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Abstract

Recent advances in speech foundation mod-
els are largely driven by scaling both model
size and data, enabling them to perform a wide
range of tasks, including speech recognition.
Traditionally, ASR models are evaluated us-
ing metrics like Word Error Rate (WER) and
Character Error Rate (CER), which depend on
ground truth labels. As a result of limited la-
beled data from diverse domains and testing
conditions, the true generalization capabilities
of these models beyond standard benchmarks
remain unclear. Moreover, labeling data is
both costly and time-consuming. To address
this, we propose a novel label-free approach
for approximating ASR performance metrics,
eliminating the need for ground truth labels.
Our method utilizes multimodal embeddings
in a unified space for speech and transcription
representations, combined with a high-quality
proxy model to compute proxy metrics. These
features are used to train a regression model
to predict key ASR metrics like Word Error
Rate (WER) and Character Error Rate (CER).
We experiment with over 40 models across 14
datasets representing both standard and in-the-
wild testing conditions. Our results show that
we approximate the metrics within a single-
digit absolute difference across all experimental
configurations, outperforming the most recent
baseline by more than 50%.

1 Introduction

Automatic Speech Recognition (ASR) models have
made significant advancements in recent years,
achieving near-human performance on several stan-
dard evaluation benchmarks (Radford et al., 2022;
Seamless Communication et al., 2023; Communi-
cation et al., 2023; Harper et al., 2024, inter alia).
These models are typically evaluated using metrics
like Word Error Rate (WER) and Character Error
Rate (CER) (Likhomanenko et al., 2020), which
are essential for assessing model performance.

However, these metrics are dependent on
ground truths, which are often scarce in resource-
constrained environments, and human labeling is
both costly and time-consuming. To mitigate this
challenge, several reference-free evaluation meth-
ods are proposed (Yuksel et al., 2023b; Kalgaonkar
et al., 2015; Swarup et al., 2019; Qiu et al., 2021;
Del-Agua et al., 2018; Raj et al., 2011). While
these approaches eliminate the reliance on labeled
data, they primarily offer relative assessments of
transcription quality, rather than providing precise
error counts or rates. As a result, their applicability
in real-world scenarios, where actionable perfor-
mance metrics are crucial for further model refine-
ment and deployment, is limited.

Given the limitations of both methods, approxi-
mating ASR metrics has emerged as a promising al-
ternative for label-free evaluation (Chowdhury and
Ali, 2023; Sheshadri et al., 2021b; Ali and Renals,
2018). This approach typically involves training
regression (Jalalvand et al., 2016) and/or classifi-
cation models (Sheshadri et al., 2021a) on top of
speech and text encoders. While this method offers
a close approximation of error metrics, several im-
portant questions remain unresolved. Specifically,
an approximation model trained on dataset sam-
pled from D to predict ASR metrics for a source
model M must be evaluated under diverse con-
ditions: 1) on test data that is IID (independent
and identically distributed) sampled from D; 2)
on out-of-distribution (OOD) data representing di-
verse domains and recording conditions; 3) on IID
data, but transcription from a target model T ; and
4) on OOD data with transcriptions from a target
model T . Most prior works (Chowdhury and Ali,
2023; Sheshadri et al., 2021b) focus primarily on
the first condition. Moreover, recent advancements
in multimodal foundation models offer new op-
portunities to directly train regression models on
unified speech and text embeddings.

To address these critical research gaps, we pro-
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pose a novel framework for approximating the per-
formance of a wide range of ASR models, both
on standard benchmarks and in-the-wild scenarios.
Specifically, we compute the similarity between
speech and text embeddings in a unified space,
capturing the semantic alignment between the two
modalities. Additionally, we incorporate a high-
quality reference model as a proxy, based on the
intuition that agreement with a reliable proxy cor-
relates with transcription quality, as shown in prior
works (Waheed et al., 2025). These features are
then used to train a regression model to predict key
ASR metrics, such as WER, CER, and absolute
word and character error counts.

In summary, our work represents one of the
most comprehensive studies to date on approx-
imating ASR metrics at scale, in terms of both
data and model coverage. Our proposed approach
serves as a reference-free evaluation particularly
suited for label-scarce scenarios. Beyond evalua-
tion, our method is especially valuable for tasks
such as pseudo-labeling, where high-quality tran-
scriptions are essential for downstream applications
like knowledge distillation (Waheed et al., 2024;
Gandhi et al., 2023).

Our contributions are as follows:

• We evaluate over 40 ASR models across 14
diverse evaluation setups, including both stan-
dard benchmarks and domain-specific, unseen
conditions, followed by training regression
models to approximate ASR metrics.

• We compare our approach with the most re-
cent work on approximating ASR metrics and
show over a 50% reduction in absolute differ-
ence against the strong baseline.

• We conduct a rigorous ablation study to an-
alyze the impact of different experimental
configurations, providing deeper insights into
the robustness of our approach. Our findings
show that our method is resilient to diverse
evaluation setups and requires only a small
amount of training data.

Outline. The remainder of this paper is organized
as follows: Section 2 reviews related work. Sec-
tion 3 presents our proposed methodology. Sec-
tions 4 and 5 detail our experimental setup, results,
and ablation study, respectively. Section 6 con-
cludes the paper and outlines future directions.

2 Related Work

Automatic speech recognition (ASR) has witnessed
significant advancements in recent years, primarily
due to the scaling of both data and model size (Rad-
ford et al., 2022; Communication et al., 2023).
Transformer (Vaswani et al., 2023) based mod-
els, in particular, have significantly contributed
to these developments by effectively capturing
long-range dependencies and contextual nuances
in speech, achieving state-of-the-art (SOTA) perfor-
mance across diverse benchmarks (Kheddar et al.,
2024; Dhanjal and Singh, 2024; Zimerman and
Wolf, 2023). While traditional evaluation metrics
like Word Error Rate (WER) and Character Er-
ror Rate (CER) are de-facto evaluation metrics in
benchmarking ASR systems (Lin et al., 2021; Park
et al., 2024), scenarios where ground truth tran-
scriptions are unavailable have caught interest in
reference-free ASR evaluation methods (Karbasi
and Kolossa, 2022; Wang et al., 2024; Kuhn et al.,
2024).

Reference-free ASR evaluation methods aim
to estimate ASR performance without requiring
ground truth transcriptions (Ospanov et al., 2024).
Earlier approaches rely on heuristic features or
metadata such as speaker demographics, back-
ground noise, and linguistic characteristics (Lit-
man et al., 2000; Yoon et al., 2010), limiting their
applicability across varied contexts. However, re-
cent advancements focus on deep learning-based
frameworks, such as convolutional neural networks
(CNNs) (Elloumi et al., 2018) and contrastive learn-
ing methods (Yuksel et al., 2023a), to predict ASR
quality directly from encoded speech and text. For
instance, methods like NoRefER (Yuksel et al.,
2023b) use Siamese architectures fine-tuned on
ASR hypotheses, achieving high correlation with
traditional metrics and improving WER by optimiz-
ing hypothesis ensembling (Park et al., 2024).

Efforts to approximate ASR metrics explore
hybrid approaches that combine traditional and
reference-free methods, such as leveraging word
confidence scores, linguistic embeddings, or post-
processing adaptations to estimate WER and CER
without explicit references (Ali and Renals, 2020,
2018; Kuhn et al., 2024; Negri et al., 2014). How-
ever, these approaches often suffer from reliance on
specific ASR models or domain characteristics, lim-
iting their generalizability. Unlike existing meth-
ods, our work addresses these limitations by intro-
ducing a robust, model and data-agnostic frame-
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work that evaluates ASR outputs across diverse
datasets and configurations, emphasizing adaptabil-
ity to unseen domains and variations.

3 Methodology

We present a scalable and robust method to ap-
proximate ASR performance metrics using multi-
modal unified embeddings, proxy references, and
regression models. The primary goal is to elimi-
nate reliance on ground-truth labels, enabling per-
formance evaluation in label-scarce scenarios. The
pipeline consists of three components: representa-
tion similarity in a unified speech-text embedding
space, agreement with a high-quality proxy ref-
erence, and a regression model trained on these
features to predict ASR metrics. Our pipeline dia-
gram is shown in Figure 1.

3.1 Similarity in Unified Representation
Space

The foundation of our approach is the SONAR
model (Duquenne et al., 2023), a state-of-the-art
multimodal (speech-text) model trained to produce
unified embeddings for both speech and text inputs.
Let xspeech represent the input speech signal and
xtext denote the corresponding ASR-generated tran-
scription. SONAR maps these inputs to a shared
embedding space, generating espeech and etext:

espeech = fSONAR(xspeech), etext = fSONAR(xtext)
(1)

where fSONAR represents the embedding model.
The alignment between these embeddings is quan-
tified using cosine similarity:

Similarity(xspeech, xtext) =
espeech · etext

∥espeech∥∥etext∥
(2)

The similarity metric serves as an indicator of tran-
scription quality, with higher values suggest better
alignment between speech and text representations.

3.2 Agreement with a Proxy Reference
To complement the similarity score, we utilize
proxy references generated by a high-quality ASR
model, denoted as xproxy. The comparison between
the ASR-generated transcription xtext and the proxy
reference xproxy is quantified using Word Error
Rate (pWER) and Character Error Rate (pCER)
as defined in Appendix A.1.

These metrics assess transcription quality by
comparing it with a reliable proxy reference, with-
out using ground-truth labels at any stage. Proxy

references are dynamically selected by profil-
ing 41 models across datasets and ranking them
by average performance. For each target ASR
model, the reference is the highest-ranking model
other than the target itself. For example, if
whisper-large-v3 ranks highest, the reference
for whisper will be the second-best model. This
ensures the proxy reference is both relevant and
reliable for evaluating the target model.

Figure 1: High-level diagram for our framework. The
proxy is an ASR model that takes input speech and gen-
erates a transcription. We use the output from the source
model as a hypothesis, and the output from the proxy
model as a reference, to calculate metrics like WER and
CER (pmetrics), which we denote as pWER and pCER.
We then use this, along with the the similarity between
SONAR embeddings of the input speech and the hy-
pothesis, to train the regression that gives approximated
metrics (ametrics), e.g., aWER/aCER.

3.3 Regression Model for Metric Prediction
The extracted features, including similarity scores
and proxy metrics, are concatenated to form
the input to a regression model. Let z =
[Similarity, pWER/pCER] represent the feature
vector. The regression model g estimates the ASR
metrics ŷ, denoted as aWER and/or aCER:

ŷ = g(z) (3)

The regression model is an ensemble of Random
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Forest, Gradient Boosting, and Histogram-based
Gradient Boosting regressors. Each base model
is fine-tuned via grid search for hyperparameter
optimization. The ensemble is trained to mini-
mize the mean absolute error between predicted
and ground-truth metrics. Additionally, a ridge
regression model with non-negativity constraints
is included in the ensemble to ensure predictions
remain within valid ranges. Additional details of
our regression pipeline are provided in Section 4,
with hyperparameter details in Appendix A.4.

3.4 Evaluation
We evaluate the regression model’s performance
across four setups, including IID and OOD data
and different model configurations. Specifically,
we train our regression model on one ASR system
(source) on one dataset and evaluate it on both IID
and OOD data for the source and target models.
We provide a detailed analysis of the distribution
shift in Appendix A.5.

Let DM,B denote the 10 benchmark datasets, and
DM,W represent the four in-the-wild datasets, as
described in Section 4.1, where M ∈ {S, T} refers
to either the source model S or the target model T .

The regression model is trained on data Dtrain
S,B ∼

DS,B and evaluated on the IID test set Dtest-IID
S,B ∼

DS,B , consisting of 80% and 20% of the data, re-
spectively. Additionally, the model is evaluated on
Dtest-IID

T,B , DS,W , and DT,W . Below, we detail the
formulation of each evaluation setup.

Case 1: IID Evaluation (Source S) The regres-
sion model is trained on Dtrain

S,B and evaluated on
Dtest-IID

S,B . Let xS1 = f(s, oS) represent the similar-
ity between input speech s and the ASR output oS ,
and xS2 = g(oS , r) represent the agreement with
the proxy reference r, where oS is the ASR output
produced by the source model S. The evaluation is
formulated as:

LS
IID = E(xS

1 ,x
S
2 ,y)∼Dtest-IID

S,B

[
L(h(xS1 , xS2 ), y)

]
(4)

Case 2: IID Evaluation (Target T ) The regres-
sion model trained on Dtrain

S,B is evaluated on the
IID test set Dtest-IID

T,B . Let xT1 = f(s, oT ) represent
the similarity between input speech s and the ASR
output oT , and xT2 = g(oT , r) represent the agree-
ment with the proxy reference r, where oT is the
ASR output produced by the target model T . The
evaluation is expressed as:

LT
IID = E(xT

1 ,xT
2 ,y)∼Dtest-IID

T,B

[
L(h(xT1 , xT2 ), y)

]
(5)

Case 3: OOD Evaluation (Source S) The re-
gression model trained on Dtrain

S,B is evaluated on the
out-of-distribution set DS,W . Let xS1 = f(s, oS)
represent the similarity between the input speech
s and the ASR output oS , and xS2 = g(oS , r) rep-
resent the agreement with the proxy reference r,
where oS is the ASR output produced by the source
model S. The evaluation is defined as:

LS
OOD = E(xS

1 ,x
S
2 ,y)∼DS,W

[
L(h(xS1 , xS2 ), y)

]
(6)

Case 4: OOD Evaluation (Target T ) The re-
gression model trained on Dtrain

S,B is evaluated on the
out-of-distribution set DT,W , using the ASR output
produced by the target model T . Let xT1 = f(s, oT )
represent the similarity between the input speech
s and the ASR output oT , and xT2 = g(oT , r) rep-
resent the agreement with the proxy reference r,
where oT is the ASR output produced by the target
model T . The evaluation is expressed as:

LT
OOD = E(xT

1 ,xT
2 ,y)∼DT,W

[
L(h(xT1 , xT2 ), y)

]
(7)

Note. For computational feasibility, the primary
experiments train the regression model on 9 out
of the 10 datasets in Dtrain

S,B and evaluate it on the
remaining dataset, as well as on all four datasets
in DOOD

S,B . This process is repeated for each dataset
in Dtrain

S,B , ensuring robust evaluation across various
testing conditions. No examples from DM,OOD are
used at any stage for training the regression model.

4 Experiments

In this section, we present the experimental setup
to evaluate our ASR metrics approximation tool.
We describe the datasets, models, and regression
pipeline used in our experiments, highlighting the
diversity of ASR systems and testing conditions.

4.1 Datasets

To evaluate the robustness and generalizability
of our ASR metrics approximation tool, we use
datasets sourced from multiple distributions, di-
vided into two types: Standard Benchmark and
Wild Challenge datasets. We describe these
datasets below and provide additional details in
Appendix A.2, Table 5.
Standard Benchmark Datasets. We include
widely used datasets representing diverse domains
and acoustic conditions. LibriSpeech (Panayotov
et al., 2015) provides 1,000 hours of English
read audiobooks, covering both clean and noisy
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conditions. TED-LIUM (Rousseau et al., 2014)
consists of TED talks from 2,000 speakers. Gi-
gaSpeech (Chen et al., 2021) spans audiobooks,
podcasts, and YouTube, incorporating both read
and spontaneous speech. SPGISpeech (Technolo-
gies, 2021) features 5,000 hours of earnings calls
with a focus on orthographic accuracy. Com-
mon Voice (Ardila et al., 2020) is a multilingual,
crowdsourced corpus with diverse accents. Earn-
ings22 (Rio et al., 2022) provides 119 hours of
accented, real-world earnings calls. Additional
datasets include AMI (IHM) (Carletta et al., 2005),
with 100 hours of English meeting recordings from
non-native speakers, and People’s Speech (Galvez
et al., 2021), emphasizing inclusivity and linguis-
tic diversity. SLUE-VoXCeleb (Shon et al., 2022)
contains conversational voice snippets, capturing
diverse speaking styles and emotions.

Wild Datasets. The wild set focuses on real-
world variability and challenging scenarios. Pri-
mock57 (Papadopoulos Korfiatis et al., 2022) in-
cludes telemedicine consultations with diverse ac-
cents, ages, and scenarios, recorded by clinicians
and actors. VoxPopuli Accented (Wang et al., 2021)
contains multilingual speeches from European Par-
liament recordings, rich in named entities. AT-
COsim (Jan van Doorn, 2023) features 10 hours of
non-native English speech from air traffic control
simulations with clean utterance-level transcrip-
tions. Additionally, we include a noisy subset of
LibriSpeech (Panayotov et al., 2015), which reflects
challenging real-world conditions.

In addition to the above datasets, we also run a
small experiment to assess the cross-lingual trans-
ferability of the trained regression model. Specifi-
cally, we train the model on English data and eval-
uate it on both German and English data, and vice
versa, using the English and German splits from
LibriSpeech (Panayotov et al., 2015) and Com-
mon Voice (Ardila et al., 2020). In our ablation
study, we compare the trained regression model
with a proxy reference. To broaden this evaluation,
we expand the in-the-wild dataset to include four
additional datasets: a privately collected Medical
ASR dataset with clinical conversations; standard
data with eight synthetic perturbations (white noise,
time stretch, pitch shift, cross-lingual noise, rever-
beration, pub noise, echo, and distortion); noisy
home recordings BERSt (Tuttösí et al., 2025); and
CHiME-6(noisy subset) (Watanabe et al., 2020).

4.2 Models

We evaluate our approximation framework for a
range of state-of-the-art ASR models, put into three
categories based on their architecture and function-
ality. Below we describe the datasets and provide
additional details in Appendix A.2 and in Table 6.
Encoder-Decoder Models. We include multiple
encoder-decoder families of models capable of per-
forming ASR tasks in a zero-shot setting. More
specifically, we include whisper (Radford et al.,
2023) and distil-whisper (Gandhi et al., 2023)
models that perform really well across diverse test-
ing settings. We also include seamless (Com-
munication et al., 2023; Seamless Communication
et al., 2023; Barrault et al., 2025), SpeechT5 (Ao
et al., 2022) which are unified encoder-decoder
frameworks for tasks such as ASR, speech synthe-
sis, translation, and voice conversion. MMS (Pratap
et al., 2023) supports hundreds of languages and
excels in resource-constrained scenarios. Moon-
shine (2) (Jeffries et al., 2024), a lightweight and
efficient model, is designed for edge deployments
with strong performance. Additionally, we include
speech language models like SpeechLLM (Rajaa
and Tushar), which combine speech embeddings
with language models to predict metadata such as
speaker attributes, emotions, and accents, offering
robust multimodal capabilities.
NeMo-ASR Models. We use multiple models
from the NeMo-ASR (Gulati et al., 2020; Variani
et al., 2020; Noroozi et al., 2024; Tang et al., 2023;
Harper et al., 2024) toolkit by NVIDIA. We in-
clude models such as Canary and Parakeet, which
use highly efficient speech encoders like Fast-
Conformer (Rekesh et al., 2023). In addition to that,
we use models based on various encoders and de-
coders (CTC, RNN-T, TDT, Conformer-CTC (Guo
et al., 2021). In our work, we evaluate 11 models
from the NeMo-ASR toolkit.
Encoder-Only. We include self-supervised
encoder-only models and their derivatives. Specif-
ically, we use Wav2Vec2 (Schneider et al., 2019;
Baevski et al., 2020), HuBERT (Hsu et al., 2021),
and Data2Vec (Baevski et al., 2022).

4.3 Experimental Setup

We evaluate all models listed in Section 4.2 on 1000
examples sampled randomly from the test split of
each dataset, as described in Section 4.1. Since
all models are trained at a 16 kHz sampling rate,
we (re)sample the speech accordingly. For ASR,
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we use greedy decoding and all other parameters
are default unless otherwise specified. We apply
basic text post-processing 1 before computing ASR
metrics. We obtain all models from Huggingface
Hub 2 and implement the ASR pipeline using the
Transformers (Wolf et al., 2020) library.

For multimodal embeddings, we use
SONAR (Duquenne et al., 2023), a
1024-dimensional sentence-level multi-
lingual model. Specifically, we utilize
text_sonar_basic_encoder for text encod-
ing and speech_sonar_basic_encoder for
speech encoding.

The regression framework uses a stacking en-
semble with base regressors and a final estima-
tor. Hyperparameter tuning is performed with
RandomizedSearchCV to minimize MAE. The
model is trained on 9 benchmark datasets and eval-
uated on the remaining benchmark dataset and
four in-the-wild datasets. This process is repeated
for all 10 benchmark datasets. Additional details
of the regression pipeline are provided in Section 3
and low-level details in Appendix A.4.1.

We conduct ASR experiments on a single
A100/H100 GPU, while the regression model train-
ing runs on CPUs. Although ASR time and mem-
ory consumption depend on the model size, em-
bedding extraction for 1000 audio-text pairs takes
approximately one minute on a single consumer-
grade GPU without parallelization or additional
efficiency measures. Appendix A.4 provides fur-
ther experimental setup details.
Baselines. Recent studies directly aligned with our
approach are limited. For instance, eWER (Ali
and Renals, 2018) and eWER2 (Ali and Renals,
2020) estimate error rates based on the input sig-
nal, which differs from our approach. In contrast,
we incorporate the model’s output transcript into
the error rate approximation function. The most
closely related recent works are WERBERT (She-
shadri et al., 2021a) and eWER3 (Chowdhury and
Ali, 2023), which share a similar pipeline. Both use
encoders for text, speech, and other data, followed
by a regression model trained in an end-to-end set-
ting. Since eWER3 is the more recent of the two,
we use it as our baseline. In eWER3, the speech
encoder is wav2vec2 (Baevski et al., 2020), and
the text encoder is roberta-base (Liu et al., 2019),
with a regression model trained on top while both

1https://bit.ly/enormwhisper
2https://huggingface.co/models

encoders remain frozen. Given the unavailability
of public code or pretrained models for evaluation,
we implement eWER3 with some modifications to
ensure a fair comparison. Specifically, we extract
features from both encoders and apply PCA for
dimensionality reduction on each modality before
training our regression pipeline. For both speech
and text, we experiment with 32 and 64 PCA com-
ponents (referred to as nc in Table 3).

5 Results

We conduct experiments using two dataset cate-
gories: standard benchmarks and in-the-wild, as
described in Section 4.1. For each ASR model,
a leave-one-out strategy is used, training the re-
gression model on 9 benchmark datasets and test-
ing it on the remaining benchmark dataset and all
four in-the-wild datasets to ensure comprehensive
evaluation on out-of-domain data. Additionally,
in-domain testing is included in ablation studies,
as detailed in Section 5.4. The regression model is
trained to predict absolute error counts (word and
character levels), which are normalized by the ref-
erence length to compute approximate error rates
(aWER and aCER). We also train regression
models to directly predict WER and CER. We pro-
vide results for fine-grained metrics in Table 12.

5.1 Evaluation on In-the-Wild Datasets

The wild datasets provide a realistic testbed for
evaluating the regression model’s ability to approx-
imate error rates under real-world conditions. As
shown in Table 1, high-performing models, like
canary-1b, demonstrate strong agreement between
predicted and actual error rates. For example, on
VP_Accented, canary-1b achieves mean absolute
difference of 1.1%. On Primock57, the model
shows robustness with a WER of 16.2% and an
aWER of 13.4%, highlighting its effective gener-
alization across diverse and domain-specific con-
texts.

For models like data2vec-audio-large-960h our
approximation is pretty close to actual error rates
with difference consistently under 2% on various
datasets. For example, on LibriSpeech-test-noise,
the model’s actual WER is 7.2% while the approxi-
mated aWER is 8.6%. Even on acoustically com-
plex datasets like ATCOsim, where the WER is
44.0% and the aWER is 51.1%, the model ex-
hibits a reasonable alignment between approxi-
mated and actual error rates.
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In contrast, models with high actual error rates,
such as mms-1b-fl102, show slightly larger devi-
ations, particularly on datasets with challenging
conditions. For instance, on ATCOsim, the WER
is 93.4% and the aWER is 99.0%, resulting in a
significant deviation of 5.6%, the highest observed
across all in-the-wild datasets. Similarly, on Pri-
mock57, where the WER is 70.2% and the aWER
is 67.8%, the approximation also struggles to align
due to the inherently high error rates. This high-
lights that extreme error cases often correspond to
semantically nonsensical outputs, where the distinc-
tion between high and extremely high error rates
becomes less relevant.

Model LS_Noise Primock57 ATCOsim VP_Acc

w2v2-ls 8.8/10.2 32.8/35.6 43.0/49.5 20.4/26.4
can-1b 4.1/6.4 16.2/13.4 30.4/35.5 23.2/12.1
d2v-base 14.9/16.4 39.6/41.7 66.0/71.2 28.4/33.8
d2v-large 7.2/8.6 28.3/30.7 44.0/51.1 21.4/26.5
distil-l-v2 7.3/9.2 18.3/13.0 69.5/66.7 14.9/14.5
distil-l-v3 6.1/8.3 18.4/12.9 69.0/63.6 14.8/14.0
distil-s.en 9.1/10.6 19.3/14.7 74.9/69.1 14.6/14.7
sm4t-l 11.2/12.3 41.7/37.8 75.0/82.5 29.3/19.9
sm4t-m 14.9/15.6 44.1/39.7 54.6/60.4 30.5/22.5
hub-l-ls-ft 7.3/8.8 29.5/32.0 50.4/56.9 21.4/26.6
hub-xl-ls-ft 6.8/8.3 31.1/32.9 46.7/53.0 21.8/27.7
mms-1b-a 9.5/11.1 36.2/34.4 63.4/71.8 29.9/23.8
mms-1b-f102 24.0/24.9 70.2/67.8 93.4/99.0 39.4/38.2
moon-b 11.3/12.4 19.9/18.5 65.5/66.2 17.1/20.8
moon-t 15.5/17.4 29.2/29.5 62.9/68.5 22.1/26.2
par-ctc-0.6b 4.6/7.4 16.3/13.8 32.9/42.9 16.3/13.8
par-ctc-1.1b 4.5/6.9 16.6/14.1 30.9/39.9 16.4/12.4
par-rnnt-0.6b 3.8/6.9 16.3/13.2 31.6/41.8 17.3/12.6
par-rnnt-1.1b 3.5/6.1 14.6/13.3 27.3/37.6 18.1/10.4
par-tdt-1.1b 3.4/6.0 13.5/13.2 28.3/35.7 17.9/10.2
pkt-ctc-110m 6.1/8.6 16.7/13.0 39.9/42.4 19.2/12.5
sm4t-v2-l 7.2/8.4 34.6/31.7 52.4/57.6 33.8/24.5
spchllm-1.5B 15.3/16.6 42.0/41.8 121.1/125.457.0/59.3
spchllm-2B 13.9/15.6 39.4/40.3 60.6/64.1 39.2/44.1
stt-cfc-l 5.8/6.8 16.1/17.6 35.9/38.0 18.6/11.5
stt-cfc-s 9.7/11.2 22.2/24.6 43.7/47.7 16.4/15.6
stt-fc-cfc-l 6.8/10.0 17.6/23.9 34.9/47.6 18.9/13.3
stt-fc-td-l 6.0/8.8 17.0/20.6 34.5/46.5 21.1/15.1
w2v2-960h 17.4/18.5 44.7/47.1 68.4/74.0 29.9/36.5
w2v2-crelpos 5.9/7.4 28.5/30.3 47.2/54.0 22.4/26.7
w2v2-crope 6.6/8.1 31.7/33.4 49.8/56.9 21.9/26.3
w2v2-l-960h 11.6/12.6 37.8/40.2 66.4/72.7 26.3/33.3
w2v2-l-lv60-s 7.8/9.4 33.1/35.5 40.5/48.8 19.3/24.9
w2v2-l-rft-ls 10.0/11.5 32.2/34.6 48.9/55.7 22.0/28.6
whisper-l 6.2/8.1 18.8/13.9 65.3/66.9 18.7/15.9
whisper-l-v2 5.4/6.6 19.0/13.1 64.8/74.8 20.0/18.1
whisper-l-v3 4.6/5.9 18.7/12.0 64.7/73.9 19.2/18.1
whisper-l-v3-t 4.9/6.0 18.5/12.3 66.0/72.5 24.3/23.2
whisper-m.en 6.5/7.9 19.5/14.0 66.2/73.8 27.6/26.4
whisper-s.en 8.2/9.7 20.0/15.1 67.1/73.8 17.3/17.5
whisper-tiny 18.5/20.7 30.0/26.6 97.6/102.5 29.8/33.2

Table 1: Actual and approximated WER (↓), sepa-
rated by a slash, on out-of-distribution wild datasets.
The regression model is trained independently for each
ASR model on standard benchmarks, making the wild
datasets out-of-distribution. See Table 11 for full names.

5.2 Evaluation on Benchmark Datasets

We summarize results on 10 standard benchmark
datasets in Appendix A.6 Tables 13 and 14. Each
table reports actual WER/CER alongside the ap-
proximated WER/CER (denoted by aWER/aCER).

Overall, models such as parakeet-tdt-1.1b and
whisper-large-v3 show relatively small differences
between WER and aWER, indicating reliable ap-
proximations. For instance, the actual WER for
whisper-large-v3 on AMI_IHM is 19.0% com-
pared to aWER 17.1%, 1.9% gap. Conversely,
some challenging datasets (e.g., CV11 and Earn-
ings22) reveal larger discrepancies for specific
models, particularly those with higher overall error
rates. For example, mms-1b-fl102 exhibits a wide
WER/aWER gap on Earnings22, suggesting diffi-
culty handling accented or domain-specific speech.

In general, high-performing ASR models demon-
strate small WER–aWER gaps, indicating that it’s
easy to approximate when error rates are low. How-
ever, models with higher WERs or faced with more
acoustically or linguistically challenging test sets
tend to show wider divergences. Despite these
variations, most results remain within a reasonable
margin, highlighting the robustness of our approxi-
mation model on diverse out-of-distribution data.

Figure 2: Actual and approximated WER for four mod-
els across standard benchmark.

These results underscore the critical role of
model quality in achieving reliable approxima-
tions. The approximation framework remains ef-
fective for high-performing models, while devi-
ations tend to increase in cases of semantically
divergent or poorly structured outputs, reflecting
the inherent challenges in approximating errors for
low-performing systems.
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5.3 Multilingual Evaluation
We train the regression model on English and eval-
uate it on English and German, and vice versa. We
do this experiment with two models as source and
proxy, namely seamless-m4t-v2-large and whisper-
large-v3. We report the mean absolute differ-
ence between approximated and actual word error
counts in Table 2.

Source: seamless-m4t-v2-large Proxy: whisper-large-v3

Train\Test LS_De CV17_De LS_En CV17_En

LS_De – 2.16 1.59 1.98
CV17_De 1.93 – 0.50 0.56
LS_En 1.60 0.75 – 0.66
CV17_En 1.82 0.66 0.56 –

Source: whisper-large-v3 Proxy: seamless-m4t-v2-large

Train\Test LS_De CV17_De LS_En CV17_En

LS_De – 2.03 1.11 1.96
CV17_De 1.74 – 0.51 0.76
LS_En 1.29 1.50 – 1.42
CV17_En 2.29 0.68 1.69 –

Table 2: Cross-lingual mean absolute difference (↓)
between predicted and actual word error counts. Lower
values mean better approximation.

We find that our framework demonstrates strong
cross-lingual generalization: when trained on En-
glish data, the regression model maintains low
absolute differences when evaluated on German
datasets, and vice versa. This consistency across
languages and datasets, using both seamless-m4t-
v2-large and whisper-large-v3 as source-proxy
pairs, underscores the robustness and language-
agnostic nature of our approach. These results vali-
date that our method can be effectively applied in
multilingual settings without the need for language-
specific adaptations.

5.4 Ablation
We conduct comprehensive ablation experiments
to evaluate the robustness of the approximation
model and the contributions of its individual com-
ponents. Using the evaluation setup outlined in
Section 3.4, we select data2vec-audio-base-960h
as the source model (S) and wav2vec2-base-960h
as the target model (T ). The results are summa-
rized in Table 3, where IID results correspond to
Case-I 3.4, and D, M , and D+M under OOD rep-
resent Case II 3.4, Case-III 3.4, and Case-IV 3.4,
respectively. The reference model’s r value rep-
resents the average WER across all datasets. We
include reference models with varying r values,
such as whisper-large-v3 (r = 17.8), whisper-

medium.en (r = 20.1), whisper-tiny (r = 33.4),
and mms-1b-fl102 (r = 51.0).

The results in Table 3 demonstrate the impor-
tance of proxy references in improving the re-
gression model’s performance. Training without
proxy references (w/o PR) significantly increases
the mean absolute error (MAE) across all condi-
tions. For instance, the IID MAE increases from
1.03 (Base) to 3.13, and the OOD D + M MAE
rises from 1.07 (Base) to 3.33, highlighting the es-
sential role of proxy references in approximation.

Increasing the number of high-quality proxy ref-
erences (MPR) further reduces errors. Under IID
conditions, the MAE decreases from 1.00 with
n = 2 to 0.93 with n = 5. Similarly, in OOD
D +M , the error drops from 1.06 (MPR, n = 2)
to 0.95 (MPR, n = 5), demonstrating that multiple
high-quality references enhance model robustness.

Method IID OOD

D M D + M

eWER3(nc=32) 2.030.07 2.090.04 2.06 0.03 2.120.04

eWER3(nc=64) 1.980.06 2.070.05 2.000.04 2.090.05

Base 1.030.03 1.050.01 1.030.02 1.070.01

w/o S 1.040.03 1.050.01 1.040.03 1.050.01

w/o PR 3.130.07 3.220.02 3.230.05 3.330.02

w/ MPR (n=2) 1.000.02 1.040.02 0.990.02 1.060.02

w/ MPR (n=3) 0.960.02 0.970.01 0.950.02 0.990.01

w/ MPR (n=4) 0.950.02 0.960.02 0.940.02 0.980.02

w/ MPR (n=5) 0.930.02 0.930.01 0.920.02 0.950.01

w/MPR (n=10) 0.900.02 0.930.01 0.880.02 0.950.01

w/MPR (n=20) 0.890.02 0.960.02 0.870.02 0.960.02

w/ mMPR (n=3) 0.980.02 0.960.02 0.970.02 0.980.02

w/ mMPR (n=5) 0.940.02 0.940.02 0.930.01 0.960.02

w/mMPR (n=10) 0.920.02 0.940.02 0.910.02 0.960.02

w/mMPR (n=20) 1.040.02 1.050.01 1.020.02 1.040.01

Base (r=17.8) 1.310.04 1.440.02 1.310.04 1.400.01

Base (r=20.1) 1.360.04 1.360.01 1.340.03 1.340.01

Base (r=33.4) 1.550.04 1.690.02 1.550.04 1.630.02

Base (r=51.0) 2.030.02 2.100.01 2.080.05 2.090.01

w/o S (r=17.8) 1.470.04 1.560.01 1.480.04 1.540.01

w/o S (r=20.1) 1.550.02 1.500.01 1.550.03 1.500.01

w/o S (r=33.4) 1.790.07 1.890.02 1.780.06 1.820.02

w/o S (r=51.0) 2.230.02 2.240.01 2.280.04 2.210.01

Table 3: Mean absolute error (↓) between predicted
word error count and actual error count (in absolute
terms) across different configurations. PR - Proxy Ref-
erence, S - Similarity, MPR - Multiple PR, D - Data, M
- Model. The OOD results are averaged across four wild
datasets. n is the number of proxy references. The r (↓)
value represents the average WER for proxy reference
across 14 datasets. Superscript represents the standard
deviation across five runs.
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The quality of references, quantified by the r-
value, also plays a critical role. For example, in
IID conditions, the MAE increases from 1.31 for
r = 17.8 to 2.03 for r = 51.0. A similar trend
is observed in OOD D + M , where the MAE
rises from 1.40 (r = 17.8) to 2.09 (r = 51.0).
The absence of similarity (w/o S) combined with
low-quality proxies further degrades performance,
underscoring the importance of both high-quality
references and similarity measures. We provide
character-level error count approximation in Ap-
pendix A.6 Table 10.

Scaling Training Data for Regression. To evalu-
ate the impact of training data size on the regression
model, we scale the data from 1K to 10K examples
in increments of 1K. As shown in Figure 3, the
model’s performance does not exhibit a clear trend
with increasing training data size. Some datasets
show slight improvements with more data; others
show minimal improvement. This suggests that the
regression model is largely agnostic to the size of
the training data. In fact, it appears that a relatively
small dataset of just 1,000 examples is sufficient
to train a robust approximation model. This under-
scores the model’s ability to generalize effectively
with limited data, making it an efficient choice for
scenarios with constrained datasets.

Figure 3: Mean absolute error (↓) between predicted and
actual word error counts across varying training data
sizes for the regression model. The model is trained on
10 standard benchmarks and evaluated on four in-the-
wild test sets.

Direct Comparison with Proxy Reference. We
evaluate our regression model and standard
reference-free baseline that computes the word er-
ror rate between the target and a proxy hypothe-
sis. We report the mean absolute difference and
compare the regression model (OURS) with direct
calculation with proxy (W PROXY) in Table 4.

Our results show that the regression model con-
sistently reduces the absolute difference compared
to direct evaluation with the proxy across seven
of the eight datasets, with the only exception be-
ing MEDICALASR. We also find that the regres-
sion model trained using only similarity features re-
mains competitive. These findings demonstrate that
our approach generalizes well across domains and
provides more reliable reference-free ASR quality
estimates than simply computing the error against
a proxy reference.

Dataset PR (r=33.4) PR (r=51.0) W/O PROXY

W PROXY OURS W PROXY OURS OURS

Primock57 2.25 1.54 4.89 2.63 3.82
ATCOSim 5.35 2.11 3.56 2.02 2.64
VP_Accented 2.99 2.09 5.39 2.83 4.00
LS_Noise 2.10 1.58 3.08 1.42 2.35
BERSt 2.37 1.25 5.09 2.47 3.20
Perturbed 1.84 1.34 3.38 1.75 2.81
Medical 0.76 0.95 2.35 1.33 2.56
CHiME6-Noisy 2.32 1.43 3.29 1.93 2.74

Average 2.50 1.54 3.88 2.05 3.02

Table 4: Mean absolute difference (↓) between the pre-
dicted and actual word error counts for our regression
models and the baseline direct comparison with proxy
reference (W PROXY).

6 Conclusion

We present a framework for approximating ASR
metrics, demonstrating its effectiveness in general-
izing to unseen, in-the-wild, and challenging con-
ditions. Our results show that the model performs
well with absolute error counts, consistently outper-
forming strong baseline, with error rates remaining
relatively low. We show that our proposed method
achieves consistent performance across 40 ASR
models and 14 evaluation setups, including both
standard benchmarks and domain-specific condi-
tions. The trained regression model can be effi-
ciently used to approximate ASR metrics, partic-
ularly in data-constrained environments, such as
critical domains with limited labeled data. In sum-
mary, our work bridges the gap between theoretical
advancements and real-world applications, paving
the way for more reliable and scalable ASR sys-
tems. While in this work, we evaluate monolingual
and cross-lingual generalization, future work will
focus on extending this framework to support a mul-
tilingual setting and exploring language-agnostic
ASR metric approximation.
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7 Limitations

In this work, we introduced a framework for ap-
proximating ASR metrics, evaluated across various
ASR models and datasets. Despite the promising
results, there are several limitations to consider.
Evaluation. While our evaluation setup is com-
prehensive, consisting of over 40 models and 14
datasets representing various acoustic and linguis-
tic conditions such as natural noise, dialects, and
accents—far surpassing previous works—we have
not explored more nuanced conditions such as gen-
der, non-native speech, and approximation across
various age groups. Additionally, while the frame-
work has shown strong performance in approximat-
ing ASR metrics across multiple datasets, its gen-
eralization to highly diverse or extreme real-world
conditions might still require further investigation.
Language. Additionally, the current evaluation fo-
cuses solely on monolingual and bilingual settings.
Extending this framework to include multiple lan-
guages and rigorously testing it across diverse lin-
guistic contexts represents a critical direction for
future research.
Compute. Unlike previous works, our final approx-
imator is a simple regression model that does not
require GPUs to run, we do utilize a single GPU
for multimodal embedding extraction, which could
be performed on any consumer-grade GPU.

8 Ethics Statement

Data Collection and Release. The datasets used
in our experiments consist of publicly available
ASR data from both benchmark and in-the-wild
sources, as detailed in Section 4.1. We ensure that
the use of these datasets aligns with the princi-
ples of fair use, specifically in a non-commercial
academic context or as specified in their original
license. All datasets are openly accessible, and no
private or confidential data is included in this work
to the best of our knowledge.

Intended Use. By enabling the approximation
of ASR performance metrics with minimal data,
our work has the potential to impact applications
in domains with limited data availability, such as
healthcare, emergency response, and low-resource
language research. We believe our approach will
foster further research in scalable, low-cost ASR
systems with comprehensive evaluation, benefiting
industries and research areas that serve underrepre-
sented or resource-limited populations.

Potential Misuse and Bias. While our regression
model has demonstrated effectiveness in approx-
imating ASR metrics, it is important to consider
potential misuse and bias. Given that our model
is trained on diverse datasets, including those with
various linguistic, acoustic, and demographic vari-
ations, there is a risk that the model may inherit bi-
ases present in the data, particularly with respect to
accents, dialects, and socio-linguistic factors. Ad-
ditionally, as our model approximates error rates, it
could be misused in applications where the approx-
imation may not be sufficient for real-world critical
tasks. We recommend cautious deployment and fur-
ther evaluation in sensitive applications, especially
those where fairness and accuracy are critical.
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A Appendix

A.1 Methodology

pWER(xtext, xproxy) =
EditDistance(xtext, xproxy)

WordCount(xproxy)

(8)

pCER(xtext, xproxy) =
EditDistance(xtext, xproxy)

CharCount(xproxy)

(9)

A.2 Datasets

To evaluate the robustness and generalizability of
our ASR metrics approximation tool, data were
sourced from multiple repositories, which we di-
vided into two distinct groups: Standard Bench-
mark and Wild Challenge dataset.

A.2.1 Standard Benchmark Datasets
There are six datasets in total that fall under the
benchmark group. These datasets are categorized
based on their frequent use in ASR model training
and their representation of commonly encountered
domains in real-world applications.
LibriSpeech (Panayotov et al., 2015). prioritized
speaker and content balance over explicit consid-
eration of speech characteristics. It comprises
approximately 1000 hours of English read audio-
books, with subsets featuring both clean and noisy
speech conditions to simulate different acoustic
environments. While the dataset covers diverse
subject matter, its focus on formal, clear speech
from public domain books means it lacks the
natural variability of spontaneous speech, limiting
its representation of conversational or informal
dialogue.
TED-LIUM (Rousseau et al., 2014). contains
TED Talks totaling 452 hours of English speech
data from approximately 2,000 speakers, recorded
in close-talk microphone conditions. The corpus
features narrated speaking styles, capturing clear
and articulate speech. While it provides non-
orthographic transcriptions, lacking formatting
such as capitalization and punctuation, it remains a
valuable resource for training and benchmarking
automatic speech recognition (ASR) models.
GigaSpeech (Chen et al., 2021). is a multi-
domain, multi-style speech recognition corpus
incorporating diverse acoustic and linguistic
conditions. It sources audio from three primary
domains: audiobooks, podcasts, and YouTube,
covering a wide range of speaking styles, including

both read and spontaneous speech. The dataset
covers a broad spectrum of topics, such as arts,
science, sports, and more, making it highly
versatile for training robust speech recognition
models.
SPGISpeech (Technologies, 2021). contains
5,000 hours of professionally transcribed audio
from corporate earnings calls, featuring both
spontaneous and narrated speaking styles. It
emphasizes orthographic accuracy, providing fully
formatted text with capitalization, punctuation, and
denormalization of non-standard words.
Common Voice (Ardila et al., 2020). (a multi-
lingual corpus of narrated prompts built through
crowdsourcing. Recorded in teleconference
conditions, the corpus features narrated speaking
styles and emphasizes inclusivity by covering a
wide range of accents and languages, including
low-resource ones.
Earnings22 (Rio et al., 2022). is a 119-hour
corpus of English-language earnings calls from
global companies, designed to address the lack
of real-world, accented speech data in ASR
benchmarking

AMI (IHM) (Carletta et al., 2005). The AMI
Meeting Corpus is a 100-hour dataset of English
meeting recordings, featuring multimodal data
synchronized across close-talking and far-field
microphones, room-view and individual cameras,
slide projectors, and whiteboards. It includes
mostly non-native speakers recorded in three
rooms with varying acoustics. Digital pens
capture unsynchronized handwritten notes,
supporting research in speech recognition,
diarization, and multimodal interaction. Avail-
able under edinburghcstr/ami, it is widely used
for meeting analysis and speech processing studies.

People’s Speech (Galvez et al., 2021). Thousands
of hours of labeled speech data collected from
diverse speakers, covering a wide range of
topics, accents, and speaking styles. The dataset
emphasizes inclusivity and linguistic diversity,
making it suitable for developing robust and
generalized speech models. It is widely used
in academic and industrial research to advance
the state-of-the-art in automatic speech recog-
nition (ASR) and other speech-related applications.

SLUE - VolxCeleb (Shon et al., 2022).consists
of single-sided conversational voice snippets ex-
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tracted from YouTube videos, originally designed
for speaker recognition. The dataset represents
natural, unscripted speech in diverse real-world
settings, capturing a wide range of speaking styles,
emotions, and acoustic conditions. Utterances
containing slurs were excluded, and partial words
were trimmed using a forced aligner to ensure
clean, usable segments.

A.2.2 Wild Challenge Set
Primock57 (Papadopoulos Korfiatis et al.,
2022). contains mock consultations conducted by
seven clinicians and 57 actors posing as patients,
representing a diverse range of ethnicities, accents,
and ages. Each actor was provided with a detailed
case card outlining a primary care scenario, such
as urinary tract infections, cardiovascular issues, or
mental health concerns, ensuring the conversations
were realistic and clinically relevant. The consulta-
tions were recorded using telemedicine software,
capturing separate audio channels for clinicians
and patients, and transcribed by experienced
professionals to ensure accuracy.
VoxPopuli Accented (Wang et al., 2021). is a
comprehensive multilingual speech corpus derived
from European Parliament event recordings. It
includes audio, transcripts, and timestamps sourced
directly from the official Parliament website. Due
to its origin, the dataset features a rich collection
of named entities, making it particularly suitable
for tasks like Named Entity Recognition (NER).

ATCOsim (Jan van Doorn, 2023).is a specialized
database containing ten hours of English speech
from ten non-native speakers, recorded during
real-time ATC simulations using close-talk
headset microphones. It features orthographic
transcriptions, speaker metadata, and session
details. With a 32 kHz sampling frequency and
10,078 clean, utterance-level recordings.

A.3 Models

Whisper Models (Radford et al., 2023). is
a transformer-based model that processes 80-
dimensional log-mel filter bank features from 16
kHz audio, utilizing a 2D CNN stack followed by a
transformer encoder-decoder architecture. Trained
on a vast multilingual dataset of 680,000 hours,
it incorporates timestamp tokens into its vocab-
ulary and operates on 30-second audio windows

during inference, auto-regressively generating text
sequences while leveraging encoder outputs as con-
text. Variants of Whisper, such as Distilled, Large,
Base, and Medium, offer different trade-offs in
model size and performance, catering to diverse
computational and accuracy requirements.
Seamless Models (Communication et al., 2023;
Seamless Communication et al., 2023; Barrault
et al., 2025). is a cutting-edge multilingual and
multitask model for speech and text translation.
Built on the UnitY architecture, it uses w2v-BERT
2.0 for speech encoding and NLLB for text
encoding, supporting nearly 100 languages. A text
decoder handles ASR and translation, while a text-
to-unit (T2U) model and multilingual HiFi-GAN
vocoder generate speech. Leveraging SONAR
embeddings and SeamlessAlign (443,000 hours of
aligned speech/text data), it achieves SOTA results
in ASR, speech-to-text, speech-to-speech, and
text-to-text translation, excelling in low-resource
languages. It introduces BLASER 2.0 for robust
evaluation and outperforms competitors in noisy
environments.

Nemo-ASR-Models (Gulati et al., 2020; Variani
et al., 2020; Rekesh et al., 2023; Noroozi et al.,
2024; Tang et al., 2023; Harper et al., 2024)
We included several NVIDIA’s NeMo advanced
automatic speech recognition (ASR) models, in-
cluding Canary, Parakeet (110M, 0.6B, and 1.1b),
Conformer-CTC, and Fast-Conformer, as each is
designed for specific use cases and optimized for
performance. Canary-1B is a state-of-the-art multi-
lingual, multitask model featuring a FastConformer
encoder and Transformer decoder. The Parakeet
family includes models with a FastConformer en-
coder paired with different decoders: CTC, RNN-T,
or TDT. Conformer-CTC is a non-autoregressive
model based on the Conformer architecture, com-
bining self-attention and convolution for global and
local feature extraction. It uses CTC loss and a lin-
ear decoder, supporting both sub-word (BPE) and
character-level encodings. While Fast-Conformer
is an optimized version of the Conformer architec-
ture, offering significant speed improvements (2.4x
faster) with minimal quality degradation. It uses 8x
depthwise convolutional subsampling and reduced
kernel sizes for efficiency.
Wav2Vec2 Models (Schneider et al., 2019;
Baevski et al., 2020). is a self-supervised pre-
trained model designed to process raw audio inputs
and generate speech representations. The model ar-
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chitecture consists of three key components: a con-
volutional feature encoder, a context network, and
a quantization module. The convolutional feature
encoder converts raw waveforms into latent repre-
sentations, which are then processed by the context
network a transformer based stack with 24 blocks,
a hidden size of 1024, 16 attention heads, and a
feed-forward dimension of 4096 to capture con-
textual information.The quantization module maps
these latent representations to quantized forms.
HuBERT Models (Hsu et al., 2021). is a self-
supervised learning framework designed for speech
representation learning where CNN-encoded audio
features are randomly masked. During training,
the model predicts cluster assignments for masked
regions of the input speech, forcing it to learn both
acoustic and language models from continuous in-
puts.
Audio/Speech Language Models 1.5B and 2B
(Rajaa and Tushar) is a multi-modal Language
Model designed to analyze and predict metadata
from a speaker’s turn in a conversation. It inte-
grates a speech encoder to convert speech signals
into meaningful embeddings, which are then pro-
cessed alongside text instructions by TinyLlama-
1.1B-Chat-v1.0 to generate predictions. The model
accepts 16 KHz audio inputs and predicts metadata
such as SpeechActivity, Transcript, Gender, Age,
Accent, and Emotion.
SpeechT5 (Ao et al., 2022). unified modal frame-
work capable of handling a wide range of tasks,
including automatic speech recognition (ASR),
speech synthesis, speech translation, voice con-
version, speech enhancement, and speaker identifi-
cation.Its audio post-net, which can incorporate
speaker embeddings to enable prosody transfer,
making it effective for tasks like voice conversion
and speech synthesis. By leveraging its encoder-
decoder architecture, SpeechT5 can generate high-
quality mel-spectrograms from text input while pre-
serving speaker-specific characteristics like emo-
tion and gender.

A.4 Experiments

A.4.1 Regression Pipeline.

The regression framework is a stacking ensemble
comprising multiple base regressors and a final
estimator. We perform basic hyperparameter tun-
ing using RandomizedSearchCV with 5-fold cross-
validation, with the objective to minimize mean
absolute error (MAE). The search explores key hy-

perparameters such as n_estimators, max_depth,
learning_rate, and min_samples_split, bal-
ancing model complexity and generalization. We
provide hyperparameter and other details in 7. The
model is trained on 14 datasets divided into two
groups: bench (10 standard benchmark datasets)
and in-the-wild (4 diverse, real-world datasets). A
leave-one-out strategy is applied to the bench set,
where the model is trained on 9 datasets and eval-
uated on the remaining one. All trained models
are also evaluated on the in-the-wild set, which
remains isolated during training to assess out-of-
domain generalization.

A.5 Domain Divergence and Phonetic
Diversity Analysis

To quantify how our in-the-wild evaluation sets
differ from the LibriSpeech-clean corpus that was
used to fine-tune both data2vec-audio-base-960h
(source) and wav2vec2-base-960h (target), we mea-
sure acoustic domain divergence with Central Mo-
ment Discrepancy (CMD) computed over SONAR
speech embeddings and phonetic diversity with To-
tal Vocabulary Overlap (TVO) calculated on the
corresponding transcripts. We report these num-
bers in Tables 8 and 9.

CMD values confirm that LibriSpeech (Noise)
remains acoustically close to the source domain be-
cause only artificial background sounds are added,
whereas Primock57, VoxPopuli (Accented), and
ATCOSIM exhibit substantial acoustic shifts. TVO
scores tell a complementary story in the lexical
space: LibriSpeech (Noise) preserves more than
one-third of the vocabulary, while Primock57, Vox-
Populi (Accented), and especially ATCOSIM share
far less with LibriSpeech-clean. Together, these
metrics justify the in-the-wild designation of our
evaluation corpora and highlight the importance of
robust models that generalize beyond clean, studio-
quality speech.

A.6 Results
Fine-grained ASR Evaluation Metrics To as-
sess whether our framework can also approximate
fine-grained ASR evaluation metrics, we extend
our experiments to cover insertions, deletions, and
substitutions. This addition aims to evaluate the
generalizability of our approach beyond overall
word error rates and provide a more detailed anal-
ysis of ASR performance. We train the regression
model under various configurations and examine its
performance across both in-distribution (IID) and
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out-of-distribution (OOD) conditions. We report
the results in Table 12.

The results demonstrate that our regression
model reliably approximates these fine-grained er-
ror counts. Specifically, the absolute differences
remain low across substitutions, insertions, and
deletions, even when evaluated on challenging out-
of-distribution data or using transcriptions from
models not seen during training. Furthermore, the
similarity-only variant, which does not rely on
proxy information during testing, remains competi-
tive, highlighting the robustness and generalizabil-
ity of the learned acoustic and semantic representa-
tions.

23136



Figure 4: Actual and approximated word error rate across different models evaluated on four in-the-wild datasets.
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Figure 5: Actual and approximated character error rate across different models evaluated on four in-the-wild
datasets.
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Name Type Description

LibriSpeech Bench A corpus of approximately 1,000 hours of 16kHz
read English speech, derived from LibriVox audio-
books, segmented and aligned for ASR tasks.

TED-LIUM Bench Contains TED Talks totaling 452 hours of English
speech data from approximately 2,000 speakers,
recorded in close-talk microphone conditions.

GigaSpeech Bench A multi-domain, multi-style speech recognition cor-
pus incorporating diverse acoustic and linguistic con-
ditions, sourced from audiobooks, podcasts, and
YouTube.

SPGISpeech Bench Contains 5,000 hours of professionally transcribed
audio from corporate earnings calls, featuring both
spontaneous and narrated speaking styles.

Common Voice Bench A multilingual corpus of narrated prompts built
through crowdsourcing, recorded in teleconference
conditions, covering a wide range of accents and lan-
guages.

Earnings22 Bench A 119-hour corpus of English-language earnings
calls from global companies, designed to address
the lack of real-world, accented speech data in ASR
benchmarking.

AMI (IHM) Bench The AMI Meeting Corpus is a 100-hour dataset of
English meeting recordings, featuring multimodal
data synchronized across various devices.

People’s Speech Bench Contains thousands of hours of labeled speech data
collected from diverse speakers, covering a wide
range of topics, accents, and speaking styles.

SLUE - VoxCeleb Wild Consists of single-sided conversational voice snip-
pets extracted from YouTube videos, originally de-
signed for speaker recognition.

Primock57 Wild Contains mock consultations conducted by seven
clinicians and 57 actors posing as patients, repre-
senting a diverse range of ethnicities, accents, and
ages.

VoxPopuli Accented Wild A comprehensive multilingual speech corpus derived
from European Parliament event recordings, featur-
ing a rich collection of named entities.

ATCOsim Wild A specialized database containing ten hours of En-
glish speech from ten non-native speakers, recorded
during real-time air traffic control simulations.

Table 5: Overview of various ASR along with brief description.

23139



Model Type and Models Description

nemo_asr
– parakeet-ctc-1.1b
– parakeet-ctc-0.6b
– stt_en_conformer_ctc_large
– stt_en_fastconformer_ctc_large
– stt_en_conformer_ctc_small
– parakeet-tdt-1.1b
– parakeet-rnnt-1.1b
– parakeet-rnnt-0.6b
– stt_en_fastconformer_transducer_large
– parakeet-tdt_ctc-110m
– canary-1b

NVIDIA’s NeMo ASR models offer diverse architectures for speech-to-text
applications. The Conformer-CTC model combines self-attention and con-
volutional operations, using Connectionist Temporal Classification (CTC)
loss for efficient transcription. The Conformer-Transducer extends this by
incorporating a Recurrent Neural Network Transducer (RNNT) decoder for
autoregressive modeling. The Conformer-HAT variant separates label and
blank score predictions, enhancing integration with external language models.
For improved performance, the Fast-Conformer introduces depthwise con-
volutional subsampling, achieving approximately 2.4x faster encoding with
minimal accuracy loss.

speechbrain
– asr-wav2vec2-librispeech

SpeechBrain provides robust models for ASR and speaker recognition.

data2vec
– data2vec-audio-large-960h
– data2vec-audio-base-960h

Data2Vec models by Facebook are designed for speech representation learn-
ing and ASR. These models use a unified learning framework for multiple
modalities.

wav2vec2
– wav2vec2-large-960h-lv60-self
– wav2vec2-large-robust-ft-libri-960h
– wav2vec2-large-960h
– wav2vec2-base-960h
– wav2vec2-conformer-rope-large-960h-ft
– wav2vec2-conformer-rel-pos-large-960h-ft

Wav2Vec2 models leverage self-supervised learning on raw audio for ASR.
With advanced configurations, these models provide high accuracy for diverse
speech-to-text tasks.

mms
– mms-1b-all
– mms-1b-fl102

The Multilingual Speech (MMS) models by Facebook excel at speech recog-
nition for multiple languages and accents.

hubert
– hubert-xlarge-ls960-ft
– hubert-large-ls960-ft

HuBERT models provide high-quality speech representations for ASR and
other downstream speech tasks.

seamless
– hf-seamless-m4t-large
– hf-seamless-m4t-medium
– seamless-m4t-v2-large

Seamless models focus on multilingual transcription and translation, offering
robust real-time speech processing solutions.

speechllm
– speechllm-1.5B
– speechllm-2B

SpeechLLM models are fine-tuned for ASR and text generation, leveraging
billions of parameters for high performance.

whisper
– whisper-large-v3
– distil-large-v3
– whisper-large-v2
– whisper-large-v3-turbo
– distil-large-v2
– whisper-large
– whisper-tiny
– whisper-medium.en
– distil-small.en
– whisper-small.en

Whisper models by OpenAI provide state-of-the-art transcription and transla-
tion capabilities for multilingual ASR. These models range from tiny to large
configurations.

moonshine
– moonshine-base
– moonshine-tiny

Moonshine models are lightweight and optimized for efficient ASR on edge
devices with minimal computational resources.

Table 6: Overview of various ASR along with brief description.
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Model Hyperparameter Values

Random Forest (RF)

n_estimators {100, 200, 300, 500, 700, 1000}
max_depth {5, 10, 15, 20, 25, 30}
min_samples_split {2, 5, 10, 15, 20}
min_samples_leaf {1, 2, 4, 8}

Gradient Boosting (GBR)

n_estimators {100, 200, 400, 600, 800}
learning_rate {0.001, 0.01, 0.05, 0.1, 0.2}
max_depth {3, 5, 7, 10}
min_impurity_decrease {0.0, 0.001, 0.01, 0.1, 0.2}

HistGradientBoosting (HGB)

max_iter {100, 200, 300, 400, 500}
learning_rate {0.001, 0.01, 0.05, 0.1, 0.2}
max_depth {3, 5, 7, 10, 15}
loss {Poisson}

Ridge Regression (Final Estimator)
alpha {1e-3, 1e-2, 0.1, 1, 10, 100, 1000}
positive {True}

Pipeline passthrough {True}

Table 7: Hyperparameter details for regression model.
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Dataset CMD Interpretation

LibriSpeech (Noise) 0.062 Low divergence
Primock57 0.329 Significant divergence
VoxPopuli (Accented) 0.504 High divergence
ATCOSIM 0.538 High divergence

Table 8: Acoustic domain divergence between
LibriSpeech-clean and each evaluation set, measured
with Central Moment Discrepancy (CMD).

Dataset TVO (%) Interpretation

LibriSpeech (Noise) 36.9 High overlap
VoxPopuli (Accented) 20.3 Low overlap
Primock57 14.3 Low overlap
ATCOSIM 3.8 Very low overlap

Table 9: Total Vocabulary Overlap (TVO) between
LibriSpeech-clean and each evaluation set.

Method IID OOD

D M D + M

Base 3.790.16 3.560.06 3.760.18 3.690.06

w/o S 3.830.14 3.650.06 3.820.16 3.730.07

w/o PR 8.430.28 8.360.08 8.670.24 8.660.08

w/ MPR (n=2) 3.690.14 3.570.06 3.660.17 3.690.06

w/ MPR (n=3) 3.620.13 3.440.07 3.580.15 3.560.07

w/ MPR (n=4) 3.570.13 3.400.06 3.530.13 3.520.06

w/ MPR (n=5) 3.490.13 3.370.06 3.470.12 3.490.07

w/ mMPR (n=3) 3.610.15 3.400.09 3.570.13 3.510.09

w/ mMPR (n=5) 3.800.15 3.470.03 3.770.13 3.560.04

Base (r=11.9) 4.680.17 5.160.06 4.640.16 5.060.05

Base (r=14.0) 4.840.18 4.880.07 4.750.17 4.770.07

Base (r=20.2) 5.130.12 5.380.07 5.120.10 5.300.07

Base (r=23.5) 5.600.13 6.120.07 5.690.21 6.030.05

w/o S (r=11.9) 5.500.21 5.840.06 5.550.21 5.650.05

w/o S (r=14.0) 5.730.12 5.500.05 5.710.13 5.370.06

w/o S (r=20.2) 6.160.18 6.240.08 6.130.10 5.970.09

w/o S (r=23.5) 6.380.09 6.770.08 6.430.16 6.580.08

Table 10: Mean absolute error between predicted char-
acter error count and actual character error count (in
absolute terms) across different configurations. R - Re-
gression, C - Classification, PR - Proxy Reference, S -
Silarity, MPR - Multiple PR. The OOD results are av-
eraged across five wild datasets. Superscript represents
the standard deviation across five runs.
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Model LS_Noise Primock57 Atcosim VP_accented

asr-wav2vec2-librispeech 4.2/5.8 17.2/20.8 18.8/21.9 9.8/14.0
canary-1b 1.5/3.8 10.1/9.7 16.4/19.4 15.6/9.0
data2vec-audio-base-960h 7.0/8.1 20.5/23.7 29.5/32.0 13.3/17.8
data2vec-audio-large-960h 3.1/4.2 14.1/17.4 20.0/23.8 10.6/14.4
distil-large-v2 3.5/5.2 11.5/9.2 49.5/41.8 10.2/9.4
distil-large-v3 2.7/4.6 11.9/9.1 49.4/40.5 10.1/9.0
distil-small.en 4.2/5.8 12.2/10.4 50.7/41.8 9.7/9.2
hf-seamless-m4t-large 6.5/7.5 32.1/30.6 54.7/57.2 21.8/15.8
hf-seamless-m4t-medium 9.4/10.1 34.4/32.7 35.5/37.9 23.1/17.9
hubert-large-ls960-ft 3.0/4.2 14.4/17.4 21.3/25.0 10.0/14.3
hubert-xlarge-ls960-ft 2.7/4.1 15.3/18.1 20.1/23.8 10.2/14.5
mms-1b-all 3.6/4.8 19.5/19.1 27.2/31.8 17.0/12.6
mms-1b-fl102 9.0/10.0 35.0/33.2 55.4/57.3 18.2/17.6
moonshine-base 5.7/6.8 12.4/12.1 42.6/39.5 10.9/12.6
moonshine-tiny 8.5/9.9 17.9/19.0 38.2/38.4 13.2/15.1
parakeet-ctc-0.6b 1.7/3.7 10.1/9.9 16.2/22.7 9.7/9.0
parakeet-ctc-1.1b 1.7/3.6 10.0/10.1 14.8/21.4 10.0/8.0
parakeet-rnnt-0.6b 1.3/3.4 10.1/9.4 16.9/24.1 10.9/8.8
parakeet-rnnt-1.1b 1.3/3.3 9.1/9.7 14.5/21.3 11.2/7.2
parakeet-tdt-1.1b 1.1/3.1 8.2/9.4 14.0/20.0 10.9/6.8
parakeet-tdt_ctc-110m 2.5/4.7 10.3/9.2 22.3/24.2 12.4/8.6
seamless-m4t-v2-large 3.5/4.6 24.6/23.7 31.6/35.8 25.2/19.8
speechllm-1.5B 9.9/11.2 30.1/31.4 85.4/88.7 47.3/49.0
speechllm-2B 8.4/9.3 25.3/27.7 33.5/36.1 24.0/28.3
stt_en_conformer_ctc_large 2.1/3.4 8.8/11.2 17.1/18.2 11.1/7.5
stt_en_conformer_ctc_small 4.3/5.7 12.7/15.6 21.6/23.6 9.5/9.7
stt_en_fastconformer_ctc_large 3.0/5.6 10.1/16.3 17.3/25.1 11.5/9.2
stt_en_fastconformer_transducer_large 2.8/5.0 10.6/14.3 18.7/25.3 14.2/11.9
wav2vec2-base-960h 7.9/9.1 23.3/26.7 30.3/33.2 13.7/18.9
wav2vec2-conformer-rel-pos-large-960h-ft 2.6/3.8 14.7/17.4 21.0/24.5 11.2/14.7
wav2vec2-conformer-rope-large-960h-ft 2.9/4.0 16.1/18.7 22.2/25.9 11.0/14.2
wav2vec2-large-960h 5.1/6.3 19.1/22.4 28.8/31.8 12.2/17.4
wav2vec2-large-960h-lv60-self 3.5/5.0 17.6/21.0 18.6/23.0 9.3/13.6
wav2vec2-large-robust-ft-libri-960h 4.5/5.8 15.7/19.0 20.7/24.2 10.0/14.7
whisper-large 2.9/4.2 13.7/10.6 49.3/47.5 13.7/11.9
whisper-large-v2 2.6/3.8 15.3/12.5 48.6/51.5 15.3/14.2
whisper-large-v3 2.0/3.3 12.3/8.7 48.9/48.3 14.3/13.6
whisper-large-v3-turbo 2.0/3.2 12.4/8.8 48.3/49.9 19.7/19.0
whisper-medium.en 3.3/4.3 13.1/10.5 49.1/49.2 23.8/20.6
whisper-small.en 4.2/5.3 13.1/10.8 48.4/51.2 12.5/12.7
whisper-tiny 9.8/11.3 19.3/18.2 60.8/63.0 21.0/22.3

Table 11: Actual and approximated CER (↓), separated by a slash, on out-of-distribution wild datasets. The
regression model is trained independently for each ASR model on standard benchmarks, making the wild datasets
out-of-distribution.
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Method IID OOD

D M D + M

Su
bs

tit
ut

io
n

Base 0.76 0.77 0.77 0.79
w/o S 0.76 0.76 0.77 0.78
w/o PR 2.22 2.28 2.26 2.36
w/ MPR (n=5) 0.65 0.68 0.66 0.69
w/ mMPR (n=5) 0.68 0.69 0.69 0.72
Base (r=17.8) 0.97 1.09 0.98 1.11
Base (r=51.0) 1.41 1.39 1.45 1.42

In
se

rt
io

n

Base 0.59 0.58 0.61 0.59
w/o S 0.58 0.56 0.60 0.57
w/o PR 0.86 0.94 0.86 0.95
w/ MPR (n=5) 0.54 0.55 0.55 0.57
w/ mMPR (n=5) 0.56 0.56 0.58 0.57
Base (r=17.8) 0.63 0.80 0.65 0.82
Base (r=51.0) 0.69 0.76 0.71 0.79

D
el

et
io

n

Base 0.66 0.63 0.67 0.64
w/o S 0.69 0.60 0.69 0.60
w/o PR 1.01 1.09 1.06 1.15
w/ MPR (n=5) 0.60 0.56 0.60 0.56
w/ mMPR (n=5) 0.61 0.57 0.61 0.58
Base (r=17.8) 0.76 0.82 0.78 0.85
Base (r=51.0) 0.92 1.05 0.97 1.09

Table 12: Mean absolute deviation between predicted
and true counts for substitutions, insertions, and dele-
tions. Columns: IID (source in-distribution), D (source
out-of-distribution), M (target in-distribution), D+M
(target out-of-distribution). Lower values indicate better
approximation.
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Model AMI_IHM CV11 Earnings22 Gigaspeech LibriSpeech_clean

WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER

asr-wav2vec2-librispeech 28.4/30.5 13.8/17.6 25.0/29.7 11.7/15.0 37.3/33.2 21.3/16.1 16.6/16.5 6.9/7.4 1.8/3.8 0.5/2.2
canary-1b 15.4/17.6 9.2/12.7 8.7/14.2 4.1/8.5 21.8/16.0 15.8/9.1 11.1/6.9 5.5/4.3 1.5/5.7 0.5/3.5
data2vec-audio-base-960h 39.9/40.4 19.9/23.5 37.8/42.3 18.3/21.7 50.8/48.6 28.0/25.0 23.8/23.5 10.1/10.8 2.8/4.0 0.9/1.6
data2vec-audio-large-960h 34.1/36.1 16.9/21.2 23.3/27.9 10.9/14.1 37.7/34.5 21.2/16.7 17.0/16.6 7.2/7.4 1.8/3.9 0.5/1.7
distil-large-v2 17.8/16.8 11.2/11.5 14.2/19.7 7.1/10.6 19.3/20.0 12.5/13.7 12.8/8.2 7.1/5.4 3.4/6.7 1.5/4.2
distil-large-v3 18.5/17.3 11.6/11.7 13.7/19.4 6.6/10.3 18.4/19.8 12.1/13.0 12.2/7.9 6.9/5.3 2.8/6.6 1.2/4.1
distil-small.en 18.5/18.4 11.1/12.6 18.5/23.1 9.4/12.5 21.2/21.4 13.6/14.7 13.1/8.6 7.3/5.7 3.7/7.6 1.6/4.5
hf-seamless-m4t-large 36.3/33.9 25.4/25.1 9.5/13.2 5.1/7.4 30.7/32.8 21.1/23.9 24.2/21.1 16.7/15.7 3.2/4.8 1.5/2.7
hf-seamless-m4t-medium 40.6/37.2 29.5/28.9 11.3/14.3 6.0/7.4 33.7/35.9 23.9/26.4 30.2/28.1 22.3/21.7 3.8/5.3 1.6/2.9
hubert-large-ls960-ft 31.1/33.6 15.2/19.8 24.1/28.8 10.6/13.6 37.6/34.4 20.6/16.3 19.3/18.3 8.1/7.8 2.1/3.7 0.6/1.6
hubert-xlarge-ls960-ft 31.1/34.3 15.0/20.0 24.1/28.7 10.5/13.9 37.3/34.9 20.4/15.9 18.1/17.4 7.3/7.6 2.0/3.8 0.6/1.7
mms-1b-all 37.0/36.2 19.1/20.8 22.5/27.5 8.9/12.5 34.1/30.6 19.6/15.1 19.4/16.9 8.3/7.6 4.2/6.2 1.3/2.7
mms-1b-fl102 75.4/73.3 35.1/33.9 42.6/45.3 17.8/19.9 50.6/52.3 24.2/26.5 37.2/35.7 15.7/15.2 15.8/17.3 5.1/5.9
moonshine-base 15.6/24.7 9.4/16.7 20.8/25.4 10.8/13.8 24.3/25.6 15.9/16.6 14.2/10.4 8.1/6.8 3.4/6.3 1.3/3.7
moonshine-tiny 21.3/25.3 12.8/16.7 26.7/31.7 14.4/17.3 31.2/32.7 19.7/20.2 16.6/14.1 9.1/8.6 4.5/7.2 1.8/4.2
parakeet-ctc-0.6b 17.0/23.1 10.0/16.3 10.7/21.1 5.1/11.2 24.7/19.1 16.9/11.5 12.0/8.6 6.1/5.2 2.0/5.1 0.7/2.5
parakeet-ctc-1.1b 15.7/21.4 9.0/15.3 10.5/20.1 5.2/11.0 24.0/17.7 16.6/10.7 12.2/7.9 6.2/5.0 1.8/5.4 0.5/2.6
parakeet-rnnt-0.6b 18.8/24.0 11.7/17.9 8.5/19.9 4.2/10.8 25.2/18.7 17.5/11.5 11.7/9.0 6.2/5.4 1.8/5.5 0.6/3.2
parakeet-rnnt-1.1b 18.6/23.5 11.7/17.2 6.7/19.6 3.4/10.5 25.7/17.9 18.4/11.4 11.3/8.4 6.0/5.0 1.5/5.0 0.5/3.3
parakeet-tdt-1.1b 17.1/23.5 10.2/16.9 7.2/19.6 3.4/10.6 24.5/16.6 17.1/10.0 10.2/7.8 4.9/4.7 1.3/6.0 0.4/2.9
parakeet-tdt_ctc-110m 18.5/18.8 10.7/13.6 12.7/17.7 6.9/10.1 22.2/14.8 15.7/9.2 12.6/8.2 6.2/5.0 2.6/6.7 0.9/3.8
seamless-m4t-v2-large 43.0/42.3 30.2/30.2 8.2/12.3 3.9/6.3 47.3/47.4 33.7/33.9 25.7/23.2 18.1/17.2 2.7/4.4 1.0/2.5
speechllm-1.5B 67.7/69.3 51.5/55.0 18.5/22.7 10.0/12.7 50.8/48.2 38.3/35.4 27.5/26.0 18.1/18.3 10.5/12.1 7.3/9.2
speechllm-2B 38.6/40.8 24.3/28.2 24.6/28.2 16.5/18.3 47.3/45.0 32.5/30.8 24.4/23.6 13.5/13.8 7.0/9.3 4.5/4.8
stt_en_conformer_ctc_large 15.3/19.9 7.9/13.4 10.4/15.4 4.7/8.0 24.8/20.0 16.4/10.7 13.2/10.6 5.9/5.6 2.2/3.7 0.7/2.4
stt_en_conformer_ctc_small 21.2/24.4 11.2/15.4 19.1/24.1 8.9/12.2 29.3/25.3 19.0/14.1 15.5/14.9 7.2/7.7 3.9/5.4 1.4/3.1
stt_en_fastconformer_ctc_large 20.3/24.0 11.7/15.3 9.5/19.3 4.6/10.2 27.3/21.5 18.3/13.0 14.5/14.7 7.2/8.2 1.9/5.2 0.7/2.8
stt_en_fastconformer_transducer_large 19.8/22.0 12.9/16.8 9.3/18.0 4.7/9.8 31.5/26.9 23.0/18.8 13.6/13.2 7.4/7.8 1.8/3.9 0.6/2.6
wav2vec2-base-960h 37.9/38.7 18.7/21.9 40.6/45.7 19.5/22.8 51.1/48.6 28.2/25.4 26.2/26.6 11.7/12.2 3.7/4.5 1.1/1.9
wav2vec2-conformer-rel-pos-large-960h-ft 35.0/38.7 18.5/24.1 23.7/28.0 10.7/13.7 38.4/36.2 21.7/17.6 18.5/17.2 8.5/7.9 1.6/3.3 0.5/1.5
wav2vec2-conformer-rope-large-960h-ft 34.3/36.4 18.0/22.7 23.6/28.5 11.6/15.0 36.9/33.9 21.4/16.7 17.9/17.7 7.3/7.6 1.8/3.8 0.5/1.6
wav2vec2-large-960h 34.0/36.4 16.4/20.2 34.1/38.6 16.2/19.4 46.4/43.4 25.4/21.7 20.6/20.5 8.6/9.1 2.9/4.3 0.8/2.1
wav2vec2-large-960h-lv60-self 29.1/31.5 15.5/19.5 23.1/28.8 11.0/15.0 36.7/32.5 20.8/15.7 17.6/17.2 7.5/8.0 1.7/3.5 0.5/1.9
wav2vec2-large-robust-ft-libri-960h 30.5/33.9 13.8/19.2 25.0/29.3 10.7/13.8 37.1/33.5 20.5/15.7 18.0/17.6 7.1/7.7 2.8/4.3 0.8/2.3
whisper-large 18.5/18.3 12.3/13.0 13.0/18.0 6.6/9.3 18.8/20.3 12.3/14.9 12.2/7.7 7.1/5.1 2.8/5.1 1.4/3.5
whisper-large-v2 18.6/17.1 12.1/11.8 11.3/15.5 5.7/8.0 19.0/21.5 13.0/15.8 12.5/7.1 7.3/4.9 2.8/5.1 1.5/3.2
whisper-large-v3 19.0/17.1 12.3/12.0 9.9/14.5 4.9/6.9 18.2/20.7 12.1/14.9 12.5/7.3 7.2/4.9 2.2/4.0 0.9/2.9
whisper-large-v3-turbo 19.0/17.5 12.3/11.9 12.6/16.1 6.3/8.1 18.8/21.1 12.9/15.6 12.2/6.8 7.1/4.6 2.4/4.4 1.1/2.5
whisper-medium.en 20.3/18.8 13.7/14.5 14.3/17.8 7.2/9.2 20.1/22.6 13.3/16.5 12.8/7.6 7.6/5.5 3.3/5.5 1.8/3.5
whisper-small.en 19.8/17.9 12.8/12.2 17.8/21.9 9.3/11.3 20.6/22.9 13.6/16.3 12.8/8.1 7.3/5.1 3.3/5.6 1.4/3.1
whisper-tiny 26.7/25.1 16.7/17.0 33.5/40.3 17.7/20.9 33.8/35.4 22.0/25.4 20.6/18.2 12.0/11.0 7.9/11.2 3.4/5.1

Table 13: Actual and approximated WER and CER, separated by a slash, across five standard datasets. The
regression model is trained on nine datasets and tested on one, with this process repeated for all datasets, ensuring
that the test data is always out-of-distribution.
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Model peoples_speech slue_voxceleb spgispeech_S tedlium-dev-test voxpopuli_en

WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER

asr-wav2vec2-librispeech 35.6/32.9 19.8/17.7 19.5/20.4 9.8/12.2 11.1/12.2 4.8/4.7 10.3/11.1 5.2/5.8 14.3/12.6 6.6/5.1
canary-1b 16.5/22.5 11.1/15.2 14.9/11.1 10.8/8.2 3.2/6.7 2.0/3.9 7.9/7.6 5.9/5.0 6.4/4.9 3.9/3.4
data2vec-audio-base-960h 43.4/38.6 24.4/20.8 26.1/27.6 13.0/15.5 19.2/19.8 8.2/7.9 13.6/14.2 6.3/6.4 18.9/17.5 8.5/7.1
data2vec-audio-large-960h 35.1/31.3 20.0/17.3 20.4/22.1 10.3/12.9 11.3/12.0 4.9/4.7 9.9/10.6 4.5/5.0 14.9/13.4 6.9/5.5
distil-large-v2 17.4/21.8 12.2/14.1 16.0/10.8 11.4/7.4 3.7/7.6 1.8/4.5 10.4/8.5 8.8/5.4 9.5/8.2 5.8/4.6
distil-large-v3 17.4/21.6 12.4/13.8 14.4/10.0 10.3/6.8 3.6/7.4 1.8/4.5 10.7/9.2 8.6/5.7 9.3/6.7 5.8/4.1
distil-small.en 19.0/22.5 13.3/14.3 15.9/11.4 11.3/7.8 4.0/7.9 1.9/4.7 10.8/8.8 9.1/5.6 10.2/7.4 6.4/4.3
hf-seamless-m4t-large 38.5/41.5 29.2/30.1 47.2/42.8 39.4/36.1 16.2/18.7 11.5/13.0 19.8/19.1 15.7/14.4 8.1/6.5 5.0/3.6
hf-seamless-m4t-medium 43.6/45.7 33.6/34.2 50.9/47.4 43.2/40.3 12.9/15.5 8.8/10.4 27.0/26.2 21.3/20.0 8.8/7.3 5.5/4.4
hubert-large-ls960-ft 34.1/31.3 18.8/17.7 20.8/22.0 10.1/12.3 11.6/12.4 4.9/4.6 11.0/12.0 5.3/5.4 15.0/13.6 6.9/5.4
hubert-xlarge-ls960-ft 35.5/31.5 19.5/16.0 20.3/22.1 9.9/12.3 11.9/12.3 4.8/4.5 10.1/11.2 4.2/5.0 14.5/12.8 6.7/5.3
mms-1b-all 32.2/36.0 16.8/18.7 27.6/26.3 14.6/14.8 10.0/12.5 3.8/4.9 13.5/13.3 7.3/6.5 8.9/7.6 4.4/3.1
mms-1b-fl102 52.4/52.7 26.0/25.5 51.7/48.7 26.1/23.2 19.1/22.9 5.9/8.6 29.7/30.3 12.9/12.9 22.6/20.5 9.3/7.9
moonshine-base 26.4/26.2 18.1/17.5 17.0/13.8 11.6/9.1 6.4/7.5 3.4/3.9 5.8/7.0 3.4/4.1 11.7/9.9 6.7/4.6
moonshine-tiny 31.8/30.8 20.5/19.1 20.1/17.2 13.4/11.8 9.1/9.9 4.8/5.3 9.8/9.5 6.7/5.8 14.9/12.9 8.2/7.2
parakeet-ctc-0.6b 24.2/20.0 16.5/12.6 13.1/11.0 8.7/7.8 6.4/7.5 3.6/3.8 4.3/7.2 2.6/4.4 7.0/7.2 4.1/3.7
parakeet-ctc-1.1b 20.7/18.1 13.9/11.8 13.0/11.6 8.7/8.3 6.4/7.1 3.7/3.6 5.0/7.4 3.0/4.4 6.7/6.5 3.9/3.3
parakeet-rnnt-0.6b 21.9/17.9 15.4/12.2 14.5/11.6 10.0/8.6 4.9/7.3 2.9/3.7 5.0/6.9 3.0/4.0 6.4/6.7 3.8/3.7
parakeet-rnnt-1.1b 23.3/17.2 16.6/11.8 14.1/10.9 9.8/8.9 4.5/7.7 2.7/4.4 5.2/7.7 3.5/4.9 5.6/6.0 3.4/3.2
parakeet-tdt-1.1b 24.5/17.9 16.6/12.6 13.5/10.6 9.1/7.9 5.4/7.7 3.2/4.2 4.4/7.1 2.8/4.4 5.5/6.0 3.3/3.1
parakeet-tdt_ctc-110m 16.6/21.4 11.5/15.1 15.3/11.5 10.7/8.3 3.8/7.3 2.2/4.0 5.2/6.6 3.3/4.1 7.5/6.2 4.6/3.1
seamless-m4t-v2-large 35.0/36.3 25.1/24.9 45.1/43.2 35.9/34.7 11.7/13.6 7.6/8.7 26.5/25.5 21.0/19.1 8.0/7.8 5.7/5.0
speechllm-1.5B 45.1/44.5 32.7/32.0 60.3/60.8 44.1/46.8 10.6/10.9 6.2/5.8 19.4/17.6 14.2/11.9 30.8/29.9 22.0/21.3
speechllm-2B 52.9/53.1 36.6/35.7 36.9/37.8 25.8/27.3 14.6/15.3 8.1/7.5 18.8/16.7 12.9/9.4 28.7/27.7 18.5/17.5
stt_en_conformer_ctc_large 24.2/21.5 15.2/13.0 12.6/14.7 7.6/9.4 7.9/7.3 4.1/3.4 5.9/7.7 3.3/4.4 6.9/5.3 3.9/2.7
stt_en_conformer_ctc_small 31.3/26.9 19.0/15.7 16.6/17.8 9.6/11.7 10.0/9.4 5.1/4.1 8.0/9.9 3.9/5.2 8.9/7.3 5.0/3.8
stt_en_fastconformer_ctc_large 26.9/20.5 18.3/12.9 15.4/14.0 9.9/9.7 6.9/8.4 3.7/4.1 5.7/7.8 3.1/4.5 6.3/6.0 3.8/3.3
stt_en_fastconformer_transducer_large 26.5/20.4 19.0/13.8 16.9/15.1 11.3/11.1 6.0/7.9 3.4/4.0 4.9/7.0 2.8/4.4 6.7/6.9 4.1/3.8
wav2vec2-base-960h 44.7/40.1 24.5/20.6 27.3/28.7 13.5/15.7 21.5/22.4 8.9/8.7 13.8/14.7 6.1/6.6 20.5/19.4 9.1/7.8
wav2vec2-conformer-rel-pos-large-960h-ft 37.3/34.7 21.2/19.7 20.3/22.1 10.6/13.4 12.0/12.2 5.2/4.6 11.7/12.3 6.6/6.3 14.8/13.1 6.9/5.5
wav2vec2-conformer-rope-large-960h-ft 35.3/32.1 20.4/19.3 20.6/22.1 10.4/12.9 11.7/12.5 5.1/4.8 10.9/11.8 5.5/6.0 14.5/13.4 6.9/5.4
wav2vec2-large-960h 38.9/35.7 21.6/19.2 23.2/25.1 11.5/13.7 16.3/17.1 6.9/6.6 12.2/13.2 5.6/6.1 18.1/16.7 8.2/7.0
wav2vec2-large-960h-lv60-self 32.5/29.4 18.7/15.7 20.2/20.8 10.7/12.9 10.4/12.2 4.3/4.7 9.5/10.5 4.2/4.9 13.5/12.5 6.4/5.2
wav2vec2-large-robust-ft-libri-960h 36.2/32.6 19.2/16.9 20.9/23.0 9.6/12.5 11.8/12.5 5.0/4.8 10.6/11.9 4.8/5.4 15.4/14.0 7.0/5.8
whisper-large 31.2/32.4 24.6/23.0 17.6/12.6 13.7/10.5 3.7/7.4 2.1/4.4 19.3/16.1 14.0/10.3 8.9/6.0 5.5/3.2
whisper-large-v2 18.8/25.2 14.2/18.1 18.7/15.1 14.8/12.1 4.1/7.7 2.4/4.8 28.3/25.3 19.4/14.4 8.7/6.8 5.5/3.8
whisper-large-v3 20.4/27.5 15.6/19.5 15.6/11.9 11.8/8.7 3.2/6.3 1.7/4.0 10.5/8.3 8.7/5.5 11.0/8.6 7.8/6.1
whisper-large-v3-turbo 16.0/23.7 12.0/16.5 15.3/11.9 11.5/9.0 3.1/6.3 1.7/3.9 9.9/8.1 8.5/5.2 13.3/11.1 9.8/7.9
whisper-medium.en 20.1/25.1 15.3/18.0 21.2/16.1 16.6/13.2 4.0/7.7 2.2/5.0 17.3/14.6 18.3/14.2 9.0/7.2 5.6/3.2
whisper-small.en 21.2/25.1 16.5/18.0 18.2/14.1 13.9/10.9 3.9/7.5 2.1/4.6 10.6/8.3 15.6/12.0 9.5/8.1 5.9/3.4
whisper-tiny 30.1/31.9 21.7/21.5 24.0/20.3 17.5/14.4 8.1/11.9 3.9/6.7 17.6/15.3 13.0/9.5 13.2/11.2 7.4/6.3

Table 14: Actual and approximated WER and CER, separated by a forward slash, across five standard datasets. The
regression model is trained on nine datasets and tested on one, with this process repeated for all datasets, ensuring
that the test data is always out-of-distribution.
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