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Abstract
Large language models (LLMs) have become
the backbone of modern natural language pro-
cessing but pose privacy concerns about leaking
sensitive training data. Membership inference
attacks (MIAs), which aim to infer whether a
sample is included in a model’s training dataset,
can serve as a foundation for broader privacy
threats. Existing defenses designed for tradi-
tional classification models do not account for
the sequential nature of text data. As a result,
they either require significant computational
resources or fail to effectively mitigate pri-
vacy risks in LLMs. In this work, we propose
DuoLearn, a lightweight yet effective empirical
privacy defense for protecting training data of
language models by leveraging token-specific
characteristics. By analyzing token dynamics
during training, we propose a token selection
strategy that categorizes tokens into hard to-
kens for learning and memorized tokens for
unlearning. Subsequently, our training-phase
defense optimizes a novel dual-purpose token-
level loss to achieve a Pareto-optimal balance
between utility and privacy. Extensive experi-
ments demonstrate that our approach not only
provides strong protection against MIAs but
also improves language modeling performance
by around 10% across various LLM architec-
tures and datasets compared to the baselines.1

1 Introduction

Large language models (LLMs) have become the
foundation of modern natural language process-
ing with a wide range of applications in various
domains (Chang et al., 2024). The rapidly in-
creasing deployment of LLMs raises serious con-
cerns about data privacy (Yao et al., 2024). LLMs
have been shown to memorize the training data
which can be later extracted by adversaries (Car-
lini et al., 2023). Membership inference attacks

*Corresponding author: ruixuan.liu2@emory.edu
1The implementation code for DuoLearn is available at

https://github.com/Emory-AIMS/duolearn

(MIAs) (Shokri et al., 2017; Li et al., 2024a) aim
to infer whether a sample is included in a model’s
training data, serving as the foundation of broader
privacy threats (Carlini et al., 2021b).

Due to the importance of understanding and mit-
igating MIAs, a significant amount of research has
been conducted to design MIA defenses (Hu et al.,
2022b). However, most defenses focus on general
machine learning models for classification tasks
and do not account for the sequential nature of
text data, while advanced MIAs for LLMs have
leveraged this property. For example, the series of
Min-K works (Zhang et al., 2025; Shi et al., 2024)
uses the token-level loss on outlier tokens and sig-
nificantly enhance MIAs for LLMs. Thus, con-
ventional data sanitization or regularization tech-
niques have limited defense effectiveness (Kand-
pal et al., 2022; Liu et al., 2024b). Even though
the classic differentially private (DP) training al-
gorithm (Abadi et al., 2016) provides a strong de-
fense, this approach comes at the inevitable cost
of increased computation and reduced utility (Li
et al., 2022a; Bu et al., 2023b), which may not
be desirable when the model trainer serves as the
defender.

In this paper, we propose a defense mecha-
nism for membership inference attacks on LLMs
– DuoLearn. A recent study (Lin et al., 2024) re-
veals that using a carefully selected subset of tokens
during training can match or even surpass the per-
formance of using all tokens in language modeling.
In the meantime, MIAs mainly exploit loss-based
signals associated with a sample (Mattern et al.,
2023; Carlini et al., 2021a). We observe that during
training, some certain tokens carry stronger MIA
signals than others, making the sample vulnerable
to MIAs. Thus, we leverage the token sequence
nature of LLMs and propose a dynamic token selec-
tion strategy during training to proactively identify
and categorize tokens into hard tokens (those the
model struggles with) and memorized tokens (those
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with strong signals for MIA risks). Accordingly,
we design a dual-objective loss function that per-
forms learning via gradient descent on the hard
tokens and unlearning via gradient ascent on the
memorized tokens simultaneously in one backward
pass, which makes the model learn useful infor-
mation but not memorize specific training samples.
Our contributions can be summarized as follows:

• We propose a dynamic token selection strategy
that identifies hard tokens and memorized to-
kens during training, which provides insights
for investigating language modeling and mem-
orization.

• We propose a simple but effective dual-
objective training to perform learning over
hard tokens and unlearning over memorized
tokens, for mitigating privacy risk while main-
taining model utility with small computing
cost.

• We empirically demonstrate the effectiveness
of the proposed defense mechanism across
various LLM architectures and datasets. Our
results show that our defense mechanism
can provide robust privacy protection against
MIAs with minimal degradation on language
modeling performance.

2 Related Works

2.1 MIAs on LLMs

Membership inference attacks are a crucial privacy
threat to machine learning models. There are a sig-
nificant number of MIAs proposed for traditional
classification models (Hu et al., 2022b). Shokri
et al. (2017) introduce MIAs via training a binary
classification model over behaviors collected from
shadow models. Yeom et al. (2018) connect MIAs
to the overfitting phenomenon and propose to use
cross entropy loss as an MIA signal. However,
due to the significant differences between LLMs
and traditional classification models, some of these
attacks are not applicable to LLMs, while others,
though feasible, have limited attack performance.
Therefore, there are non-trivial efforts to design
suitable MIAs for LLMs. Carlini et al. (2021a)
calibrate the sample loss with zlib entropy and ref-
erence models. Mattern et al. (2023) generate syn-
thetic neighboring samples for each target sample
then calibrate the loss of the target sample with
the averaged loss of its neighboring samples as the

MIA signal. Shi et al. (2024) consider only top
K lowest token losses for the MIA signal, while
Zhang et al. (2025) perform z-score normalization
for token losses, using the token vocabulary’s mean
and standard deviation, then select top K z-scores.
Fu et al. (2024) prompt the target LLM to gen-
erate a dataset which is used to train a reference
attack model. Duan et al. (2024) conduct system-
atic evaluations of MIAs on the pretrained LLMs.
Hayes et al. (2025) scale reference-based MIAs
on large-scale pretraining settings. Puerto et al.
(2025) consider various scales of membership from
sentences to collections of documents. Liu et al.
(2024b) design a privacy backdoor that can increase
the membership inference risks. Feng et al. (2025)
investigate MIAs on preference data used for post-
training alignment.

2.2 LLM Memorization
The billion-parameter scale enhances LLM capa-
bilities but also magnifies the privacy concerns.
Carlini et al. (2021a, 2023) demonstrate that LLMs
can memorize parts of their training data. There
is a risk that LLMs may generate the training data
when prompted appropriately. These are known as
exact memorization which can be utilized by the
adversaries to extract the exact training data. Nasr
et al. (2025) demonstrated that the LLM safety
alignment fails to mitigate the privacy risks. It
is feasible to undo the safety alignment via fine-
tuning and the adversaries can prompt the LLM to
generate its training data.

2.3 Defenses Against MIAs
Overfitting is the root of membership inference
risks (Shokri et al., 2017). While regularization
methods such as weight decay and dropout (Srivas-
tava et al., 2014) mitigates overfitting and slightly
reduces the membership inference risks in the tra-
ditional classification models (Song and Mittal,
2021), they are not sufficient to prevent memo-
rization in LLMs (Tirumala et al., 2022; Lee et al.,
2022). Other defenses which leverage adversarial
training (Nasr et al., 2018) or ensemble architec-
ture of models (Tang et al., 2022) are infeasible for
LLMs due to the expensive computing cost.

Generally, in the context of LLMs, there are still
limited number of works on defense mechanisms
against MIAs and memorization. There are two
main approaches: sanitizing training data and dif-
ferential privacy (DP). Pilán et al. (2022) propose
a practical method to protect Personally Identifi-
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able Information (PII) by detecting and replacing
PII with anonymized tokens. Shi et al. (2022) san-
itize the PII tokens and pretrain on the sanitized
data before conducting DP based fine-tuning on the
original data. Lukas et al. (2023) demonstrate the
effectiveness of sentence-level DP in mitigating the
risks of leaking PII. These PII protection methods
are effective but may not be sufficient to protect
against MIAs because for each sample, the number
of PII tokens is usually small (Li et al., 2024b).
Liu et al. (2024a) propose a method to perturb the
training texts by leveraging memorization triggers
that can effectively protect a small fraction of the
training data against MIAs. Deduplicating the train-
ing corpus can reduce the risks of MIAs but not
entirely eliminate them (Kandpal et al., 2022).

The second popular approach conducts
training/fine-tuning with Differentially-Private
Stochastic Gradient Descent (DPSGD). Li et al.
(2022b); Yu et al. (2022); Li et al. (2024b); Amit
et al. (2024) show LLMs are strong differentially
private learners. Lowy et al. (2024) theoretically
prove that DP with a loose privacy budget can
defend against MIAs. Despite efforts to improve
the computing efficiency of DPSGD (Bu et al.,
2023b), DP inherently introduces computational
overhead, architectural constraints, and significant
utility trade-off at scale. McKenna et al. (2025)
explore the scaling laws of DP LLMs and reveal
challenges especially about the optimal training
data size. To avoid the computational overhead
and utility tradeoff of using DP on LLMs, Hans
et al. (2024) proposes a non-DP practical masking
mechanism, called Goldfish, that performs
pseudo-random token masking for loss calculation
to prevent memorization. Our method is also an
empirical defense in the training stage.

3 How Do Tokens Contribute to
Membership Inference Risks?

Compared to conventional classification problems,
membership inference attacks in language model-
ing have significant differences. In particular, each
query in traditional classification models requires
only one prediction. On the other hand, each query
to language models involves multiple token predic-
tions due to the sequential nature of text. This dif-
ference yields a question that how tokens contribute
to overall sample-level membership inference risks.
To answer this question, we perform a token-level
analysis of membership inference risks. We calcu-

late the MIA signal for each token as its prediction
loss calibrated by a reference model (Carlini et al.,
2021a). A smaller signal value indicates that the
model has a significantly higher confidence than
the reference model on predicting the token.
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Figure 1: Token-level MIA signal analysis. The left
figure presents the histogram of the MIA signals across
tokens at the end of training, while the right figure illus-
trates the MIA signal ranking of tokens during training.

Figure 1 (left) illustrates the histogram of MIA
signal values for the tokens of a member sample
and a non-member sample (see Figure 9 in Ap-
pendix B for additional histograms). The non-
member sample distribution centers around zero,
while the member sample skews to the negative
side. Consequently, the average aggregated MIA
signal is below zero for the member but around
zero for the non-member, leading to membership
inference risks. Moreover, the MIA signal values
vary for different tokens, so some tokens contribute
more to the membership inference risks than the
others. Figure 1 (right) illustrates the MIA signal
ranking of tokens of a member sample over training
steps (see Figure 10 in Appendix B for additional
samples). There is a complex changing dynamic in
ranking between tokens before it becomes more sta-
ble at the end when the training converges. Overall,
the analysis suggests that the sample-level member-
ship inference risk in language modeling stem from
the cumulative effect of many tokens. This poses
challenges for defense methods, as they need token-
level granularity to isolate and mitigate specific
sources of leakage. Additionally, it is non-trivial
to develop a defense method that widely affects
a large number of tokens without disrupting the
complex token dependencies essential for model
utility.

4 Proposed Methodology – DuoLearn

Motivated by the analysis, we propose DuoLearn–
a training framework that dynamically identifies
hard tokens (those with higher calibrated losses) for
learning and memorized tokens (those with lower
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Figure 2: DuoLearn overview. First, the tokens are passed through the training LLM and reference LLM. They
are then categorized into hard tokens (in green) and memorized tokens (in red). At the end, a dual-purpose loss is
applied which achieves two targets: learning on the hard tokens while unlearning for the memorized tokens.

calibrated loss or stronger MIA signals) for unlearn-
ing simultaneously. This way, the model learns
useful information without memorizing specific
training samples.
Overview. We assume the model trainer is the
defender and the goal is to mitigate the privacy
risk of the training data in the trained model. We
further assume the trainer can get access to an aux-
iliary dataset for better calibrating the MIA signals,
which can be a disjoint subset drawn from the same
distribution of the training data. The general train-
ing process is illustrated in Figure 2. First, we
train a reference model with the auxiliary dataset,
which is feasible for the trainer based on previous
works (Lin et al., 2024; Mindermann et al., 2022;
Xie et al., 2023). Then, during training of the tar-
get model, we use the token losses of the current
training model calibrated by the reference model to
dynamically identify hard tokens and memorized
tokens in each training iteration. A dual-purpose
loss function is used to keep the model simulta-
neously learning on hard and necessary tokens to
enhance model utiilty while unlearning on memo-
rized tokens to mitigate MIA risks.
Reference Modeling. Reference model (θref)
shares an identical architecture with the training
model (θ). We fine-tune a reference model on a
small portion of the original dataset (denoted as

Taux) that can reflect the desired data distribution
by standard causal language modeling (CLM), i.e.,
implementing next-token-prediction cross entropy
loss (LCE):

LCE(θref; Taux) = − 1
|Taux|

∑
ti∈Taux

logP (ti|t<i; θref).

Token Selection. As our previous analysis, to-
kens contribute differently in membership infer-
ence risks. Thus, considering all tokens equally is
not optimal for privacy defense with respect to the
utility and privacy trade-off. DuoLearn defines two
sets of tokens: hard tokens (Th) and memorized
tokens (Tm). Hard tokens are the tokens that the
current training models (θ) have difficulty predict-
ing, while memorized tokens are the tokens that the
model has already memorized. To identify these
two sets of tokens, we propose a token selection
mechanism based on the prediction loss of each
token calibrated by the reference model. We im-
plement the score s(ti) for each token ti which is
the difference between the cross-entropy loss of the
training model and the reference model, as used
in previous works (Lin et al., 2024; Mindermann
et al., 2022):

s(ti) = logP (ti|t<i; θref)− logP (ti|t<i; θ).

The tokens with the highest scores are consid-
ered hard tokens Th (highest calibrated loss), while
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the tokens with the lowest scores are considered
memorized tokens Tm (lowest calibrated loss and
strongest MIA signals). Let T be the set of all to-
kens in a batch. We select top Kh hard tokens and
bottom Km memorized tokens to form Th and Tm,
respectively. Additionally, we introduce a thresh-
old τ to filter out neutral tokens from Tm which
have scores close to zero or greater than zero, as
these are not considered memorized. The token
selection process is formulated as follows:

Th = argmax
S,|S|=Kh

{s(ti)|ti ∈ T }

Tm = argmin
S,|S|≤Km

{s(ti)|ti ∈ T , s(ti) ≤ τ}

Dual-Purpose Loss. We introduce a dual-purpose
loss function designed to improve model perfor-
mance on hard tokens while mitigating overfitting
on memorized tokens. This loss function combines
two components: the learning loss and the unlearn-
ing loss. The learning loss is the standard causal
language modeling (CLM) loss applied to the hard
tokens Th. The unlearning loss, in contrast, is the
negative CLM loss applied to the memorized to-
kens Tm, effectively performing gradient ascent.
The dual-purpose loss is defined as follows, where
α > 0 is a hyper-parameter that balances the learn-
ing and unlearning losses

Ldual(θ) = LCE(θ; Th)− α · LCE(θ; Tm).

5 Experiments and Results

5.1 Experiment Settings

Datasets. We conduct experiments on two datasets:
CC-news2 and Wikipedia3. CC-news is a large col-
lection of news articles which includes diverse top-
ics and reflects real-world temporal events. Mean-
while, Wikipedia covers general knowledge across
a wide range of disciplines, such as history, science,
arts, and popular culture.
LLMs: We experiment on three models in-
cluding GPT-2 (124M) (Radford et al., 2019),
Pythia (1.4B) (Biderman et al., 2023), and
Llama-2 (7B) (Touvron and et al., 2023). This
selection of models ensures a wide range of model
sizes from small to large that allows us to analyze
scaling effects and generalizability across different
capacities.

2Huggingface: vblagoje/cc_news
3Huggingface: legacy-datasets/Wikipedia

Evaluation Metrics. For evaluating language mod-
eling performance, we measure perplexity (PPL),
as it reflects the overall effectiveness of the model
and is often correlated with improvements in other
downstream tasks (Kaplan et al., 2020; OpenAI,
2020). For defense effectiveness, we consider the
attack area under the curve (AUC) value and True
Positive Rate (TPR) at low False Positive Rate
(FPR). In total, we perform 4 MIAs with differ-
ent MIA signals. Given the sample x, the MIA
signal function f is formulated as follows:
• Loss (Yeom et al., 2018) utilizes the negative
cross entropy loss as the MIA signal.

fLoss(x) = −LCE(θ;x)

• Ref-Loss (Carlini et al., 2021a) considers the loss
differences between the target model and the attack
reference model. To enhance the generality, our
experiments ensure there is no data contamination
between the training data of the target, reference,
and attack models.

fRef(x) = LCE(θref;x)− LCE(θ;x)

• Min-K (Shi et al., 2024) leverages top K tokens
that have the lowest probabilities.

fmin-K(x) =
1

|min-K(x)|
∑

ti∈min-K(x)

logP (ti|t<i; θ)

• Zlib (Carlini et al., 2021a) calibrates the loss
signal with the zlib compression size.

fzlib(x) = −LCE(θ;x)/zlib(x)

Baselines. We present the results of four base-
lines. Base refers to the pretrained LLM without
fine-tuning. FT represents the standard causal lan-
guage modeling without protection. Goldfish (Hans
et al., 2024) implements a masking mechanism.
DPSGD (Abadi et al., 2016; Yu et al., 2022) ap-
plies gradient clipping and injects noise to achieve
sample-level differential privacy.
Implementation. We conduct full fine-tuning
for GPT-2 and Pythia. For computing efficiency,
Llama-2 fine-tuning is implemented using Low-
Rank Adaptation (LoRA) (Hu et al., 2022a) which
leads to ~4.2M trainable parameters. Addition-
ally, we use subsets of 3K samples to fine-tune the
LLMs. The data used to train DuoLearn’s reference
model is disjoint from either the target model’s
or the reference attack model’s training data. We
present additional implementation details in Ap-
pendix C.1.
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LLM Method
Wikipedia CC-news

PPL Loss Ref Min-k Zlib PPL Loss Ref Min-k Zlib

GPT2

Base 34.429 0.473 0.513 0.446 0.497 29.442 0.505 0.498 0.520 0.500

124M

FT 12.729 0.577 0.967 0.489 0.544 21.861 0.607 0.855 0.549 0.569
Goldfish 12.853 0.565 0.954 0.486 0.537 21.902 0.608 0.855 0.547 0.570
DPSGD 18.523 0.463 0.536 0.448 0.491 26.022 0.507 0.513 0.521 0.502
DuoLearn 13.628 0.454 0.463 0.470 0.485 23.733 0.502 0.495 0.529 0.499

Pythia

Base 10.287 0.466 0.503 0.464 0.489 13.973 0.507 0.512 0.528 0.501

1.4B

FT 6.439 0.578 0.985 0.484 0.557 11.922 0.602 0.857 0.541 0.574
Goldfish 6.465 0.564 0.981 0.482 0.546 11.903 0.609 0.862 0.543 0.579
DPSGD 7.751 0.469 0.524 0.462 0.488 13.286 0.512 0.531 0.528 0.503
DuoLearn 6.553 0.468 0.485 0.472 0.485 12.670 0.501 0.460 0.524 0.499

Llama-2

Base 7.014 0.458 0.491 0.476 0.488 9.364 0.505 0.495 0.516 0.503

7B

FT 3.830 0.524 0.936 0.494 0.530 6.261 0.559 0.798 0.536 0.548
Goldfish 3.839 0.518 0.929 0.492 0.525 6.280 0.552 0.780 0.533 0.541
DPSGD 4.490 0.466 0.516 0.470 0.487 6.777 0.509 0.538 0.523 0.504
DuoLearn 4.006 0.458 0.440 0.473 0.480 6.395 0.507 0.482 0.518 0.500

Table 1: Overall Evaluation: Perplexity (PPL) and AUC scores of the MIAs with different signals (Loss/Ref/Min-
k/Zlib). For all metrics, the lower the value, the better the result. Base in the method column indicates the pretrained
LLMs without fine-tuning, thus it indicates lower bound for both utility and privacy risk.

5.2 Overall Evaluation

Table 1 provides the overall evaluation compared
to several baselines across large language model ar-
chitectures and datasets. Among these two datasets,
CCNews is more challenging, which leads to higher
perplexity for all LLMs and fine-tuning methods.
Additionally, the reference-model-based attack per-
forms the best and demonstrates high privacy risks
with attack AUC on the conventional fine-tuned
models at 0.95 and 0.85 for Wikipedia and CC-
News, respectively. Goldfish achieves similar PPL
to the conventional FT method but fails to defend
against MIAs. This aligns with the reported results
by Hans et al. (2024) that Goldfish resists exact
match attacks but only marginally affects MIAs.
DPSGD provides a very strong protection in all set-
tings (AUC < 0.55) but with a significant PPL trade-
off. Our proposed DuoLearn guarantees a robust
protection, even slightly better than DPSGD, but
with a notably smaller tradeoff on language model-
ing performance. For example, on the Wikipedia
dataset, DuoLearn delivers perplexity reduction by
15% to 27%. Moreover, Table 5 (Appendix D)
provides the TPR at 1% FPR. Both DPSGD and
DuoLearn successfully reduce the TPR to ∼0.02
for all LLMs and datasets. Overall, across multiple
LLM architectures and datasets, DuoLearn con-
sistently offers ideal privacy protection with little
trade-off in language modeling performance.

Privacy-Utility Trade-off. To investigate the

privacy-utility trade-off of the methods, we vary the
hyper-parameters of the fine-tuning methods. Par-
ticularly, for DPSGD, we adjust the privacy budget
ϵ from (8, 1e-5)-DP to (100, 1e-5)-DP. We mod-
ify the masking percentage of Goldfish from 25%
to 50%. Additionally, we vary the loss weight α
from 0.2 to 0.8 for DuoLearn. Figure 3 depicts
the privacy-utility trade-off for GPT2 on the CC-
News dataset. Goldfish, with very large masking
rate (50%), can slightly reduce the risk of the ref-
erence attack but can increase the risks of other
attacks. By varying the weight α, DuoLearn offers
an adjustable trade-off between privacy protection
and language modeling performance. DuoLearn
largely dominates DPSGD and improves the lan-
guage modeling performance by around 10% with
the ideal privacy protection against MIAs.

5.3 Ablation Study

DuoLearn without reference models. To study
the impact of the reference model, we adapt
DuoLearn to a non-reference version which di-
rectly uses the loss of the current training model
(i.e., s(ti) = LCE(θ; ti)) to select the learning
and unlearning tokens. This means the unlearning
tokens are the tokens that have smallest loss val-
ues. Figure 4 presents the training loss and testing
perplexity. There is an inconsistent trend of the
training loss and testing perplexity. Although the
training loss decreases overtime, the test perplex-
ity increases. This result indicates that identifying
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Figure 3: Privacy-utility trade-off of the methods while
varying hyper-parameters. The Goldfish masking rate
is set to 25%, 33%, and 50%. The privacy budget ϵ of
DPSGD is evaluated at 8, 16, 50, and 100. The weight
α of DuoLearn is varied at 0.0, 0.1, 0.2, 0.5, and 0.8.

appropriate unlearning tokens without a reference
model is challenging and conducting unlearning
on an incorrect set hurts the language modeling
performance.
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Figure 4: Training Loss and Test Perplexity of
DuoLearn without a reference model.

DuoLearn with out-of-domain reference models.
To examine the influence of the distribution gap
in the reference model, we replace the in-domain
trained reference model with the original pretrained
base model. Figure 5 depicts the language mod-
eling performance and privacy risks in this study.
DuoLearn with an out-of-domain reference model
can reduce the privacy risks but yield a significant
gap in language modeling performance compared
to DuoLearn using an in-domain reference model.
DuoLearn without Unlearning. To study the
effects of unlearning tokens, we implement
DuoLearn which use the first term of the loss only
(Lθ = LCE(θ; Th)). Figure 5 provides the perplex-
ity and MIA AUC scores in this setting. Generally,
without gradient ascent, DuoLearn can marginally

reduce membership inference risks while slightly
improving the language modeling performance.
The token selection serves as a regularizer that
helps to improve the language modeling perfor-
mance. Additionally, tokens that are learned well
in previous epochs may not be selected in the next
epochs. This slightly helps to not amplify the mem-
orization on these tokens over epochs.
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Figure 5: Privacy-utility trade-off of DuoLearn with dif-
ferent settings: in-domain reference model, out-domain
reference model, and without unlearning

5.4 Training Dynamics

Memorization and Generalization Dynamics.
Figure 6 (left) illustrates the training dynamics
of conventional fine-tuning and DuoLearn, while
Figure 6 (middle) depicts the membership infer-
ence risks. Generally, the gap between training and
testing loss of conventional fine-tuning steadily in-
creases over time, leading to model overfitting and
high privacy risks. In contrast, DuoLearn maintains
a stable equilibrium where the gap remains more
than 10 times smaller. This equilibrium arises from
the dual-purpose loss, which balances learning on
hard tokens while actively unlearning memorized
tokens. By preventing excessive memorization,
DuoLearn mitigates membership inference risks
and enhances generalization.
Gradient Conflicts. To study the conflict between
the learning and unlearning objectives in our dual-
purpose loss function, we compute the gradient
for each objective separately. We then calculate
the cosine similarity of these two gradients. Fig-
ure 6 (right) provides the cosine similarity between
two gradients over time. During training, the co-
sine similarity typically ranges from -0.15 to 0.15.
This indicates a mix of mild conflicts and near-
orthogonal updates. On average, it decreases from
0.05 to -0.1. This trend reflects increasing gradient
misalignment. Early in training, the model may
not have strongly learned or memorized specific to-
kens, so the conflicts are weaker. Overtime, as the
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Figure 6: Training dynamics of DuoLearn and the conventional fine-tuning approach. The left and middle
figures provide the training-testing gap and membership inference risks, respectively. The testing LCE of FT and
training LCE of DuoLearn are significantly overlapping, we provide the breakdown in Figure 11 in Appendix D.
The right figure depicts the cosine similarity of the learning and unlearning gradients of DuoLearn. Cosine similarity
of 1 means entire alignment, 0 indicates orthogonality, and -1 presents full conflict.

model learns more and memorization grows, the
divergence between hard and memorized tokens
increases, making the gradients less aligned. This
gradient conflict is the root of the small degradation
of language modeling performance of DuoLearn
compared to the conventional fine-tuning approach.
Token Selection Dynamics. Figure 7 illustrates
the token selection dynamics of DuoLearn during
training. The figure shows that the token selection
process is dynamic and changes over epochs. In
particular, some tokens are selected for unlearn-
ing from the beginning to the end of the training.
This indicates that a token, even without being se-
lected as a learning token initially, can be learned
and memorized through the connections with other
tokens. This also explains that simple masking
as in Goldfish is not sufficient to protect against
MIAs. Additionally, there are a significant num-
ber of tokens that are selected for learning in the
early epochs but selected for unlearning in the
later epochs. This indicates that the model gradu-
ally memorizes these tokens over epochs, and the
during-training unlearning process is essential to
mitigate the memorization risks.

5.5 Privacy Backdoor

To study the worst case of privacy attacks and de-
fense effectiveness under the state-of-the-art MIA,
we perform a privacy backdoor – Precurious (Liu
et al., 2024b). In this setup, the target model under-
goes continual fine-tuning from a warm-up model.
The attacker then applies a reference-based MIA
that leverages the warm-up model as the attack’s
reference. Table 2 shows the language model-
ing and MIA performance on CCNews with GPT-
2. Precurious increases the MIA AUC score by
5%. Goldfish achieves the lowest PPL, aligning
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Figure 7: Token Selection Dynamics of DuoLearn

with Hans et al. (2024), where the Goldfish mask-
ing mechanism acts as a regularizer that poten-
tially enhances generalization. Both DPSGD and
DuoLearn provide strong privacy protection, with
DuoLearn offering slightly better defense while
maintaining lower perplexity than DPSGD.

Metric WU FT GF DP DuoL
PPL 23.318 21.593 21.074 23.279 22.296
AUC 0.500 0.911 0.886 0.533 0.499

Table 2: Experimental results of privacy backdoor for
GPT2 on the CC-news dataset. WU stands for the warm-
up model leveraged by Precurious. GF, DP, and DuoL
are abbreviations of Goldfish, DPSGD, and DuoLearn

5.6 Pretraining

We conduct a small-scale pretraining experiment
using a Llama-like architecture with 1.5 billion
parameters. The experiment is to pretrain on a
dataset of 1 billion tokens. We reuse the dataset
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Method Eval Loss (↓) MIA AUC (↓) TPR @ 1% FPR (↓) Training Time (↓)
Untrained model 11.329 0.517 0.010 N/A
Conventional LM 3.003 0.930 0.376 10.095 hours
Goldfish 2.844 0.905 0.426 10.159 hours
DuoLearn 3.244 0.548 0.040 12.278 hours

Table 3: Comparison of Methods on Evaluation Loss, Privacy Metrics, and Training Time for pretraining.

and codebase developed by Sanyal et al. (2024)4.
The pretraining corpus is collected from vari-
ous sources and domains, including arXiv, books,
Common Crawl, GitHub, StackExchange, and
Wikipedia (Weber et al., 2024). To train the ref-
erence model, we use 10% of the data. Table 3
presents the performance of DuoLearn in this pre-
training. Generally, DuoLearn successfully miti-
gates the MIA risk, reducing AUC from 0.9 to 0.55
and TPR at 1% FPR from 0.4 to 0.04, with minimal
degradation on the model performance.

5.7 Low-Prevalence Tokens vs
High-Prevalence Tokens

To understand the bias of the methods towards low-
prevalence and high-prevalence tokens, we conduct
some visualization on the token-level MIA signals
and token frequencies. We selected a set of 500
samples in the training data. We split the tokens
into two sets, high-frequency and low-frequency,
then visualize kernel density estimation (KDE) sep-
arately, illustrated in Figure 8. Notably, both con-
ventional FT and DuoLearn yield different privacy
risks for the two groups. The low-prevalence to-
kens have higher per-token MIA risks (with MIA
signal ranging from -5 to 2, compared to -0.5 to 0.5
of high-prevalence tokens). DuoLearn successfully
shifts the MIA-signal distribution to be centered
at zero for both high-frequency and low-frequency
tokens. This indicates that DuoLearn reduces the
majority of MIA risks across both token groups.
However, it slightly increases the variance of risks
for both groups.

6 Conclusion

We introduced DuoLearn, an effective training
framework defending against MIAs for LLMs. The
extensive experiments demonstrate its robustness
in protecting privacy while maintaining strong
language modeling performance across various
datasets and architectures. Although our study fo-

4Following this setting and due to limited computing re-
sources, we use a batch size of 8 which is much smaller than
practical pretraining. All methods implement the same learn-
ing rate and are evaluated at their 25K-th iteration.
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Figure 8: Effects on high-prevalence and low-
prevalence tokens. For MIA signal, we consider the
Ref-Loss attack, a signal value closer to zero indicates
lower risk.

cuses on fine-tuning and small scale pretraining
due to computational constraints, DuoLearn can be
seamlessly applied to large-scale pretraining, as in
prior selective pretraining work (Lin et al., 2024).
By categorizing tokens and treating them appropri-
ately, DuoLearn opens a novel pathway for MIA
defense. Future work can explore improved token
selection strategies and multi-objective training ap-
proaches.

Limitations

The main limitation of our work is the small-scale
experiment settings due to limited computing re-
sources. However, we believe DuoLearn can be
directly applied to large-scale pretraining without
any modifications, as in previous reference-model-
based pretraining study (Lin et al., 2024). Another
limitation is the reference model, which may be
restrictive in highly sensitive or domain-limited
settings (Tramèr et al., 2024). From a technical
perspective, while DuoLearn performs well across
different datasets and architectures, there is room
for improvement. For example, future work could
explore adaptive selection size or weighted token
contribution. Additionally, as DuoLearn is an em-
pirical defense, future work can investigate the con-
vergence and overfitting analysis.
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A Additional Related Works

A.1 Training Data Selection

Training data selection are methods that filter high-
quality data from noisy big data before training to
improve the model utility and training efficiency.
There are several works leveraging reference mod-
els (Coleman et al., 2020; Xie et al., 2023), prompt-
ing LLMs (Li et al., 2024c), deduplication (Lee
et al., 2022; Kandpal et al., 2022), and distribution
matching (Kang et al., 2024). However, we do not
aim to cover this data selection approach, as it is
orthogonal and can be combined with ours.

A.2 Selective Training

Selective training refers to methods that dynam-
ically choose specific samples or tokens during
training. Selective training methods are the most
relevant to our work. Generally, sample selection
has been widely studied in the context of tradi-
tional classification models via online batch selec-
tion (Loshchilov and Hutter, 2016; Katharopou-
los and Fleuret, 2018; Kawaguchi and Lu, 2020).
These batch selection methods replace the naive

random mini-batch sampling with mechanisms that
consider the importance of each sample mainly via
their loss values. Mindermann et al. (2022) indeed
choose highly important samples from regular ran-
dom batches by utilizing a reference model. How-
ever, due to the sequential nature of LLMs, which
makes the training significantly different from the
traditional classification ML, sample-level selec-
tion is not effective for language modeling (Kad-
dour et al., 2023). Lin et al. (2024) extend the
reference model-based framework to select mean-
ingful tokens within batches. All of the previous
methods for selective training aim to improve the
training performance and compute efficiency. Our
work is the first looking at this aspect for defending
against MIAs.

B Token-level membership inference risk
analysis

Figures 9 and 10 present the analysis for additional
samples. Generally, the trends are consistent with
the one presented in Section 3.

C Experiment settings

C.1 Implementation details
• FT. We implement the conventional fine tuning
using Huggingface Trainer. We manually tune the
learning rate to make sure no significant underfit-
ting or overfitting. The batch size is selected appro-
priately to fit the physical memory and comparable
with the other methods’.
• Goldfish. Goldfish is also implemented
with Huggingface Trainer, where we custom the
compute_loss function. We implement the deter-
ministic masking version rather than the random
masking to make sure the same tokens are masked
over epochs, potentially leading to better prevent-
ing memorization. The learning rate is also man-
ually tuned, we noticed that the optimal Goldfish
learning rate is usually slightly greater than FT’s.
This can be the gradients of two methods are al-
most similar, Goldfish just removes some tokens’
contribution to the loss calculation. The batch size
of FT can set as the same as FT, as Goldfish does
not have significant overhead on memory.
• DPSGD. DPSGD is implemented by FastDP (Bu
et al., 2023a). We implement DPSGD with
fastDP (Bu et al., 2023a) which offers state-of-
the-art efficiency in terms of memory and training
speed. We also use automatic clipping (Bu et al.,
2023c) and a mixed optimization strategy (Bu et al.,
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Figure 9: Histograms of MIA signal of tokens. Each figure depicts a sample. Blue means the member samples
while orange represents the non-member samples. We limited the y-axis range to -3 to 3 for better visibility, so it
can result in missing several non-significant outliers.

Figure 10: MIA signal ranking of tokens during training. Each figure illustrates a sample.

2023d) between per-layer and per-sample clipping
for robust performance and stability.
• DuoLearn. We implement DuoLearn using Hug-
gingface Trainer, same as FT and Goldfish. The
learning is reused from FT. The batch size of
DuoLearn is usually smaller than FT and Gold-
fish when the model becomes large such as Pythia
and Llama 2 due to the reference model, which
consumes some memory.

For a fair comparison, we aim to implement the
same batch size for all methods if feasible. In case
of OOM (out of memory), we perform gradient

accumulation, so all the methods can have compa-
rable batch sizes. We provide the hyper-parameters
of method for GPT2 in Table 4. For Pythia and
Llama 2, the learning rate, batch size, and number
of epochs are tuned again, but the hyper-parameters
regarding the privacy mechanisms remain the same.
To make sure there is no naive overfitting, we eval-
uate the methods by selecting the best models on
a validation set. Moreover, the testing and attack
datasets remains identical for evaluating all meth-
ods. Additionally, we balance the number of mem-
ber and non-member samples for MIA evaluation.
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It is worth noting that for the ablation study and
analysis, if not state, the default model architecture
and dataset are GPT2 and CC-news.

D Additional Results
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Figure 11: Breakdown to the cross entropy loss values
of FT on the testing set and DuoLearn on the training
set during training.

D.1 Overall Evaluation

Table 5 provides the True Positive Rate (TPR) at
low False Positive Rate (FPR) of the overall evalua-
tion. Generally, compared to CC-news, Wikipedia
poses a significant higher risk at low FPR. For ex-
ample, the reference-based attack can achieve a
score of 0.57 on GPT2 if no protection. In general,
Goldfish fails to mitigate the risk in this scenario,
while both DPSGD and DuoLearn offer robust pro-
tection.

D.2 Auxiliary dataset

We investigate the size of the auxiliary dataset
which is disjoint with the training data of the target
model and the attack model. In this experiment, the
other methods are trained with 3K samples. Fig-
ure 12 presents the language modeling performance
while varying the auxiliary dataset’s size. The re-
sult demonstrates that the better reference model,
the better language modeling performance. It is
worth noting that even with a very small number of
samples, DuoLearn can still outperform DPSGD.
Additionally, there is only a little benefit when in-
creasing from 1000 to 3000, this indicates that the
reference model is not needed to be perfect, as it
just serves as a calibration factor. This phenom-
ena is consistent with previous selective training
works (Lin et al., 2024; Mindermann et al., 2022).

D.3 Hyperparameter sensitivity analysis

• Varying Th and Tm – Portion of tokens for
learning and for unlearning. We keep other hy-
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Figure 12: Language modeling performance while vary-
ing the auxiliary dataset’s size. Note that the results of
FT and Goldfish are significantly overlapping.

perparamters as default and adjust Th and Tm sepa-
rately. Figures 13 and 14 provides the results of this
experiment. Generally, DuoLearn is robust while
varying these hyperparameters with PPL ranging
from 22 to 23 and AUC ranging from 0.46 to 0.56.
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Figure 13: Performance of DuoLearn while varying Th
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Figure 14: Performance of DuoLearn while varying Tm

• Varying α – Weight balance factor. Figure 15
illustrates the peformance while varying α. In-
tuitively, the smaller α, the less unlearining per-
formed, it leads to a better language modeling per-
formance and higher privacy risk. When α is un-
reasonably high (i.e., 1.5 or 2.0), the unlearning
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LLM Method Hyper-parameter Value

GPT2

FT

Learning rate 1.75e-5
Batch size 96
Gradient accumulation steps 1
Number of epochs 20

Goldfish

Learning rate 2e-5
Batch size 96
Grad accumulation steps 1
Number of epochs 20
Masking Rate 25%

DPSGD

Learning rate 1.5e-3
Batch size 96
Grad accumulation steps 1
Number of epochs 10
Clipping automatic clipping
Privacy budget (8, 1e-5)-DP

DuoLearn

Learning rate 1.75e-3
Batch size 96
Grad accumulation steps 1
Number of epochs 20
Kh 60%
Km 20%
τ 0
α 0.8

Table 4: Hyper-parameters of the methods for GPT2.

LLM Method
Wikipedia CC-news

PPL Loss Ref min-k zlib PPL Loss Ref min-k zlib

GPT2

Base 34.429 0.002 0.014 0.010 0.002 29.442 0.018 0.002 0.022 0.006

124M

FT 12.729 0.018 0.574 0.016 0.014 21.861 0.030 0.026 0.016 0.016
Goldfish 12.853 0.018 0.632 0.016 0.010 21.902 0.030 0.024 0.028 0.016
DPSGD 18.523 0.004 0.036 0.018 0.006 26.022 0.018 0.004 0.018 0.008
DuoLearn 13.628 0.014 0.010 0.014 0.004 23.733 0.030 0.022 0.026 0.006

Pythia

Base 10.287 0.002 0.014 0.006 0.008 13.973 0.002 0.008 0.020 0.014

1.4B

FT 6.439 0.020 0.440 0.010 0.020 11.922 0.014 0.008 0.022 0.020
Goldfish 6.465 0.016 0.412 0.010 0.020 11.903 0.014 0.008 0.024 0.018
DPSGD 7.751 0.004 0.016 0.010 0.004 13.286 0.002 0.004 0.018 0.014
DuoLearn 6.553 0.008 0.030 0.006 0.006 12.670 0.004 0.020 0.018 0.016

Llama-2

Base 7.014 0.006 0.016 0.016 0.010 9.364 0.006 0.006 0.024 0.006

7B

FT 3.830 0.028 0.170 0.030 0.028 6.261 0.002 0.018 0.002 0.002
Goldfish 3.839 0.028 0.198 0.028 0.028 6.280 0.002 0.018 0.002 0.006
DPSGD 4.490 0.006 0.014 0.020 0.010 6.777 0.008 0.026 0.016 0.010
DuoLearn 4.006 0.010 0.002 0.028 0.012 6.395 0.002 0.020 0.004 0.002

Table 5: Overall Evaluation: Perplexity (PPL) and TPR at FPR of 1% scores of the MIAs with different signals
(Loss/Ref/Min-k/Zlib). For all metrics, the lower the value, the better the result.

part dominates the learning one, it leads to high
perplexity values of language modeling.

D.4 Training time

We report the training time for full fine-tuning
Pythia 1.4B. We manually increase the batch size
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Figure 15: Performance of DuoLearn while varying α

that could fit into the GPU’s physical memory. As
a results, FT and Goldfish can run with a batch
size of 48, while DPSGD and DuoLearn can reach
the batch size of 32. We also implement gradient
accumulation, so all the methods can have the same
virtual batch size.

Training Time 1 epoch (in minutes)
FT 2.10

Goldfish 2.10
DPSGD 3.19

DuoLearn 2.85

Table 6: Training time for one epoch of (full) Pythia
1.4B on a single H100 GPU

Table 6 presents the training time for one epoch.
Goldfish has little to zero overhead compared to
FT. DPSGD and DuoLearn have a slightly higher
training time due to the additional computation
of the privacy mechanism. In particular, DPSGD
has the highest overhead due to the clipping and
noise addition mechanisms. Meanwhile, DuoLearn
requires an additional forward pass on the reference
model to select the learning and unlearning tokens.
DuoLearn is also feasible to work at scale that has
been demonstrated in the pretraining settings of the
previous work (Lin et al., 2024).
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