
Findings of the Association for Computational Linguistics: ACL 2025, pages 23250–23267
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

DecompileBench: A Comprehensive Benchmark for Evaluating
Decompilers in Real-World Scenarios

Zeyu Gao1*, Yuxin Cui1*, Hao Wang1*, Siliang Qin2*

Yuanda Wang3, Zhang Bolun2, Chao Zhang1†

1Tsinghua University 3Peking University
2Institute of Information Engineering, Chinese Academy of Sciences

{gaozy22,yx-cui24,hao-wang20}@mails.tsinghua.edu.cn

{qinsiliang,zhangbolun}@iie.ac.cn yuandawang958@stu.pku.edu.cn

chaoz@tsinghua.edu.cn

Abstract

Decompilers are fundamental tools for criti-
cal security tasks, from vulnerability discov-
ery to malware analysis, yet their evaluation
remains fragmented. Existing approaches pri-
marily focus on syntactic correctness through
synthetic micro-benchmarks or subjective hu-
man ratings, failing to address real-world
requirements for semantic fidelity and ana-
lyst usability. We present DecompileBench,
the first comprehensive framework that en-
ables effective evaluation of decompilers in
reverse engineering workflows through three
key components: real-world function extrac-
tion (comprising 23,400 functions from 130
real-world programs), runtime-aware valida-
tion, and automated human-centric assessment
using LLM-as-Judge to quantify the effective-
ness of decompilers in reverse engineering
workflows. Through a systematic compari-
son between six industrial-strength decompil-
ers and six recent LLM-powered approaches,
we demonstrate that LLM-based methods sur-
pass commercial tools in code understandabil-
ity despite 52.2% lower functionality correct-
ness. These findings highlight the potential of
LLM-based approaches to transform human-
centric reverse engineering. We open source
DecompileBench1 to provide a framework to
advance research on decompilers and assist se-
curity experts in making informed tool selec-
tions based on their specific requirements.

1 Introduction

Modern software security fundamentally depends
on understanding binary code. From identifying
critical vulnerabilities in the network infrastruc-
ture to analyzing sophisticated malware, security
analysts rely on decompilers to bridge the seman-
tic gap between low-level machine instructions and
human-comprehensible program logic. As a crucial

*Equal contributions
†Corresponding author
1https://github.com/Jennieett/DecompileBench

line of defense against evolving cyber threats, these
tools must not only faithfully recover program se-
mantics, but also generate output that facilitates
rapid analysis under real-world time constraints.

Two transformative forces have reshaped the de-
compilation landscape. First, modern software
has grown increasingly complex and aggressive
compiler optimizations systematically erase high-
level semantics, making decompilation increas-
ingly harder. Second, large language models have
emerged as a disruptive force in decompilation.
Reverse engineers now experiment with general-
purpose models like GPT-4 for reverse engineer-
ing tasks (Kwiatkowski; RevEng.AI; Ninja), while
specialized models such as LLM4Decompile (Tan
et al.) and MLM (AscendGrace) focus on neural
decompilation. These LLM-powered approaches
show promise in generating more readable code by
learning high-level programming patterns.

However, these advances bring new challenges.
While LLMs-powered approaches produce visually
coherent code, reverse engineers question whether
these decompilations preserve the semantic behav-
iors crucial for security analysis. This uncertainty
reveals a critical gap in how we evaluate decompil-
ers for real-world security tasks.

Crisis of Functionality Validation in Real-
World Scenarios. Current decompiler evaluation
approaches suffer from fundamental limitations.
Most rely on artificially constructed programs (Cao
et al.) (e.g., Csmith-generated code (Yang et al.))
that lack the complexity of production software.
When validating these decompilers, symbolic ex-
ecution methods fail due to path explosion, while
unit tests (Tan et al.; Armengol-Estapé et al.) only
check input-output equivalence, thus ignoring crit-
ical behaviors like global state changes, heap ma-
nipulation, and exception handling that security
analysts must trace when hunting vulnerabilities.

Deficits of Automated Understandability As-
sessment. Current methods for evaluating decom-

23250

https://github.com/Jennieett/DecompileBench

Table 1: Decompiler Evaluation Benchmark Matrix. Symbol: ¥ (full support), � (partial), q (none).

Dimensions
Research Works

D-Helix
(Zou et al.)

SAILR
(Basque et al.)

LLM4Decompile
(Tan et al.)

ISSTA’20
(Liu and Wang)

SEC’24
(Dramko et al.)

DecGPT
(Wong et al.)

Dewolf
(Enders et al.)

Ours

Real-world Binaries q � � q � � � ¥

Recompilation � q ¥ � q ¥ q ¥

Functionality Validation � � � � � � � ¥

Readability Metrics q � � q � q ¥ ¥

Optimization Levels q ¥ ¥ q ¥ ¥ q ¥

Full Automation ¥ ¥ � ¥ q � � ¥

LLM-Based Decompiler q q ¥ q q q q ¥

piler output quality suffer from two key limitations.
Traditional automated metrics like lines of code
(LOC) and variable count (Yang et al.; Cao et al.)
miss crucial semantic properties such as meaning-
ful variable names and logical clarity. Human stud-
ies (Enders et al.; Cao et al.; Hu et al.), while pro-
viding valuable insights, lack sufficient scale across
diverse compilation settings. This forces practition-
ers to choose between oversimplified metrics or
expensive expert evaluations, neither suitable for
assessing LLM-based decompilation approaches.

To bridge these existing gaps, we present
DecompileBench, the first comprehensive evalua-
tion framework that holistically integrates multiple
key evaluation dimensions, as summarized in Ta-
ble 1. Our framework advances the field through
the following innovations.

Reconstructing Validation based on Runtime
Consistency. We resolve the synthetic evaluation
crisis through a dual-pronged approach. By es-
tablishing a production-grade assessment pipeline
via the OSS-Fuzz (OSS), one of the largest con-
tinuous fuzzing frameworks for open-source soft-
ware, we obtain 23,400 real-world functions from
130 actively maintained projects. We then vali-
date decompilation correctness not through isolated
unit tests or symbolic traces, but via runtime be-
havioral consistency during the fuzzing campaign.
Our framework dynamically substitutes original
functions with decompiled versions while instru-
menting full-program execution paths and check-
ing functionality correctness by evidencing through
runtime behavioral across the entire binary.

Redefining Understandability with Task-
Driven Metrics. To overcome the limitations
of existing readability metrics, we develop a 12-
dimensional assessment framework grounded in
reverse engineering objectives. We employ LLM-
as-a-Judge to perform scalable comparisons of de-
compiler outputs through security-task lenses, such

as Control Flow Clarity and Memory Layout Accu-
racy. This automated approach, validated against
expert ratings with κ=0.778 agreement, not only
ranks decompilers but predicts their effectiveness
for specific aspects in aiding the real-world reverse
engineering tasks for reverse experts.

In summary, our main contributions are:

• Real-World Evaluation Framework. We
develop a decompiler assessment framework
to assess the decompiler from three aspects.
By using real-world binary generation and
runtime validation to overcome synthetic lim-
itations, we provide reports on compiler and
runtime aspects. We also use LLM-as-a-Judge
for scalable decompilation assessment, replac-
ing subjective evaluations and simplistic met-
rics, to conduct code quality-aspect evaluation
and measure the helpfulness in human-centric
reverse engineering.

• Empirical Security Insights. Our evalu-
ation of 12 decompilers (6 traditional, 2
decompilation-specialized models, and 4
general-purpose LLMs) yields transformative
insights. Our key findings contain Hex-Rays’
36.11% functionality correctness drop under
-O3 optimizations, LLM’s significant readabil-
ity improvement over Hexrays despite lower
recompilation rates. These findings reshape
our understanding of decompiler capabilities
in security-critical contexts.

• Open-Source Benchmark. We release
DecompileBench to enable systematic decom-
piler evaluations for future research and help
analysts choose context-appropriate tools.

2 Related Works

2.1 Decompiler Evaluation
Decompilers are crucial in reverse engineering,
converting binary executables into human-readable

23251

high-level source code. This task is challenging
because compilers remove key information during
compilation, such as variable types and control
structures. Decompilers use predefined rules and
heuristics to reconstruct these details (Basque et al.;
Shoshitaishvili et al.), leading to significant perfor-
mance variability based on their rule implementa-
tions. This variability highlights the necessity for
systematic evaluation frameworks to assess decom-
piler quality, particularly in terms of functionality
correctness and readability.

2.1.1 Functionality Correctness Evaluation

Functionality correctness evaluation aims to verify
whether the decompiled code matches the origi-
nal program in functionality. Prominent methods
include Equivalence Modulo Inputs (EMI) test-
ing (Liu and Wang), which compares global vari-
able checksums between original and decompiled
code executions. However, EMI relies on Csmith-
generated (Yang et al.) test cases, which may over-
simplify real-world complexity. To address this,
Dsmith (Cao et al.) preserves intricate control and
data flows by focusing on runtime-dependent vari-
ables, while D-Helix(Zou et al.) leverages real-
world binaries from GitHub. Symbolic execution
tools like Diff (Kim et al.), Alive (Lopes et al., b),
Alive2 (Lopes et al., a), and SYMDIFF (Zou et al.)
further enhance correctness verification by analyz-
ing intermediate representations (IR) and mapping
symbolic models. Despite its advantages, symbolic
execution faces challenges such as path explosion,
which can compromise precision.

2.1.2 Readability Assessment

Readability assessment evaluates the clarity and un-
derstandability of decompiled code, as the goal is
to produce high-level representations for human un-
derstandability. Metrics such as Cyclomatic Com-
plexity, Lines of Code, number of goto statements,
and variable counts are commonly used to assess
control and data flow characteristics (Cao et al.).
Techniques like DREAM’s pattern-independent al-
gorithm (Basque et al.) and RevNG-C’s "Control
Flow Combing" aim to reduce control complex-
ity and eliminate goto statements (Gussoni et al.).
Human evaluation is also crucial. Many studies
involve experienced analysts and online platforms
comparing decompiler outputs based on control
flow structure and code patterns (Yakdan et al.;
Enders et al.; Cao et al.; Dramko et al.; Eom et al.).

2.2 Machine Learning for Decompilation

Machine learning has progressively advanced de-
compilation, starting with basic RNNs for binary-
to-C translation (Katz et al., a) and evolving with
NMT techniques that recover semantic details like
variable names and types (Katz et al., b; Liang
et al.; Hosseini and Dolan-Gavitt). Recent LLM-
based frameworks like DecGPT (Wong et al.) and
DeGPT (Lin et al.) employ hybrid methods, includ-
ing static and dynamic phases, to optimize decom-
pilation. LLM4Decompile (Tan et al.) fine-tunes
LLMs to align decompiled and original code, and
ReSym (Xie et al.) recovers variable semantics us-
ing LLMs combined with reasoning systems. Ad-
vanced foundation models like GPT (OpenAI) and
DeepSeek (DeepSeek-AI et al.) have demonstrated
an enhanced understanding of decompiled code.

2.3 LLM as a Judge

The recent advancements in large language models
(LLMs) have led to the introduction of the ‘LLM-
as-a-judge’ concept (Zheng et al.), which utilizes
the capabilities of LLMs to score and rank multiple
candidates (Li et al.). LLMs are capable of eval-
uating various aspects such as reliability (Cheng
et al.), helpfulness (Lee et al., a), relevance (Lu
et al.), and conducting multi-aspect assessments
across diverse applications (Yu et al.). To perform
pair-wise comparison and provide comprehensive
feedback (Shen et al.) without positional bias, tech-
niques such as CoT-like prompting (Zhu et al.) and
output-swapping (Zheng et al.) are proposed, with
tournament-based methods (Lee et al., b) further
accelerating evaluations.

3 Methodology

To evaluate decompilation in real-world settings,
we use the OSS-Fuzz to construct dataset. We fur-
ther develop an evaluation framework that compre-
hensively evaluates the decompiler’s performance
from three aspects cared for by the end users.

3.1 Dataset Construction

The dataset construction stage, shown in Figure 1,
begins with the extraction of source code from
OSS-Fuzz projects (OSS). OSS-Fuzz is a platform
that provides continuous fuzzing for well-known
open-source software. We focus exclusively on
C-language projects, as current decompilers pri-
marily target C, and cross-language decompilation
falls outside the scope of this study. These projects

23252

1. Build fuzzer and collect covered functions

2. Compile individual function

OSS-Fuzz

Extract

Project
Source Code

Binary +
Fuzzer

Compile Run

Covered
Function List

Extract

Individual
Function

Source Code

Compile

Shared
Library (.so)

Pseudo Code
Decompiler

Covered
Function List

Project
Source Code

3. Decompile shared library

Figure 1: Overview of dataset construction process.

1. Recompile each function

Pseudo Code

Compile

Recompiled
Shared Library

2. Differential testing with original and recompiled shared library

Shared
Library

Recompiled
Shared Library Run

Reference Function
Execution Detail

Recompiled Function
Execution Detail

Diff

3. Decompiler Arena

Compiler-Aspect
Report

Runtime-Aspect
Report

LLM
Code Quality

-Aspect Report
Quality

Comparison

Function
Source Code
as Reference

A’s Pseudo Code

B’s Pseudo Code

Code Quality
Criteria

Eval Instruction Prompt

ELO Calc

Dynamic Linked
Fuzzer

Stat

Figure 2: Three-dimensional evaluation framework for decompiler assessment: Successful recompilation rate,
Runtime behavior consistency, and LLM-assessed code quality.

are configured and compiled with Clang’s cover-
age sanitizer enabled, producing executable fuzzers
and initial seeds as fuzzing input. By running these
fuzzers fed with seeds as input, we utilize Clang’s
coverage sanitizer to identify functions covered dur-
ing execution. For each covered function, we use
clang-extract (SUS) to extract its implementa-
tion along with all dependencies, such as called
function signatures, and used macro definitions.
This allows us to compile individual functions into
standalone binaries (shared object files, .so). Fi-
nally, we decompile the desired function from these
binaries using multiple decompilers to obtain the
decompiled code for further evaluation. We leave
the detailed compile options and decompiler con-
figurations for Section B.

3.2 Evaluation Aspect

Following the decompilation process, we evaluate
the outputs across three aspects, as shown in Fig-
ure 2: the compiler aspect, the runtime aspect, and
the code quality aspect. These aspects measure the
re-compilation rate, functionality consistency, and

the readability and practical utility of the decom-
piled code for reverse engineers.

3.2.1 Compiler-Aspect Report
The usability of decompiled code hinges first and
foremost on its ability to meet compiler require-
ments, including correct language syntax and typ-
ing. To achieve this, we combine the decompiled
code with the previously extracted include direc-
tives and attempt to recompile it. The result of
this process is captured in a Compiler-Aspect Re-
port, which quantifies the recompilation success
rate. A high success rate indicates that the decom-
piler has preserved the essential syntactic structure
and dependencies of the original code, making the
decompiled output both functionally viable and
practically useful.

3.2.2 Runtime-Aspect Report
While successful recompilation ensures syntactic
validity, it does not guarantee that the decompiled
code maintains the original program’s function-
ality. Previous methods, such as symbolic execu-

23253

tion (Cao et al.) and unit testing (Tan et al.), have at-
tempted to verify decompilation accuracy but face
inherent limitations. Symbolic execution struggles
with path explosion in real-world programs, and
unit testing focuses mainly on output equivalence,
often missing complex inter-function dependencies
involving global variables and multi-level pointers.

Our approach introduces an innovative side-
effect consistency paradigm inspired by duck-
typing (Doc) in dynamic languages. We propose
that two implementations are functionally equiv-
alent if they produce identical side effects on the
program’s execution environment. Practically, a
decompiled function is likely correct if substituting
it into the original program results in identical exe-
cution characteristics across all components. The
implementation details of non-interfering function
substitution are detailed in Section D.

In the evaluation, we operationalize this prin-
ciple through branch coverage consistency analy-
sis using Clang’s SanitizerCoverage (LLVM) and
leverage OSS-Fuzz’s infrastructure in three critical
phases to conduct the verification:

1. Reference Function Profiling: We substitute
the target function with its original source-
compiled version (a shared library), and we
execute the modified program with the seed
corpus collected in Section 3.1 as input, but
without entering fuzzing iterations. This pro-
cess collects full-program branch coverage
through sanitizer instrumentation. This estab-
lishes the reference function execution profile
containing ground truth coverage metrics.

2. Decompiled Code Profiling: Following the
same substitution paradigm, we substitute the
target function with its decompiled version
while retaining the same seed corpus, then
perform identical execution to generate the
recompiled function execution profile.

3. Differential Analysis: After obtaining the two
profiles, we compare the reference and re-
compiled function execution profile to check
whether the decompilation preserves the con-
trol flow patterns during the whole binary exe-
cution. Here, preserving control flow patterns
requires strict equivalence in execution counts
of conditional statements (if/for/while)
and boolean outcomes distribution for con-
ditional branches (true/false ratios).

Moreover, this validation method can be seam-
lessly extended by plugging in existing instrumen-
tation framework for finer granularity—additional
comparison on stdout/stderr output, local vari-
ables (Fioraldi et al.) and operands in comparison
expression (Aschermann et al.).

3.2.3 Code Quality-Aspect Report
To systematically assess decompiled code quality,
we develop a dual-faceted evaluation framework
focusing on readability (syntactic comprehension)
and helpfulness (semantic reconstruction). We ex-
tend prior works (Dramko et al.; Cao et al.) and es-
tablish 12 fine-grained evaluation criteria spanning
five readability aspects (e.g., type system consis-
tency), five helpfulness dimensions (e.g., identifier
semantics), and two hybrid criteria affecting both
characteristics detailed in Table 2.

The evaluation process employs Qwen-2.5-
Coder-32B (Qwen et al.) to conduct aspect-
granular comparisons: For each pair of decompilers
(A vs. B), the LLM i) uses the reference function
code as the ground truth, ii) assesses both outputs
against every criterion listed in Table 2, and iii)
selects a winner for each criterion, accompanied
by a detailed justification, output in a predefined
JSON format. These pairwise outcomes are then
used to dynamically compute Elo scores, which
serve as a quantitative representation of each de-
compiler’s code quality. To balance thoroughness
and efficiency in our evaluation, we introduce a
probability-based sampling strategy (detailed in
Section C) that prioritizes comparisons between
decompilers with similar Elo ratings. This tar-
geted approach increases the density of compar-
isons among closely ranked models, enabling more
precise discrimination of subtle performance differ-
ences while maintaining broad evaluation coverage.

4 Evaluation

Our evaluation encompasses six traditional de-
compilers, representing both commercial and
open-source solutions for reverse engineering, the
description and decompilation technical details
are presented in Section A. For the emerging
paradigm of LLM-based decompilation, we eval-
uate both domain-specific and general-purpose
models: LLM4Decompile is tested using its of-
ficial prompt template, and MLM is assessed
through its public API service. The general mod-
els (GPT-4o-mini, GPT-4o, Qwen2.5-Coder-32B-
Instruct, Claude-3.5-Sonnet, and DeepSeek-V3)

23254

Category Subclass Explanation Example

Readability

Typecast Correctness Redundant/incorrect type casts obscure intent exit((long long)"Invalid size")

Literal Representation Non-idiomatic literals hinder understanding numeric 2685 instead of string literal “\n”

Control Flow Clarity Complex pointer dereferencing
for (i = a2; a1 != (*((_QWORD *)(i+64)));
i = * ((_QWORD *)(i+64)))

Decompiler Macros Non-standard macros violate conventions LOWWORD(v5)

Return Behavior Altered return expressions change logic return __readfsqword(0x28u)ˆv3

Helpfulness

Identifier Meaning Generic names reduce semantic value Using v4 instead of buffer
Identifier Accuracy Misleading variable semantics error_flag vs total_count
Symbolic Values Hardcoded values reduce clarity 8 instead of sizeof(long)
Function Correctness Core functionality recovery failure Overly too complex logic to comprehend
Function Precision Approximate functionality recovery MD5 identified as SHA-256 implementation

Readability
&

Helpfulness

Dereference Readability Opaque pointer arithmetic ((_QWORD *)v5 + 8)

Memory Layout Failed type inference
(*(void (__stdcall **)(DWORD))

(*(_DWORD *)lpD3DDev_1+68))(pD3DDev_1);

Table 2: Code Quality Aspects: 12 aspects categorized by readability, helpfulness, and both.

are instructed to refine Hex-Rays outputs using
task-specific guidelines and three illustrative exam-
ples as few shots. All LLM evaluations employ gen-
eration parameters with a maximum token limit of
8,192, temperature of 0.7, and topp of 1.0. We use
Clang 18 on Ubuntu 22.04 to compile. We build
our compilation service upon official OSS-Fuzz
with modifications to achieve function substitution
and evaluation metrics collection.

To evaluate whether LLMs can effectively cap-
ture human judgments on decompiled code quality,
we employed Cohen’s kappa (κ) to measure the
agreement between LLM and human ratings. We
describe the detail in Section E.

4.1 Compiler- and Runtime-Aspect Analysis

Our evaluation across the compiler aspect and run-
time aspect are revealed through two metrics, Re-
compile Success Rate (RSR) and Coverage Equiva-
lence Rate (CER), as the result shown in Table 3.

Hex-Rays is recognized as the leading tradi-
tional decompiler, achieving the highest single
optimization-level RSR of 0.706 at -O0, and ex-
celling in averaged metrics with an RSR of 0.583
and a CER of 0.417. Ghidra ranks second among
traditional tools, establishing itself as the best open-
source decompiler. In contrast, dewolf performs
the worst in both metrics, as it is designed to priori-
tize readability for users.

Among LLM-based decompilation approaches,
GPT-4o shows the highest semantic fidelity with a
CER of 0.346, while GPT-4o-mini closely matches
Hex-Rays’ syntactic recovery capability with an
RSR of 0.582. However, these LLM-enhanced
results still fall short of Hex-Rays’ original met-
rics, with RSR lower by 0.2-45.3% and CER
lower by 17.2-52.2%. This is because the LLMs

prioritize readability over strict compiler com-
patibility. General-purpose models outperform
decompilation-specialized models by 69.9-120.8%
in the RSR metric and by 27.3-111.6% in the CER
metric. This performance gap may be due to the
temporal advantage in their development timelines.
The swift advancement of general large language
models, which were released 9-12 months after the
decompilation-specialized models, indicates that
they can exceed the capabilities of specialized mod-
els within short technological windows.

Our experiments also reveal some key in-
sights. First, CER generally correlates with
RSR, as runtime validation inherently depends
on successful recompilation. However, excep-
tions arise-RetDec achieves a higher RSR (0.354)
than MLM (0.319) but a lower correct execu-
tion rate (CER) (0.155 vs. 0.200), indicating
RetDec’s prioritization of compilation over func-
tionality. GPT-4o-mini achieves superior RSR
in -O1 to -Os optimizations by employing ad-hoc
adaptations, such as renaming Hex-Rays’ incom-
plete function calls from xmlSAX2ErrMemory() to
handle_xml_memory_error(). This undefined
function triggers a warning rather than an error dur-
ing compilation into a shared library. Though this
ensures compilation success, it results in runtime
failures and inferior CER compared to Hex-Rays.

Second, both RSR and CER decline consistently
from -O0 to -O3, with -Os outperforming -O3 and
closely aligning with -O2. This trend highlights
the increasing difficulty of recovering compiler-
compatible code under aggressive optimization.
Notably, Hex-Rays’ RSR declines by 27.3% across
this spectrum (from 0.706 to 0.513) and fails to
achieve a CER above 50% at -Os. This highlights
the persistent challenges of semantic recovery and

23255

Decompiler
Recompile Success Rate Coverage Equivalence Rate

O0 O1 O2 O3 Os Avg O0 O1 O2 O3 Os Avg
Angr 0.309 0.232 0.190 0.181 0.191 0.221 0.187 0.153 0.124 0.116 0.118 0.140
Binja 0.274 0.246 0.229 0.215 0.224 0.238 0.167 0.153 0.137 0.129 0.138 0.145
Dewolf 0.225 0.203 0.214 0.204 0.222 0.213 0.125 0.120 0.113 0.111 0.118 0.117
Ghidra 0.524 0.421 0.395 0.377 0.353 0.413 0.374 0.294 0.256 0.241 0.228 0.278
Hex-Rays 0.706 0.573 0.558 0.513 0.565 0.583 0.523 0.430 0.392 0.361 0.400 0.418
Retdec 0.402 0.349 0.337 0.329 0.355 0.354 0.185 0.160 0.143 0.137 0.149 0.155
MLM 0.335 0.321 0.313 0.311 0.314 0.319 0.216 0.205 0.188 0.191 0.198 0.200
LLM4Decompile 0.285 0.270 0.257 0.250 0.256 0.264 0.192 0.177 0.153 0.150 0.147 0.164
Qwen2.5-Coder-32B 0.659 0.528 0.515 0.480 0.526 0.542 0.385 0.302 0.264 0.249 0.281 0.296
Deepseek-V3 0.663 0.539 0.531 0.492 0.539 0.553 0.403 0.328 0.316 0.283 0.313 0.329
GPT-4o-mini 0.658 0.591 0.559 0.531 0.572 0.582 0.296 0.269 0.231 0.210 0.244 0.254
GPT-4o 0.649 0.553 0.537 0.509 0.548 0.559 0.410 0.352 0.323 0.312 0.334 0.346
Claude-3.5-Sonnet∗ 0.413 0.339 0.308 0.329 0.360 0.350 0.277 0.224 0.196 0.196 0.239 0.227

Table 3: Recompile success rate and coverage equivalence rate of various decompilers across different compiler
optimization levels. ∗Tested on a randomly sampled dataset comprising 1/5 dataset due to the high cost.

emphasizes the need for significant advancements
in both LLM-augmented and traditional decompi-
lation approaches.

4.2 Code Quality Analysis

Our automated code quality assessment highlights
some key insights. First, LLM-generated decom-
piled code consistently surpasses traditional decom-
pilers in quality. This is true for specialized models,
which benefit from training focused on readabil-
ity, and general-purpose LLMs, which improve
through few-shot guidance on structured code cor-
pora. Second, MLM excels in enhancing readabil-
ity, achieving an ELo score of 1581 compared to
Hex-Rays’ 1162, particularly excelling in Control
Flow Clarity and Literal Representation Correct-
ness (see Section F.1). However, LLMs sometimes
experience hallucinations during variable inference,
leading to minor semantic inaccuracies that limit
improvements in Identifier Name Correctness and
Typecast Correctness. Third, among traditional de-
compilers, Hex-Rays scores higher in readability
but faces Macro Conformity issues due to the usage
of nonstandard C macros, while RetDec underper-
forms across all metrics. Additionally, the ELo
rankings for individual aspects closely match the
overall rankings, indicating that decompilers rarely
excel in some areas while performing poorly in oth-
ers. This consistency underscores the reliability of
ELo as a comprehensive measure of decompilation
quality.

To validate the ecological validity of our LLM-
based assessments, we conducted human evalua-
tions through dual expert annotation. Two inde-
pendent evaluators assessed 30 randomly selected

Typecast
Correctness

 Literal Representation
 Correctness

Control Flow
Clarity

Decompiler-Specific
Macro Conformance

Return Behavior
Correctness

Identifier Name
Meaningfulness

Identifier Name
Correctness

Minimal
Useless Symbols

Overall Function
Correctness

Overall Functionality
Precision

Dereference
Readability

 Memory Layout
 Accuracy

600
1000

1400
1800

MLM: 1581
LLM4Decompile: 1426
DeepSeek: 1358
GPT-4o: 1333

Qwen: 1317
GPT-4o-mini: 1275
Hexrays: 1162
Binja: 1156

Dewolf: 1143
Ghidra: 1141
Angr: 1131
Retdec: 1063

Figure 3: Comparison of code quality across twelve
dimensions using Elo scores. The average Elo score
across all dimensions is shown in the bottom legend.
The scores are relative within each dimension, with
higher scores indicating a higher win rate. Note that
absolute scores across different dimensions are not di-
rectly comparable.

samples, achieving an overall Cohen’s kappa coeffi-
cient of 0.778. Detailed agreement statistics across
quality dimensions appear in Section F.2.

4.3 From Heuristic to Neural
We evaluate traditional and LLM-based decompil-
ers through recompilation errors, comparing their
strengths and limitations to guide decompiler selec-
tion for different use cases.

4.3.1 Semantic Fidelity Tradeoffs
Our empirical study exposes fundamental diver-
gences in semantic preservation between rule-

23256

based and neural decompilation paradigms. To
systematically quantify causes of decompilation
errors, we extend the error types from previous
work (Cao et al.) with new types identified in our
compilation pipeline, culminating in 15 error types
whose empirical distributions across different com-
pilers are statistically profiled in Section G.

Traditional tools demonstrate strict adherence to
low-level accuracy through deterministic pointer
arithmetic (*((_DWORD *)&ses + 4)), yet man-
ifest systematic limitations like type safety viola-
tions via unsafe casts (*(__m128i *)(a2 + 8)) or
const qualification breaches during pointer derefer-
encing, e.g. perform *s = 0 which is declared as
readonly const char* s.

In contrast, LLM-based approaches (GPT-
4o/MLM) achieve higher AST readability at the
cost of introducing novel failure modes: Hal-
lucinated type constructs (e.g., synthetic unde-
fined archive_t replacing __int64); Speculative
header injections (#include "sudo_debug.h"
which is not in the context); Critical parameter
omission in function ABIs, breaking function invo-
cations by removing seemingly unused parameters
(e.g., float a3), even when such parameters are
critical to runtime compatibility.

The neural paradigm particularly struggles with
pointer arithmetic resolution, as evidenced in
Figure 4 where GPT-4o generates invalid struct
member access (ses.socket1) versus Hex-Rays’
bit-precise implementation. Hybrid approaches
show promise in bridging this gap, as demon-
strated by LLM-corrected type casts (*(int64_t
*)(node_to_insert + 8)) and relaxed type con-
straints (e.g., redefining *buffer_ptr as mutable
char), surpassing traditional tools’ output validity.

4.3.2 Scenario-Driven Tool Choosen
These findings reveal a trade-off between readabil-
ity and correctness, suggesting the need to combine
LLMs’ contextual flexibility with traditional tools’
rigorous type-checking in practical applications.

For reliability-critical scenarios like perfor-
mance analysis and debugging, established decom-
pilers such as Hex-Rays and Ghidra remain prefer-
able due to their semantically accurate and depend-
able outputs, even if they are sometimes less user-
friendly. Conversely, in reverse engineering where
quick comprehension is crucial, such as malware
detection, LLM-based decompilers are preferred.
Especially those models fine-tuned for clarity, like
MLM, offer enhanced readability that significantly

static __int64 __fastcall sudoers_initlocale(
char nptr, __int64 v10, float a3

) {
const char *s;
char **a2;
s = &nptr;
char *v18;
if (a2) {

*a2 = v18;
*s = 0;
return atof(&nptr);

}
...
v12 = *(_QWORD *)(v10 + 16);
*(__m128i *)(a2 + 8) = v12;
...
*((_DWORD *)&ses + 4) = a1;
...
__int64 a1;
_archive_clean(a1);
return 0;

} (a) Hexrays’ Output

read-only variable is not assignable

invalid conversion between
'__m128i’ (2 * 'long long’) 16 bytes

and
'unsigned long long’ 8 bytes

of different size

#include "sudo_debug.h”

static int sudoers_initlocale(
char buffer, int64_t reference_node

) {
char *buffer_ptr;
char **end_ptr;
char *current_ptr;
buffer_ptr = &buffer;
if (end_ptr) {

*end_ptr = (char *)current_ptr;
*buffer_ptr = '\0';
return atof(buffer);

}
...
previous_node = *(int64_t *)(reference_node + 16);
*(int64_t *)(node_to_insert + 8) = previous_node;
...
struct sshsession ses;
ses.socket1 = socket1;
...
archive_t archive;
__archive_clean(archive);
return 0;

}
(b) GPT-4o’ Output

too many arguments when
calling sudoers_initlocale

'sudo_debug.h' file not found

no member named 'socket1' in
'struct sshsession'

unknown type name 'archive_t'

Figure 4: Output of Hex-Rays and GPT-4o. The error
reports highlight where one decompiler fails and the
other succeeds, demonstrating their pros and cons.

aids analysis. Ultimately, the choice of decompi-
lation technique should be guided by the specific
analytical objectives, balancing stringent accuracy
with human interpretability.

5 Conclusion

We present DecompileBench, a comprehensive
decompiler evaluation framework that addresses
real-world assessment challenges through three
key innovations: production-grade datasets from
OSS-Fuzz, runtime behavior validation, and LLM-
powered code quality analysis. Our evaluation of
12 decompilers highlights critical trade-offs: tra-
ditional tools such as Hex-Rays achieve a 58.3%
average recompilation success rate, whereas LLM-
based approaches like MLM excel in code qual-
ity, offering superior control flow clarity and more
meaningful identifier naming.

This work establishes new standards for decom-
piler evaluation in security-critical scenarios and
highlights the need for hybrid approaches com-
bining neural-based decompilers with rule-based
approaches. Our framework enables informed tool

23257

selection for reverse engineers while guiding future
research toward balancing reliability with human-
centric readability for reverse engineering.

6 Limitation

6.1 Error Localization

Our analysis evaluates recompilation failures as se-
mantic fidelity indicators for decompilation quality.
While runtime differential coverage metrics detect
functional discrepancies between original and de-
compiled outputs, opaque dependencies in shared
libraries hinder precise error localization.

6.2 Root-Cause Diagnostic

Our methodology focuses on where decompilers
underperform, but the complexity of decompilation
obscures the why behind these failures, preventing
root-cause analysis. This underscores the need
for further exploration, such as differential testing
of heuristics, to improve the internal mechanisms
of open-source decompilers, as demonstrated by
studies like (Zou et al.).

6.3 Architecture-Specific Evaluation

The evaluation is restricted to x86-64 architectures,
despite platform-dependent variations in shared li-
brary behavior and compiler optimizations. For
example, decompiled functions relying on x86-
64-specific features like register usage or memory
alignment may fail on ARM architectures.

6.4 Open-Source vs. Real-World Binary
Discrepancy

Our evaluation relies on open-source software bina-
ries, whereas real-world reverse engineering typi-
cally targets closed-source programs. This discrep-
ancy introduces a domain gap, as closed-source
binaries often employ obfuscation, packing, or cus-
tom compiler extensions absent in open-source
projects. While deobfuscation techniques are criti-
cal for practical reverse engineering, they fall out-
side the direct scope of decompilation. We leave
the investigation of these challenges to future work.

6.5 Potential Biases in LLM-Based Evaluation

While we observed strong expert-LLM agreement
(κ=0.778) in code quality assessment, several lim-
itations warrant consideration. First, our valida-
tion relies on a small sample (n=30) evaluated by
only two annotators, which may not capture the
full spectrum of human judgment. This limited

scope raises concerns about both inter-rater relia-
bility and potential reward hacking - where models
could learn to exploit evaluation patterns without
truly improving code quality.

Second, while the Qwen-2.5-Coder-32B model
may reflect limitations and biases inherent in its
training corpus, we acknowledge that employing
larger or more advanced models could potentially
mitigate these issues. However, such alternatives
would require substantially greater computational
resources, which were beyond the scope of our
current experimental setup.

23258

References
OSS-Fuzz.

SUSE/clang-extract.

Jordi Armengol-Estapé, Jackson Woodruff, Alexander
Brauckmann, José Wesley De Souza Magalhães, and
Michael F. P. O’Boyle. ExeBench: An ML-scale
dataset of executable C functions. In Proceedings of
the 6th ACM SIGPLAN International Symposium on
Machine Programming, pages 50–59. ACM.

AscendGrace. Machine Language Model: AI Empow-
erment, Gaining Insight into the Binary World.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN:
Fuzzing with Input-to-State Correspondence. In Pro-
ceedings 2019 Network and Distributed System Secu-
rity Symposium. Internet Society.

Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs,
Jude O’Kain, Derron Miao, Adam Doupé, Yan
Shoshitaishvili, and Ruoyu Wang. Ahoy SAILR!
There is No Need to DREAM of C: A Compiler-
Aware Structuring Algorithm for Binary Decompila-
tion. In 33st USENIX Security Symposium (USENIX
Security 24).

Ying Cao, Runze Zhang, Ruigang Liang, and Kai Chen.
Evaluating the Effectiveness of Decompilers. In Pro-
ceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
491–502. ACM.

Qinyuan Cheng, Tianxiang Sun, Wenwei Zhang,
Siyin Wang, Xiangyang Liu, Mozhi Zhang, Jun-
liang He, Mianqiu Huang, Zhangyue Yin, Kai
Chen, and Xipeng Qiu. Evaluating Hallucinations
in Chinese Large Language Models. Preprint,
arXiv:2310.03368.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu

Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu
Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei
An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin
Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu
Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xi-
aojin Shen, Xiaokang Chen, Xiaokang Zhang, Xi-
aosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang
Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin,
Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang,
Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yao-
hui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan
Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao,
Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu,
Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yud-
uan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun
Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yux-
iang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe
Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng
Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui
Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang
Song, Ziyi Gao, and Zizheng Pan. DeepSeek-V3
Technical Report. Preprint, arXiv:2412.19437.

Python Doc. Glossary.

Luke Dramko, Jeremy Lacomis, Edward J Schwartz,
Bogdan Vasilescu, and Claire Le Goues. A Taxon-
omy of C Decompiler Fidelity Issues. In 33rd Usenix
Security Symposium.

Steffen Enders, Eva-Maria C. Behner, Niklas Bergmann,
Mariia Rybalka, Elmar Padilla, Er Xue Hui, Henry
Low, and Nicholas Sim. Dewolf: Improving Decom-
pilation by leveraging User Surveys. In Proceedings
2023 Workshop on Binary Analysis Research.

Haeun Eom, Dohee Kim, Sori Lim, Hyungjoon Koo,
and Sungjae Hwang. R2I: A Relative Readability
Metric for Decompiled Code. 1:18:383–18:405.

Andrea Fioraldi, Daniele Cono D’Elia, and Davide
Balzarotti. The Use of Likely Invariants as Feed-
back for Fuzzers. pages 2829–2846.

Andrea Gussoni, Alessandro Di Federico, Pietro Fez-
zardi, and Giovanni Agosta. A Comb for Decom-
piled C Code. In Proceedings of the 15th ACM Asia
Conference on Computer and Communications Secu-
rity, ASIA CCS ’20, pages 637–651. Association for
Computing Machinery.

Iman Hosseini and Brendan Dolan-Gavitt. Beyond
the C: Retargetable Decompilation using Neural Ma-
chine Translation. In Proceedings 2022 Workshop on
Binary Analysis Research.

Peiwei Hu, Ruigang Liang, and Kai Chen. DeGPT: Op-
timizing Decompiler Output with LLM. In Proceed-

23259

https://google.github.io/oss-fuzz/
https://github.com/SUSE/clang-extract
https://doi.org/10.1145/3520312.3534867
https://doi.org/10.1145/3520312.3534867
https://mlm01.com/index
https://mlm01.com/index
https://doi.org/10.14722/ndss.2019.23371
https://doi.org/10.14722/ndss.2019.23371
https://doi.org/10.1145/3650212.3652144
https://doi.org/10.48550/arXiv.2310.03368
https://doi.org/10.48550/arXiv.2310.03368
https://doi.org/10.48550/arXiv.2412.19437
https://doi.org/10.48550/arXiv.2412.19437
https://docs.python.org/3/glossary.html
https://doi.org/10.14722/bar.2023.23001
https://doi.org/10.14722/bar.2023.23001
https://doi.org/10.1145/3643744
https://doi.org/10.1145/3643744
https://www.usenix.org/conference/usenixsecurity21/presentation/fioraldi
https://www.usenix.org/conference/usenixsecurity21/presentation/fioraldi
https://doi.org/10.1145/3320269.3384766
https://doi.org/10.1145/3320269.3384766
https://doi.org/10.14722/bar.2022.23009
https://doi.org/10.14722/bar.2022.23009
https://doi.org/10.14722/bar.2022.23009
https://doi.org/10.14722/ndss.2024.24401
https://doi.org/10.14722/ndss.2024.24401

ings 2024 Network and Distributed System Security
Symposium. Internet Society.

Deborah S. Katz, Jason Ruchti, and Eric Schulte. a.
Using recurrent neural networks for decompilation.
In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering
(SANER), pages 346–356. IEEE.

Omer Katz, Yuval Olshaker, Yoav Goldberg, and Eran
Yahav. b. Towards Neural Decompilation. Preprint,
arXiv:1905.08325.

Soomin Kim, Markus Faerevaag, Minkyu Jung, Seungll
Jung, DongYeop Oh, JongHyup Lee, and Sang Kil
Cha. Testing intermediate representations for bi-
nary analysis. In 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 353–364. IEEE.

Ivan Kwiatkowski. JusticeRage/Gepetto.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas
Mesnard, Johan Ferret, Kellie Lu, Colton Bishop,
Ethan Hall, Victor Carbune, Abhinav Rastogi, and
Sushant Prakash. a. RLAIF: Scaling Reinforcement
Learning from Human Feedback with AI Feedback.
Preprint, arXiv:2309.00267.

Sangkyu Lee, Sungdong Kim, Ashkan Yousefpour,
Minjoon Seo, Kang Min Yoo, and Youngjae Yu. b.
Aligning Large Language Models by On-Policy Self-
Judgment. Preprint, arXiv:2402.11253.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad
Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhat-
tacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu,
Kai Shu, Lu Cheng, and Huan Liu. From Genera-
tion to Judgment: Opportunities and Challenges of
LLM-as-a-judge. Preprint, arXiv:2411.16594.

Ruigang Liang, Ying Cao, Peiwei Hu, Jinwen He,
and Kai Chen. Semantics-Recovering Decompila-
tion through Neural Machine Translation. Preprint,
arXiv:2112.15491.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Ab-
hishek Patel, Shikhar Tuli, Yilin Shen, Hongxia Jin,
and Yen-Chang Hsu. MoDeGPT: Modular Decom-
position for Large Language Model Compression.
Preprint, arXiv:2408.09632.

Zhibo Liu and Shuai Wang. How far we have come:
Testing decompilation correctness of C decompilers.
In Proceedings of the 29th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis,
pages 475–487. ACM.

LLVM. SanitizerCoverage — Clang documentation.

Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur,
Zhengyang Liu, and John Regehr. a. Alive2:
Bounded translation validation for LLVM. In Pro-
ceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and
Implementation, PLDI 2021, pages 65–79. Associa-
tion for Computing Machinery.

Nuno P. Lopes, David Menendez, Santosh Nagarakatte,
and John Regehr. b. Provably correct peephole opti-
mizations with alive. 50(6):22–32.

Junyi Lu, Xiaojia Li, Zihan Hua, Lei Yu, Shiqi Cheng,
Li Yang, Fengjun Zhang, and Chun Zuo. DeepCRCE-
val: Revisiting the Evaluation of Code Review Com-
ment Generation. Preprint, arXiv:2412.18291.

Binary Ninja. Binary Ninja Sidekick: Your AI Reverse
Engineering Assistant.

OpenAI. GPT-4 Technical Report.

Qwen, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. Qwen2.5 Technical Report. Preprint,
arXiv:2412.15115.

RevEng.AI. RevEng.AI: Reverse Engineering meets
Artificial Intelligence.

Yanxin Shen, Lun Wang, Chuanqi Shi, Shaoshuai Du,
Yiyi Tao, Yixian Shen, and Hang Zhang. Compara-
tive Analysis of Listwise Reranking with Large Lan-
guage Models in Limited-Resource Language Con-
texts. Preprint, arXiv:2412.20061.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. (State of) The Art of
War: Offensive Techniques in Binary Analysis.

Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun
Zhang. LLM4Decompile: Decompiling Binary
Code with Large Language Models. Preprint,
arXiv:2403.05286.

Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu,
Shuai Wang, Qiyi Tang, Sen Nie, and Shi Wu. Refin-
ing Decompiled C Code with Large Language Mod-
els. Preprint, arXiv:2310.06530.

Danning Xie, Zhuo Zhang, Nan Jiang, Xiangzhe Xu,
Lin Tan, and Xiangyu Zhang. ReSym: Harnessing
LLMs to Recover Variable and Data Structure Sym-
bols from Stripped Binaries.

Khaled Yakdan, Sergej Dechand, Elmar Gerhards-
Padilla, and Matthew Smith. Helping Johnny to An-
alyze Malware: A Usability-Optimized Decompiler
and Malware Analysis User Study. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 158–
177.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in C compilers.
46(6):283–294.

23260

https://doi.org/10.1109/SANER.2018.8330222
https://doi.org/10.48550/arXiv.1905.08325
https://doi.org/10.1109/ASE.2017.8115648
https://doi.org/10.1109/ASE.2017.8115648
https://github.com/JusticeRage/Gepetto
https://doi.org/10.48550/arXiv.2309.00267
https://doi.org/10.48550/arXiv.2309.00267
https://doi.org/10.48550/arXiv.2402.11253
https://doi.org/10.48550/arXiv.2402.11253
https://doi.org/10.48550/arXiv.2411.16594
https://doi.org/10.48550/arXiv.2411.16594
https://doi.org/10.48550/arXiv.2411.16594
https://doi.org/10.48550/arXiv.2112.15491
https://doi.org/10.48550/arXiv.2112.15491
https://arxiv.org/abs/2408.09632
https://arxiv.org/abs/2408.09632
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://clang.llvm.org/docs/SanitizerCoverage.html
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2813885.2737965
https://doi.org/10.1145/2813885.2737965
https://doi.org/10.48550/arXiv.2412.18291
https://doi.org/10.48550/arXiv.2412.18291
https://doi.org/10.48550/arXiv.2412.18291
https://sidekick.binary.ninja/
https://sidekick.binary.ninja/
https://cdn.openai.com/papers/gpt-4.pdf
https://doi.org/10.48550/arXiv.2412.15115
https://reveng.ai
https://reveng.ai
https://doi.org/10.48550/arXiv.2412.20061
https://doi.org/10.48550/arXiv.2412.20061
https://doi.org/10.48550/arXiv.2412.20061
https://doi.org/10.48550/arXiv.2412.20061
https://arxiv.org/abs/2403.05286
https://arxiv.org/abs/2403.05286
https://arxiv.org/abs/2310.06530
https://arxiv.org/abs/2310.06530
https://arxiv.org/abs/2310.06530
https://doi.org/10.1109/SP.2016.18
https://doi.org/10.1109/SP.2016.18
https://doi.org/10.1109/SP.2016.18
https://doi.org/10.1145/1993316.1993532

Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang,
Wei Ye, Jindong Wang, Xing Xie, Yue Zhang, and
Shikun Zhang. KIEval: A Knowledge-grounded In-
teractive Evaluation Framework for Large Language
Models. Preprint, arXiv:2402.15043.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. Judging
LLM-as-a-judge with MT-Bench and Chatbot Arena.
Preprint, arXiv:2306.05685.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
Karthik Ganesan, Wei-Lin Chiang, Jian Zhang, and
Jiantao Jiao. Starling-7B: Improving Helpfulness
and Harmlessness with RLAIF.

Muqi Zou, Arslan Khan, Ruoyu Wu, Han Gao, and
Antonio Bianchi. D-Helix: A Generic Decompiler
Testing Framework Using Symbolic Differentiation.
In The Proceedings of the 33rd USENIX Security
Symposium.

23261

https://doi.org/10.48550/arXiv.2402.15043
https://doi.org/10.48550/arXiv.2402.15043
https://doi.org/10.48550/arXiv.2402.15043
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://openreview.net/forum?id=GqDntYTTbk#discussion
https://openreview.net/forum?id=GqDntYTTbk#discussion

A Decompiler Details

This appendix provides description and technical
details about each decompiler in our paper:

• Angr: Binary analysis framework utiliz-
ing proprietary AIL (angr Intermediate Lan-
guage) combining symbolic execution with
Value-Set Analysis (VSA). Executes decom-
pilation through angr.Project.Decompiler
class via direct invocation on target functions.
Supports x86, ARM, and MIPS architectures.

• Binary Ninja: Multi-stage decompilation
platform with LLIL/MLIL/HLIL intermediate
representations. Creates decompilation views
via LinearViewObject.single_function_
language_representation(func,
settings), constructing final output
through iterative cursor object traversal.

• Dewolf: Binary Ninja-based decompiler
optimized for human-readable C code.
Initializes decompilation process using
DecompilerPipeline.from_strings()
that ingests control flow graph (CFG) and ab-
stract syntax tree (AST) inputs, subsequently
executing the pipeline for code generation.

• Ghidra: Enterprise-grade system us-
ing P-Code intermediate language.
Invokes decompilation through
FlatDecompilerAPI(flat_api)
interface followed by explicit
decomp_api.decompile(function) calls
in the API execution chain.

• Hex-Rays: Industry-standard decompiler im-
plementing ida_hexrays.decompile(func)
for single-step decompilation within IDA
Pro’s interactive environment. Features
production-grade quality through mature pat-
tern recognition.

• RetDec: LLVM-based decompilation frame-
work using multi-pass optimization. Executes
standalone retdec-decompiler executable
(located in installation directory) directly on
target binaries to initiate the decompilation
process.

B Compilation and Decompilation Detail

When compiling fuzzer and executable, we append
-Wl,–export-dynamic to compile commands, en-
abling shared library to resolve symbols in the

executable in function substitution 3.2.2. When
compiling target functions into shared libraries, we
add -fno-inline to prevent function inlining that
would obstruct individual function extraction from
the binary. After obtaining the decompiled code,
we identify common error patterns for each decom-
piler and conduct general post-processing correc-
tions. For example, in Binary Ninja, we remove
patterns such as @ zmm02 and __pure3 that could
absolutely cause compilabtion errors.

C Sampling Strategy in LLM-as-a-Judge

Initially, for each binary in our dataset, we ran-
domly select the output of one decompiler. Subse-
quently, we calculate the probability of selecting an-
other decompiler (model b) for comparison, based
on their ELo scores. Let Ra and Rb represent the
ELo scores of models a and b, respectively. The se-
lection probability P (b) for model b is determined
as follows:

P (b) =
1

1 + |Ra−Rb|
min
i

|Ra−Ri|+ϵ

(1)

where ϵ is a small constant (1e-6) to avoid divi-
sion by zero, and Ri represents the rating of any
model i in the candidate pool. The final normalized
probability is:

Pnorm(b) =
P (b)∑
j
P (j)

(2)

This approach effectively prioritizes the evalua-
tion of more comparable decompiler outputs while
still maintaining comprehensive coverage. For-
mally, the selection probability P (di) for decom-
piler di is proportional to the proximity of its ELo
score to the reference.

D Function Substitution Implementation
Details

In this section, we elaborate on the technical imple-
mentation of our function substitution mechanism,
i.e. substituting the decompiled function into the
original program without influence any other func-
tion (including the virtual address), comprising two
critical phases: compile-time preparation and run-
time redirection.

2use zmm0 register to store the function argument
3Binary Ninja-specific function attribution

23262

D.1 Compile-Time Preparation
To establish control over the executable’s dynamic
linking process, we modify the fuzzer compila-
tion commands to force the compilation links
against a specially crafted dummy shared library
(dummy.so). This shared library contains a manda-
tory entry point for OSS-Fuzz’s execution frame-
work, LLVMFuzzerTestOneInput. This ensures
our dummy library gets loaded through dynamic
linking. The dummy shared library contains no
operational logic, serving only as a placeholder to
inject our instrumentation later. The compilation
command modification preserves symbol visibility
for subsequent dynamic function calling by adding
-Wl,–export-dynamic in the compilabtion com-
mands.

D.2 Runtime Redirection
During actual execution, we replace the dummy im-
plementation with our instrumented target function
through the following coordinated steps.

D.2.1 Function Prologue Patching
We locate the function to be substituted in the exe-
cutable and we replace the function prologue, the
initial set of instructions in an function, with cus-
tom machine code shown in 5 that redirects execu-
tion to an address hold by a memory-mapped fixed
location, 0xbabe0000.

xor rax, rax;
mov eax, 0xbabe0000;
mov rax, [rax];
jmp rax;

Figure 5: Function prologue patching to redirect execu-
tion to a fixed memory-mapped location.

D.2.2 Address Binding
We insert two auxiliary functions, an initializer
and a finalizer, into the shared object. The initial-
izer function is called when the shared object is
loaded, and the finalizer is called when the shared
object is unloaded. The initializer function stores
the address of the target into a fixed global address
(0xbabe0000) to facilitate later runtime redirection.
And the finalizer is responsible for cleaning up. We
show the code snippet in Figure 6.

D.2.3 Resolving External Function Calls
A notable characteristic of real-world programs
is that functions rarely operate in isolation; most
invoke other functions within the project. When

//headers

#define bool_test bool

/** clang-extract: from test.h */
bool_test test(int input);

// target function

static bool_test function_test(int a)
{

result = test(a);

return result;
}

__attribute__((constructor)) void initializer()

{

void **address = (void **)syscall(

MMAP, (void*)0xbabe0000, 4096,

PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,

-1, 0
);

if (address == MAP_FAILED)
syscall(EXIT, 1);

*(void **)(0xbabe0000) = function_test;
}

__attribute__((destructor)) void finalizer()

{
syscall(MUNMAP, (void *)0xbabe0000, 4096);

}

Figure 6: Generating a complete compilable C test file:
adding necessary headers initializer and finalizer around
the target function ‘function_test’.

testing the compilation success rate and function-
ality correctness of individual decompiled func-
tions, we must include declarations of all external
functions as the context. Ideally, during execution,
these external functions should use their original
implementations in the binary.

When we take a function that has been decom-
piled and compiled back into a shared object (.so),
and then try to use this .so alongside the original
binary, we encounter a specific issue. If the func-
tion in our .so calls another function, say b, which
exists and is implemented only within the original
binary, and that binary has not made b available
for dynamic linking (meaning b is not listed in the
binary’s dynamic symbol table, dynsym), then the
.so file will contain a reference to b but no imple-
mentation.

During execution, when the code in the .so at-
tempts to call b, the dynamic linker tries to find
b’s implementation. Because b is not visible in
the binary’s dynamic symbols, the linker fails to
resolve the symbol, resulting in a runtime error, typ-

23263

ically a "symbol lookup error: ‘b’". This problem
arises because the binary’s internal functions are
not fully exposed for dynamic linking, and since
we are working only with the compiled binary, we
cannot alter its compilation settings to change this.

To resolve this, we need to ensure that calls from
the .so to functions implemented in the binary are
correctly directed. This process effectively involves
manually performing some of the relocation tasks
that the dynamic linker (ld) would typically handle.
Before execution, we collect specific addresses for
relevant functions in both the binary and the .so.

• For functions implemented within the binary:
We determine the address where the function’s
actual code resides. This is the address associ-
ated with the function’s symbol.

• For calls made from the .so to external func-
tions (like those in the binary): We identify
the address within the .so’s .got.plt section
that corresponds to the symbol of the function
being called. This .got.plt entry is the point
within the .so that needs to be adjusted to
correctly call the external function.

By obtaining these addresses, along with the run-
time base addresses of the binary and the .so, we
can calculate the final runtime addresses and redi-
rect the external calls within the .so to point di-
rectly to the implementations within the binary.

E Cohen’s Kappa

Cohen’s kappa measures the agreement between
two raters classifying N items into C mutually
exclusive categories, defined as:

κ ≡ po − pe
1− pe

= 1− 1− po
1− pe

(3)

where po represents the relative observed agree-
ment between raters, and pe represents the hypo-
thetical probability of chance agreement. For k
categories and N observations, with nki represent-
ing the number of times rater i predicted category
k, pe is calculated as:

pe =
1

N2

C∑

k=1

nk1nk2 (4)

This calculation of pe is derived from the as-
sumption that ratings are independent, where the
probability of each rater classifying an item as cate-
gory k is estimated by the proportion of items they

assigned to that category: p̂k1 = nk1
N (and similarly

for rater 2).

po =
1

N

C∑

k=1

nkk (5)

The observed agreement po is calculated using
nkk, which counts items assignegned to category
k by both raters. The coefficient ranges from -1 to
1, where κ = 1 indicates perfect agreement, κ =
0 suggests agreement no better than chance, and
negative values indicate systematic disagreement.

F Code Quality

F.1 Case Study
As illustrated in Figure 7, MLM markedly im-
proves control flow clarity by accurately recov-
ering switch statements and assigning semanti-
cally meaningful labels to conditional branches.
In addition, it enhances code readability through
sophisticated pointer dereference resolution, effec-
tively transforming low-level constructs such as
*((_DWORD *)ptr + 2) = a1 into more human-
readable forms like leak->type = type, a feature
that is also partially achieved by DeepSeek.

F.2 Agreement Analysis
Table 4 demonstrates significant agreement be-
tween LLM and human evaluators across these as-
pects: Non-idiomatic Literal Representation (κ =
0.905), Non-idiomatic Dereferencing (κ = 0.866),
and Expanded Symbols (κ = 0.917). However,
notable discrepancies emerged in other areas, pri-
marily due to ambiguous evaluation criteria:

• Meaningless Identifiers (κ = 0.530): The
LLM occasionally provides judgments con-
trary to the established rules, penalizing mean-
ingful names by labeling code with genuinely
meaningful variable names as "loser." This dis-
crepancy likely stems from misapplied evalu-
ation criteria.

• Incorrect Identifiers (κ = 0.656): The LLM
tends to classify variable names with slight
semantic deviations as incorrect, while over-
looking entirely meaningless names. In con-
trast, human annotators focus on significant
semantic deviations from the source code vari-
able names, considering only misleading iden-
tifiers as incorrect. This divergence highlights
the LLM’s limited capability in assessing the
misleading nature of identifiers.

23264

switch (a1) {
case 1u:

ptr[2] = a2;
goto LABEL_14;

case 2u:
ptr[2] = a2;
goto LABEL_14;

case 3u:
ptr[2] = a2;
goto LABEL_14;

case 4u:
ptr[2] = a2;
goto LABEL_14;

case 5u:
ptr[2] = a2;
goto LABEL_14;

case 6u:
ptr[2] = a2;

LABEL_14:
*((_DWORD *)ptr + 2) = a1;
*ptr = parser_leak_list;
parser_leak_list = (__int64)ptr;
result = 1LL;
break;

default:
free(ptr);
sudo_warnx_nodebug_v1("unexpected

leak type %d", a1);
result = 0LL;
break;

}

(a) Hexrays’s decompiled code

switch (type) {
case PARSER_LEAK_ALIAS:

leak->ptr = ptr;
break;

case PARSER_LEAK_ALIAS_LIST:
leak->ptr = ptr;
break;

case PARSER_LEAK_DEFAULTS:
leak->ptr = ptr;
break;

case PARSER_LEAK_DEFAULTS_LIST:
leak->ptr = ptr;
break;

case PARSER_LEAK_HOSTALIAS:
leak->ptr = ptr;
break;

case PARSER_LEAK_HOSTALIAS_LIST:
leak->ptr = ptr;
break;

case PARSER_LEAK_RUNAS:
leak->ptr = ptr;
break;

default:
free(leak);
sudo_warnx_nodebug("unexpected

leak type %d", type);
return false;

}
leak->type = type;
leak->next = parser_leak_list;
parser_leak_list = leak;
return true;

(b) MLM’s decompiled code

switch (leak_type) {
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:

new_entry[2] = leak_data;
((unsigned int *)new_entry)[2] = leak_type;
new_entry[0] = parser_leak_list;
parser_leak_list = new_entry;
return 1;

default:
free(new_entry);
sudo_warnx_nodebug_v1("unexpected leak type %d", leak_type);
return 0; }

(c) GPT-4o’s decompiled code

switch (leak_type) {
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:

entry->data = leak_data;
entry->type = leak_type;
entry->next = parser_leak_list;
parser_leak_list = entry;
return 1;

default:
free(entry);
sudo_warnx_nodebug_v1("unexpected leak type %d", leak_type);
return 0; }

(d) DeepSeek’s decompiled code

Figure 7: Cases related to the code quality of Hexrays, MLM, GPT-4o, and DeepSeek.

Issue Type κ Complete agreement
Typecast Correctness 0.868 0.933
Literal Representation Correctness 0.905 0.97
Control Flow Clarity 0.826 0.933
Decompiler-Specific Macros 0.704 0.87
Return Behavior Correctness 0.776 0.00900
Identifier Name Meaningfulness 0.530 0.77
Identifier Name Correctness 0.656 0.833
Minimal Useless Symbols 0.917 0.97
Overall Function Correctness 0.809 0.00900
Overall Functionality Precision 0.769 0.00900
Dereference Readability 0.866 0.999
Memory Layout Accuracy 0.727 0.87

Table 4: LLM-Rater agreement results.

• Memory Layout Abuse (κ = 0.727): The
LLM adopts a stricter evaluation approach
compared to the more lenient human assess-
ments. As a result, code deemed acceptable
by humans may be flagged by the LLM as
exhibiting Memory Layout Abuse.

G Error Analysis

Our comprehensive evaluation scrutinizes compile-
stage errors across decompilers. While previous
studies (Zou et al.; Eom et al.; Cao et al.) iden-
tified multiple fundamental error types based on
errors observed during the recompile phase of tra-
ditional decompilers, our analysis of LLM-based
decompilers necessitated a revised taxonomy that

accounts for novel error categories and their dis-
tribution. Building upon prior work, we introduce
additional error types—such as control flow issues,
memory issues, file and resource issues, and type
conversion/compatibility errors—thereby establish-
ing a phase-aware framework that delineates 15
distinct error types. Besides, category A focuses on
Assembly Issues, dealing with errors related to in-
terpreting and converting assembly code. Category
B addresses Variable and Memory Issues, includ-
ing problems with variable declarations, memory
management, and type conversions. Category C
highlights Function and Control Flow Issues, which
involve errors in function resolution, control flow,
and handling of user-defined types. Category D
deals with Syntax and Macro Issues, which include
errors related to syntax, expressions, and prepro-
cessor macros during the translation process. This
refined classification provides a comprehensive ba-
sis for understanding and addressing the challenges
inherent in the decompilation process.

Traditional decompilers exhibit a mix of
strengths and weaknesses across error categories.
Hex-Rays excels in precise control flow recov-
ery with zero Control Flow Issues (X), in Figure
8, ensuring that the output accurately reflects the
original logic without introducing execution errors.
While Angr overuses unstructured jumps (goto),
resulting in 255 errors. Binja, though generally
effective in structuring control flow, occasionally

23265

Error
Error

Traditional Decompiler Decompilation-specialized LLMs General LLM
Category Angr Binja Dewolf Ghidra Hexrays Retdec MLM LLM4Decompile Qwen2.5 Deepseek-V3 GPT-4o-mini GPT-4o

A
Assembly Issues (I) 335 118 331 12 27 29 173 204 430 165 167 154
File and Resource Issues (II) - - - - - - - - 17 - 32 33

B

Variable Declaration/Naming (III) 822 886 863 4414 2237 6508 3289 2325 2487 1956 2854 2538
Memory Issues (IV) 43 23 - - 12 - 6 10 29 13 14 9
Type Conversion/Compatibility (V) 1079 2006 1229 486 875 1066 126 77 622 876 663 655
Initialization Issues (VI) - - 219 - - - 71 122 103 89 83 87

C

Function Declaration/Invocation (VII) 4863 2626 3008 4417 3470 3483 1457 1655 4254 3862 3411 3220
User-Defined Type Issues (VIII) 665 475 336 279 209 321 2339 3038 483 824 347 294
Dependency/Redefinition (IX) 2938 1842 2103 1492 1970 1761 188 160 2138 1837 2081 2056
Control Flow Issues (X) 255 607 56 76 - 304 44 85 45 28 32 21

D

Target Platform/Config (XI) - 12 16 22 10 27 - - 12 14 11 12
Type Definition/Resolution (XII) 1200 1912 2108 527 16 96 7705 10066 692 890 528 488
Expression/Operator (XIII) 5601 7264 9898 800 267 348 472 563 827 635 787 536
Syntax Errors (XIV) 2484 432 1233 855 103 238 109 314 171 36 91 225
Macro/Preprocessor (XV) 7 4 2 5 6 8 1 7 7 - 1 6

Table 5: Comparison of Error Types Across Traditional Decompilers, LLM Decompilers, and General LLMs

merges unrelated branches, leading to ambiguity.
In Expression/Operator Handling (XIII), Hex-Rays
(267) and RetDec (348) outperform others by accu-
rately recovering complex bitwise operations, such
as sign extension and masking. In contrast, Angr
(5601) misinterprets bitwise operations as arith-
metic, and Binja(7264) struggles to unify shifts
and masks. DeWolf (9,898) and some LLM decom-
pilers exhibit high error rates due to fragmented
expressions and logical oversimplifications.

const char *__fastcall
avahi_dns_class_to_string(__int16 a1)
{
const char *result; // rax

result = "FLUSH";
if (a1 >= 0)
{
result = "IN";
if (a1 != 1)
{
result = "ANY";
if (a1 != 255)
return 0LL;

}
}
return result;

}

Figure 8: Cases related to the control flow recovery in
Hexrays.

HexRays and Retdec excel in handling com-
plex bitwise operations and accurately recover-
ing high-level semantics, such as sign extension,
shifting, and masking. Specific examples in the
provided implementations(Figure 9 demonstrate
their advantages. In the HexRays output, line 11
combines pointer arithmetic and bounds-checking
effectively (v3 = *a1 + a2), ensuring correct-
ness while preserving clarity. Line 20 integrates
fallback pointer logic with precise pointer arith-
metic (return (char *)v4 + v2), highlighting
HexRays’ ability to produce accurate and readable
code. Similarly, the Retdec implementation shines
in line 34 by seamlessly handling conditional logic

for fallback pointers (return (v2 == 0 ? a1 +
48 : v2) + a1), which maintains high semantic
fidelity while combining conditional expressions.
These strengths enable both tools to provide reli-
able, post-process-ready outputs with minimal need
for manual corrections, outperforming traditional
decompilers in accuracy and readability.

char *__fastcall
avahi_dns_packet_extend(__int64 *a1,
__int64 a2) {

__int64 v2;
unsigned __int64 v3;
_QWORD *v4;
if (!a1) {

__assert_fail("p",
"/tmp/avahi_avahi_dns_packet_extend
.c", 0x2Cu,
"avahi_dns_packet_extend");

}
v2 = *a1;
v3 = *a1 + a2;
if (v3 > a1[2]) {

return 0LL;
}
v4 = (_QWORD *)a1[5];
*a1 = v3;
if (!v4) {

v4 = a1 + 6;
}
return (char *)v4 + v2;

}

(a) Pointer numerical
operation by Hexrays

int64_t
avahi_dns_packet_extend(int64_t a1,
int64_t a2) {

if (a1 == 0) {
__assert_fail("p",

"/tmp/avahi_avahi_dns_packet_extend
.c", 44, "avahi_dns_packet_extend");

return &g3;
}
uint64_t v1 = a2 + a1;
if (v1 > *(int64_t *)(a1 + 16))

{
return 0;

}
int64_t v2 = *(int64_t *)(a1 +

40);
*(int64_t *)a1 = v1;
return (v2 == 0 ? a1 + 48 : v2)

+ a1;
}

(b) Pointer numerical
operation by RetDec

Figure 9: Cases related to the complex operator in
HexRays and RetDec.

In contrast, our error analysis shows that Angr
misinterprets bitwise operations as arithmetic and
often omits crucial details like sign extension.
Binja, while capable of handling basic bitwise oper-
ations, struggles to combine shifts and masks into
cohesive expressions, leading to less accurate re-
covery. LLM-based approaches frequently fail to
interpret complex operations correctly, introducing
logical errors or oversimplifi-cations, particularly
in edge cases. DeWolf often fragments expres-
sions, reducing readability and risking incorrect
optimization when recompiled. Additionally, its
simplification of bounds-checking expressions can
compromise runtime safety and correctness in edge

23266

cases.
Decompilation-specialized models such as

MLM and LLM4Decompile significantly outper-
form other methods in resolving Dependency/Re-
definition Issues (IX), with error counts of 188 and
160, respectively. In contrast, traditional decom-
pilers, despite incorporating domain-specific fixes
(e.g., handling includes, typedefs, and defines), in-
advertently introduce redefinition conflicts with
Clang-extracted include statements, as evidenced
by Angr’s 2938 errors. Similarly, general LLM-
based decompilers exacerbate these issues by in-
serting custom macros and headers (e.g., Qwen:
2138 errors). However, specialized models exhibit
pronounced weaknesses in Type Definition/Reso-
lution (XII) and User-Defined Type Issues (VIII),
with error counts starkly exceeding those of tradi-

tional tools like Hex-Rays and RetDec and even
lagging behind general LLMs. This stems from
their prioritization of readability and dependency
simplification over precise type inference, often
replacing complex pointer dereferences with fabri-
cated types.

General LLMs, while robust in type-related tasks
due to pretraining on diverse code patterns, struggle
with File and Resource Issues (II), Function Dec-
laration/Invocation (VII), and Dependency/Redefi-
nition Issues (IX), frequently inserting nonexistent
headers, altering function parameters, introducing
external dependencies or rewriting external call
functions. Across all methods, type, variable, and
function-related errors dominate the failure modes,
underscoring the persistent challenges in balancing
syntactic correctness with semantic fidelity.

23267

