the relative instruction
dependency scores between the pseudo-forgetting
model trained via SEQ and the model trained
via EA data replay. As shown in Figure 8, the
model trained via data replay (orange line) exhibits
a smaller overall difference in instruction depen-
dence when generating rationales compared to the
pseudo-forgetting model (blue lines). This sug-
gests that the replay-based method improves the
model’s reliance on original instructions, thereby
alleviating pseudo forgetting.

Data Replay Enables Better Semantic Recovery
in Rationales Here, we provide additional evi-
dence from the semantic perspective of rationales,
demonstrating that the replay-based method offers
a simple yet superior choice. We compare the se-
mantic similarity between rationales generated by
different methods (R(·)) and those generated by the
pre-pseudo-forgetting model (Ra−f ). As shown in
Table 2, the replay-based method achieves higher
semantic similarity compared to GCG, and sur-
passes the ground truth rationales. This indicates
that replay-based methods are more effective in

Rationale MNLI BOOLQA RTE

Ra−f 0.2756 0.2962 0.2538
RParaphrase 0.6641 0.6793 0.6554
RGCG 0.2871 0.3134 0.2856
Rg 0.4103 0.4719 0.4038
RReplay 0.4391 0.4931 0.4359

Table 2: Comparison of ROUGE-L scores between
rationales (R(·)) generated by different methods and
those (Rb−f ) from the model before pseudo-forgetting.
RParaphrase is the paraphrased rationale generated by
GPT-3.5 based on Rb−f . RGCG and RReplay are the
rationales generated after mitigating pseudo forgetting
with the GCG and data replay methods, respectively.

stimulating the model’s previously learned task ca-
pabilities. In contrast, based on GCG, the pseudo-
forgetting model still tends to generate tokens re-
lated to the new task (Gu and Feng, 2020). While
adding a semantic constraint to GCG helps allevi-
ate this issue, our preliminary experiments show
that it makes the search process harder and less
efficient.

Method FAP↑ F.Ra↓ BWT↑ FWT↑
Mistral-7B

EA 72.15 7.59 -6.96 51.17
InsCL 76.17 4.43 -4.02 54.08
RGD-R 74.91 4.37 -3.92 50.77

Llama2-7B
EA 76.10 3.52 -2.49 50.91
InsCL 76.73 2.78 -1.96 50.25
RGD-R 77.03 2.65 -1.25 51.06

Table 3: Comparison of different replay data allocation
strategies. RGD-R achieves performance comparable to
that of InsCL, which substantiates both its effectiveness
and generalizability.

Comparison with Another Data Allocation
Method The results presented in Table 1 demon-
strate the effectiveness of our proposed RGD score
and RGD-R framework. To further validate the
performance of RGD-R, we conduct a compara-
tive study against the current state-of-the-art data
replay method, InsCL (Wang et al., 2024), on
Mistral-7B and Llama2-7B. InsCL allocates re-
play data based on the similarity between previ-
ous and current training tasks. As shown in Ta-
ble 3, RGD-R achieves comparable performance
to InsCL, demonstrating the effectiveness of our
proposed approach. Since our primary objective
is to identify pseudo forgetting, quantify its extent
through the proposed RGD metric, and try to miti-
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gate its impact via RGD-R, the above experimental
results meet our expectations. We leave exploring
how to use RGD to design better continual learning
algorithms for future work.

4 Related Work

Mechanism of catastrophic forgetting While
many continual learning algorithms have been pro-
posed, a substantial gap persists in understanding
the mechanism of catastrophic forgetting. Kotha
et al. (2024) hypothesize that models first per-
form “task inference” before applying the rele-
vant capability, and fine-tuning biases this infer-
ence towards tasks aligned with the fine-tuning
distribution, thereby suppressing performance on
other prior capabilities. Jiang et al. (2024) be-
lieve that forgetting is primarily due to the reduced
instruction-following capability, rather than a loss
of task-related knowledge. Unlike our work, the
above studies do not provide direct and effective
evidence of pseudo forgetting on LLMs and natural
language datasets.

Traditional methods in continual learning (1)
Regularization-based methods constrain the fea-
tures learned from previous tasks (Zhang et al.,
2023a; Huang et al., 2021) or penalize changes
to weights critical for those tasks (Zhou and Cao,
2021; Wang et al., 2023b), ensuring that new
learning minimally interferes with prior capabil-
ity thus maintaining performance on earlier tasks.
(2) Architecture-based methods aim to reduce the
interference by either increasing the model’s ca-
pacity (Zhao et al., 2024) or isolating the existing
weights (Hu et al., 2024). (3) Replay-based meth-
ods retain a small subset of prior training examples
or pseudo data and revisit them when a new task
is introduced (Guo et al., 2024; Huang et al., 2024;
Qin and Joty, 2022). InsCL (Wang et al., 2024)
allocates replay data based on the similarity of task
instructions. In this paper, we introduce RGD-R,
which dynamically allocates replay data based on
the model’s susceptibility to pseudo forgetting, cap-
turing more model-relevant characteristics to help
the model maintain both stability and plasticity.

5 Conclusion

In this study, we directly demonstrate the phe-
nomenon of “pseudo forgetting” in LLMs during
continual learning. We show that the performance
degradation on previous tasks does not stem from
the loss of corresponding capabilities, but rather

from reduced instruction dependence during ratio-
nale generation. We introduce the RGD score to
quantify the extent of the model’s susceptibility to
pseudo forgetting, which is then used to dynami-
cally allocate the replay ratio for each previous task
to optimize replay data utilization in our proposed
RGD-R framework. Experimental results confirm
the effectiveness of RGD-R in addressing pseudo
forgetting and preserving model plasticity.

Limitations

While this paper analyzes and addresses pseudo for-
getting during continual learning in LLMs, several
limitations warrant further discussion. First, we
do not conduct an in-depth analysis of the specific
process behind pseudo forgetting. For instance, at
what point during the learning of new tasks does the
model begin to show reduced dependence on the in-
structions from previously learned tasks? What are
the underlying factors driving this decline? Second,
the relationship between pseudo forgetting and spe-
cific tasks or domains remains unexplored. For
example, as noted by Li et al. (2024c), domain gen-
eralization in summarization tasks correlates with
words distribution, raising the question of whether
pseudo forgetting exhibits similar characteristics.
Additionally, we propose that measuring pseudo-
forgetting is likely a multi-dimensional problem,
and our proposed RGD score represents just one
possible metric. The development of more com-
prehensive evaluation metrics for this phenomenon
requires additional research. Finally, our findings
indicate that LLMs do not forget previously ac-
quired capabilities, and Dai et al. (2022) suggest
that these capabilities are stored parametrically
within the model. Consequently, to optimize con-
tinual learning algorithms, we suggest that future
works could benefit from combining replay-based
and parameter-based approaches, with a greater
emphasis on enhancing asynchronous knowledge
transfer capabilities—an underexplored aspect in
current research (Zhang et al., 2023b).
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deploying systems, the risk of propagating harm-
ful biases is minimal. Second, while our findings
about model capabilities and instruction depen-
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A Dataset Details

A.1 Datasets

Long Sequence Benchmark The Long Sequence Benchmark (Razdaibiedina et al., 2023b) comprises
15 tasks from CL benchmark (Zhang et al., 2015), GLUE benchmark (Wang et al., 2019b), and SuperGLUE
benchmark (Wang et al., 2019a), as detailed in Table 4.

Dataset Source Task Domain Metric

1. Yelp CL Benchmark sentiment analysis Yelp reviews accuracy
2. Amazon CL Benchmark sentiment analysis Amazon reviews accuracy
3. DBpedia CL Benchmark topic classification Wikipedia accuracy
4. Yahoo CL Benchmark topic classification Yahoo Q&A accuracy
5. AG News CL Benchmark topic classification news accuracy
6. MNLI GLUE natural language inference various accuracy
7. QQP GLUE paragraph detection Quora accuracy
8. RTE GLUE natural language inference news, Wikipedia accuracy
9. SST-2 GLUE sentiment analysis movie reviews accuracy
10. WiC SuperGLUE word sense disambiguation lexical databases accuracy
11. CB SuperGLUE natural language inference various accuracy
12. COPA SuperGLUE question and answering blogs, encyclopedia accuracy
13. BoolQA SuperGLUE boolean question and answering Wikipedia accuracy
14. MultiRC SuperGLUE question and answering various accuracy
15. IMDB SuperGLUE sentiment analysis movie reviews accuracy

Table 4: The details of 15 classification datasets in the Long Sequence Benchmark (Razdaibiedina et al., 2023b).

A.2 Task Sequence Orders

Following previous works (Zhao et al., 2024; Razdaibiedina et al., 2023b), we conduct experiments using
two different training orders, as shown in Table 5.

Order Task Sequence

1 mnli → cb → wic → copa → qqp → boolqa → rte → imdb →
yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo

2 yelp → amazon → mnli → cb → copa → qqp → rte → imdb →
sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic

Table 5: Tow different orders of task sequences used for our experiments correspond to the Long Sequence
Benchmark.

A.3 Data Construction and Ground Truth Rationales Generation

The raw sample consists of an instruction I , an input Iinput, and an answer A. We adopted the instruction
conversion templates proposed by Wang et al. (2023d) to integrate inputs into instructions ([I, Iinput] → I).
To explicitly probing the model’s acquired capabilities, we employed Llama3.1-70B-Instruct 3 to generate
a rationale R for each sample. The final data samples were structured as triples (I,Rg, Ag). Specifically,
we use the prompt shown in Table 6 to ensure that Ag would not appear directly within Rg, or would only
appear at the end of Rg. This approach prevent the occurrence of Ag being provided via partial rationale
guidance in experiments in Section 2.1, thereby ensuring the validity of our experimental results.

3https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
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<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{default system prompt}
<|eot_id|><|start_header_id|>user<|end_header_id|>
### Instruction:
We have a question and an answer provided below. Your task is to generate a rationale that explains
the reasoning behind the given answer. The rationale should be comprehensive, logical, and clearly
support why the answer is appropriate for the question.
### QA Pair:
Original question:
{Instruction}
Original answer:
{Answer}
### Guidelines:
1. Provide a detailed rationale for the given answer.
2. Ensure that the rationale is clear, logical, and free of any ambiguity.
### Format:
Please generate the following JSON formatted output and nothing else:<|eot_id|><|start_header_id|>
assistant<|end_header_id|>
{"answer": "{Answer}", "rationale": "The correct answer is {Answer}.
The rationale behind this answer is as follows:

Table 6: The prompt for ground truth rationale generation

B Experimental Implementation Details

B.1 Implementation Code for the First k Portions of Rationale

rationale_words = item["rationale"].split(" ")
end_part = int(len(rationale_words)*ex_rationale_rate)
part_rationale = " ".join(rationale_words[:end_part])

B.2 Model Training

To comprehensively assess the effectiveness of RGD-R, we perform comparative experiments using
backbone models of different sizes and underlying knowledge bases. The backbone models used in our
experiments include Qwen2-0.5B/7B (Yang et al., 2024), Mistral-7B (Jiang et al., 2023), and Llama2-
7B/13B (Touvron et al., 2023). We perform continual learning training using the LoRa algorithm on
the 7B and 13B models. Specifically, the LoRA hyperparameters are set as follows: lora_rank = 8,
lora_alpha = 16, and lora_dropout = 0.1, with LoRA applied across all modules. For the Qwen2-
0.5B model, we directly apply full fine-tuning. The detailed parameter settings are presented in Table 7:

Model Size Optimizer Lr Scheduler Learning Rate Batch Size Epochs

≥ 7B AdamW
Warmup=0.03
Decay="cosine"

5e-4 32 6

< 7B AdamW
Warmup=0.03
Decay="cosine"

5e-5 64 3

Table 7: Training details of continual learning
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B.3 GCG Implementation
In Section 2.1, we employ GCG (Zou et al., 2023) to search for the suffix corresponding to each
forgotten sample, which enables the original instruction to guide the pseudo-forgetting model in generating
appropriate rationale and restoring performance on previous tasks. Specifically, as shown in Table 8, we
utilize three optimization objectives to facilitate the search process. The termination conditions are set as:
(1) correct model response to the original instruction, or (2) reaching the maximum iteration count of 500.
We configure the hyperparameters with top− k = 256 and batch size = 256. The initial suffix is set
to "! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ".

Target T Example (k = 0.2)

Answer-based The answer is: {ground truth answer}. The reasons are as follows:

Partial Rg

1. To establish the logical relationship between the two sentences, we must analyze
the meaning and implications of each. 2. Sentence 1 states that the presence of
a smart doctor who gave a tip through

Partial Rb−f
1. Sentence 1 states that there was a smart doctor who gave them a tip through
the Coroner,which implies the presence and involvement of a doctor in the situation.

Table 8: Optimization targets used by GCG on MNLI task in Experiment 2.1. 1. Rg and Rb−f represent the ground
truth rationale and the rationale generated by the pre-forgetting model, respectively. 2. The rationale shown here
corresponds to the first 20% of the sequence, which does not directly provide task-relevant key information.

B.4 Attribution Implementation
In Section 2.2, we quantify the model’s dependency on the given instruction during rationale generation
using an attribution algorithm (Li et al., 2024a; Wang et al., 2023a; Dai et al., 2022).

Specifically, we can use the Riemann approximation of the integral to calculate the contribution of a
neuron ω to the model’s output F (·), with m approximation steps:

Attr(ω) = ω ◦
∫ 1

0

∂F (αω)

∂ω
dα ≈ ω

m

m∑

k=1

∂F
(

k
m
ω
)

∂ω
(14)

Since the self-attention layers learn strong instruction-following patterns (Wu et al., 2024), we can
compute the dependency between the instruction I = x1 : xNins and the given rationale R = x1 :
xNrationale

based on the attention layers:

Q
(l)
IR =

1

|N |
∑

(i,j)∈DIR

Attr(A(l)
i,j) where DIR = {(i, j)|xi ∈ I, xj ∈ R} (15)

In this notation, Attr(A(l)
i,j) represents the dependence intensity from the i-th token to the j-th token in

the l-th self-attention layer, calculated by summing the absolute attribution scores across all heads. |N |
denotes the total number of rationale steps.

In Equation ( 14), F (·)represents the language modeling loss, and m = 20. Each sentence in the
rationale is treated as a separate reasoning step, allowing us to compute the total number of inference
steps, |N |, as described in Equation (15).

C Additional Experiments

C.1 Evaluation of Task Information Provided by the First k Portions of Rationale
In experiment A1 described in Section 2.1, as illustrated in Figure 2, when the forgetting model is provided
with the first k portions of the rationale, its performance on the forgotten tasks gradually recovers to
pre-forgetting levels as k increases. However, since the first k portions of the rationale may introduce
task-relevant critical information, the results from experiment A1 cannot directly prove the existence of
pseudo forgetting. Nevertheless, A1 motivates us to conduct the A2 experiment, enabling the model to
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You are tasked with evaluating the sufficiency of reasoning in Natural Language Inference (NLI) tasks.

For each example, you will be given:

1. A partial rationale discussing the relationship between sentence1 and sentence2 in an NLI task

2. The correct answer (neutral, entailment, or contradiction)

Your job is to determine: 

Based ONLY on the provided partial rationale, without any further reasoning, can one directly conclude the correct answer? 

In other words, does this partial rationale contain the key information necessary to definitively reach the correct conclusio n?

Partial Rationale: 

"{PARTIAL_RATIONALE}"

Correct Answer:

"{CORRECT_ANSWER}"

Response format:

1. Begin your response with either "YES" or "NO" to indicate if the partial rationale directly leads to the correct answer.

2. Do not provide your explanation.

Remember:

- Do not perform additional reasoning beyond what's in the partial rationale

- Do not use information from sentence1 or sentence2 that isn't mentioned in the rationale

- Focus solely on whether the given partial rationale itself contains the key information needed to reach the correct conclusion

Figure 9: The prompt used to assess whether the first k portions of rationales directly provide task-related key
information. We ask GPT4o to evaluate whether the correct answer can be directly obtained based solely on the
provided rationale, without requiring further reasoning.

actively generate appropriate rationale and derive the correct answers by searching for task-irrelevant
suffixes.

To ensure the validity of the A2 experiment, we evaluate the proportion of external rationales that do not
introduce key information for various values of k using GPT4o 4. Subsequently, we perform GCG using
the k value that does not leak any information, ensuring that the suffixes do not encode any task-critical
information but serve merely to guide the model’s rationale generation.

Experimental setup We randomly sample 100 ground truth rationales from both the MNLI and RTE
respectively. We use GPT4o to assess whether the first k portions of rationales provide sufficient critical
information to obtain the correct answer without further reasoning. (The prompt is shown in Figure 9)

Task k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5 k = 0.6

MNLI 96.0 94.0 84.0 73.0 49.0 24.0
RTE 97.0 97.0 87.0 78.0 57.0 36.0
AVG 96.5 95.5 85.5 75.5 53.0 30.0

Table 9: Percentage (%) of cases where the first k portions of rationales do NOT provide critical information. When
k = 0.1 or k = 0.2, the key information leakage rate is around 5%, which is acceptable. Therefore, in Experiment
A2 in Section 2.1, we use the first 0.2 portions of the rationale as the optimization target for GCG, examples are
shown in Table 8.

Experimental results and analysis The experimental results are shown in Table 9. When k ≤ 0.4, the
first k portions of rationales generally do not directly provide task-relevant critical information. When
k ≥ 0.5, more than half of the first k portions contain some task-critical information, which aligns with
intuition. To ensure that no external key information is introduced, we set k = 0.2 in Experiment A2,
using the first 20% words of the rationale as the optimization target for GCG, and search for meaningless
instruction suffixes.

4https://openai.com/index/gpt-4o-system-card/
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(a) Llama2-7B (b) Mistral-7B

Figure 10: Comparison of instruction dependency
scores of pseudo-forgetting model for generating cor-
rect and incorrect rationales on RTE task.

(a) Llama2-7B (b) Mistral-7B

Figure 11: Comparison of relative instruction depen-
dency scores across different states of Llama2-7B and
Mistral-7B on RTE task.

C.2 More Results for Attribution Experiments
In Section 2.2, we employ an attribution algorithm to investigate how much the model relies on task
instructions during the rationale generation stage, both before and after pseudo forgetting. Our findings
reveal a significant decline in instruction dependency for pseudo-forgetting models, which in turn impairs
the model’s ability to correctly utilize relevant task-specific abilities when prompted with the original
instructions. This degradation contributes directly to the observed pseudo forgetting phenomenon.

Figure 10 and Figure 11 present the results of Experiment 1 and Experiment 2 in Section 2.2 on the
RTE task, respectively. The observed trends are consistent with those in Figure 6 and Figure 7, similarly
supporting our findings.

D Case study

Model Task Partial suffixes

Mistral-7B BoolQA ! ! Sounds striking ! ! ! ! ! Bo ..## !phony provisions !="#
Mistral-7B BoolQA And ! ! ! ! ! doesn ! mentioned ! !However ! ! ! Shadow ! !
Mistral-7B MNLI ! ! ! ! ! ! ! ! ! the ! ! Fifth ! ! ! ! ! ! !
Mistral-7B MNLI ! ! Cons ! > nation ! April ! G ! Pub Final ! ! ! ! ! ! !

Qwen2-0.5B MNLI !HolAndHashCode ! ErrorResponse-not Donovan unpublished

Table 10: Examples of instruction suffixes discovered by GCG. Due to length constraints, only the initial portions of
the suffixes are shown.
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