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Abstract

Evaluating large language models (LLMs) on
their linguistic reasoning capabilities is an im-
portant task to understand the gaps in their
skills that may surface during large-scale adop-
tion. In this work, we investigate the abilities of
such models to perform abstract multilingual
reasoning through the lens of linguistic puz-
zles on extremely low-resource languages. As
these translation tasks involve inductive and de-
ductive reasoning from reference instances, we
examine whether diverse auxiliary demonstra-
tions can be automatically induced from seed
exemplars, through analogical prompting. We
employ a two-stage procedure, first generating
analogical exemplars with a language model,
and then applying them in-context along with
provided target language exemplars. Our re-
sults on the modeLing dataset show that ana-
logical prompting is effective in eliciting mod-
els’ knowledge of language grammar similari-
ties, boosting the performance of GPT-4o by as
much as +8.1% and Llama-3.1-405B-Instruct
by +5.9% over chain-of-thought approaches.
Furthermore, we demonstrate that our method
generalizes to other tasks present in Linguistics
Olympiad competitions, achieving state-of-the-
art results across nearly all problem types and
difficulty levels in the LINGOLY dataset.

1 Introduction

As the capabilities of large language models
(LLMs) continue to grow, it is necessary to de-
velop ways of testing the boundaries of their ability
to reason over a wide range of languages. Adapt-
ing language models to low-resource languages
is challenging due to a lack of high-quality anno-
tated data in the target language for supervised
fine-tuning. This has led to zero-shot and few-shot
transfer learning approaches being more commonly
employed (Zoph et al., 2016; Nguyen and Chiang,
2017; Lin et al., 2019). However, given the emer-
gence of the in-context learning phenomenon, we

hypothesize that this behavior can be used to enable
few-shot generalization to new languages.

In this work, we explore the task of linguistic
reasoning, using puzzles akin to the International
Linguistics Olympiad (IOL). Notably, in these puz-
zles, the target language is often extremely low-
resource or functionally extinct (Bean et al., 2024).
While prior work has largely examined the effect
of vanilla in-context learning with English-target
and target-English exemplars, chain-of-thought
prompting, and traditional neural machine trans-
lation methods (Chi et al., 2024; Şahin et al., 2020),
we believe that generating auxiliary exemplars can
guide the model to more effectively learn gram-
mar similarities over a language family. We in-
troduce an approach based on analogical prompt-
ing (Yasunaga et al., 2024), which uses strong lan-
guage models to self-generate exemplars of rele-
vant problems given the test instance and performs
in-context learning conditioned on those demon-
strations. In our setting, the knowledge retrieval-
like nature of analogical prompting allows us to
test models’ parametric understanding of language
families, performing inference to solve using both
sets of demonstrations.

We evaluate our approach on the modeLing (Chi
et al., 2024) dataset, consisting of unseen IOL-
style problems. We find that strong models such
as GPT-4o and Llama-3.1-405B-Instruct can iden-
tify the language family, similar languages within
said family, generate exemplars in those similar
languages, and apply them to solve the test puzzle.
Furthermore, while weak models do not benefit
significantly from using strong model-generated
exemplars, the converse yields improvements us-
ing exemplars produced by weaker yet specialized
multilingual models (e.g. Aya-35B). Our findings
show that the ability of the model to deduce and
apply rules, following inductive learning from the
exemplars, largely influences performance. We
suggest that the linguistic reasoning task serves
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Figure 1: An illustration of our 2-stage analogical prompting approach, translating a phrase in Montenegrin to
English. While prior works would solely provide exemplars translating between the source language and English
and perform in-context learning, our method seeks diverse exemplars. Model M1 first identifies the language family
(Slavic) and higher-resource languages in the family which the model has knowledge of (Croatian), then produces
exemplars in those languages. Finally, both the original and generated set of exemplars are passed with the test
puzzle to model M2 to perform the translation. M1 = M2 yields the self-generated analogical reasoning setting.

as valuable testbed for research on new reasoning
methods, to uncover how the skills which drive
logical thinking may be imbued.

2 Analogical Prompting for Linguistic
Reasoning

Analogical prompting (Yasunaga et al., 2024)
avoids the need for annotated exemplars by relying
on a strong model to generate exemplars which
are related to the test instance, but are sufficiently
diverse relative to one another and the test sample.
Our approach follows the human system 2 thinking
framework of slow, deliberate reasoning (Kahne-
man, 2011). In chain-of-thought prompting for
these puzzles, the model performs in-context learn-
ing with the given exemplars, learning the rules
governing the language by induction, including the
meaning of particular words, and using deduction
to apply these rules to the test sample. This ap-
proach is supported by prior works demonstrating
the ability of LMs to learn rules and attempt to
apply them (Qiu et al., 2024; Zhu et al., 2024).
Furthermore, we do not have access to complete
grounding sources of human-written rules govern-
ing these low-resource languages, so we must rely

on the LM to identify and generate these rules it-
self. However, as we expect the model to have little
to no prior knowledge about the target language1,
we seek to leverage other languages with similar
grammar structure which the model has learned to
guide the language model’s reasoning process.

We use language families as a taxonomically-
grounded means of identifying similar languages
to the target. The generated exemplars provide a
source of reasoning support to the model, enabling
it to perform inductive reasoning in a cross-lingual
manner over all exemplars, and then deduce from
its shared understanding. In Figure 1, given the
test instance and the provided exemplars in Mon-
tenegrin, we leverage the model to (i.) identify
the family of Montenegrin (Slavic Language Fam-
ily), (ii.) select a few languages in the Slavic Lan-
guage Family, and (iii.) generate example puzzles
with their solutions in those selected languages, e.g.
Croatian. Then, the provided exemplars and the
synthetic demonstrations are given to the model to
solve the test puzzle.

1We design our experiments to avoid leakage, but do not
directly analyze test set contamination aside from zero-shot
baselines.

22784



2.1 Linguistics Puzzles

As noted before, the focus of this work is on lin-
guistics puzzles – in particular, translation prob-
lems from English to a low-resource language and
vice versa, given paired examples. Such prob-
lems are also referred to in the literature as Rosetta
Stone puzzles, and constitute one of the most fre-
quent types of problems that appear in Linguistics
Olympiad competitions (Şahin et al., 2020; Chi
et al., 2024; Bean et al., 2024). These problems
typically consist of a test phrase in language A
along with 5-10 exemplars2 of translation from lan-
guage A to language B and vice versa, and the task
is to translate the given phrase into language B. We
include an example of such a problem in Appendix
A, from the modeLing dataset (Chi et al., 2024).

Prior literature does not indicate whether a sin-
gle ability or "skill" enables performance on this
task. For instance, the example in Appendix A
suggests that understanding word-to-word substi-
tution, as well as the semantics (e.g. conjugation)
and grammar convention (e.g. word ordering) are
required to produce a correct translation. In human
test-taking, it can be beneficial to recall practice
problems, to indicate the concepts which lead to
a correct solution for the unseen instance. We de-
sign our analogical prompting approach to reflect
such behavior under limited external resources (in
a closed-book manner).

3 Methods

We explore a number of sampling methods across
various language models to assess their perfor-
mance on reasoning over unknown languages.

3.1 Evaluation Settings

We include the following methods as baselines for
robust comparison to our method, reflecting prior
work examined in linguistic reasoning (Chi et al.,
2024). We explore their results in Section 4.1.

Zero-Shot Prompting. We examine low-
resource languages, and thus expect zero-shot
performance to be poor (or zero) on the exact
match metric. However, a model getting multiple
questions correct for a given language with zero-
shot prompting would be a potential indication of
leakage, and as such, include this setting.

2For more challenging problems, the model may be given
as many as 20 translation exemplars.

Few-Shot Prompting / In-Context Learning.
As in the Linguistic Olympiad competitions, trans-
lation demonstrations are provided to the model,
with the intention for inductive reasoning to guide
the model towards identifying the set of grammar
rules the language follows.

Few-Shot Chain-of-Thought Reasoning. Given
the efficacy of chain-of-thought prompting (Wei
et al., 2024; Kojima et al., 2022), we extend the
few-shot evaluation setting by including prompts
for the model to "think step-by-step" (Kojima et al.,
2022; Yang et al., 2024a). We also include a chain-
of-thought rationale exemplar for English-Spanish
translation from (Chi et al., 2024), to demonstrate
how step-by-step reasoning rationales should be
produced (denoted in Section 4 as "w/ rationale").

3.2 Analogical Prompting Variations

We describe the various analogical prompting meth-
ods explored; their results are in Section 4.2.

Analogical Prompting on Language Families.
We seek to use language families as a means to iden-
tify similar, auxiliary languages whose exemplars
can boost the model’s cross-lingual understand-
ing. In a similar environment to the Linguistics
Olympiad competition, where one does not have
access to any external resources, we test the model
on its latent understanding of language families
and regional associations to generate further puz-
zles in another language within the same language
subgroup. For a target language L, we prompt the
model to identify a few other languages (denote
this list LAux) in the same family as L; then, for
each language in LAux, generate a puzzle translat-
ing from it to English, and a puzzle in the reverse
direction. Then, we apply these exemplars along
with the given ones for L in a new instruction to the
model. We term this 2-stage analogical reasoning.

Separating the two stages of analogical prompt-
ing yields an opportunity to explore how different
combinations of models for this approach might
perform. While the above method uses the same
model for both steps, we can also look to contrast
the strength of the models used, to attempt to boost
the performance of both frontier and small models.

Inference-time Exemplar Distillation. In our
work, inference-time distillation refers to generat-
ing analogical exemplars with a strong model (e.g.
GPT-4o) and applying them to a weak model (e.g.
models with 8B parameters). Our hypothesis driv-
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ing this setting is: can higher quality exemplars
produced by strong models enable better deductive
abilities with weak models?

Weak-to-Strong Cross-Lingual Analogies. Spe-
cialized multilingual models such as the Aya-23
models hold promise for our linguistic reason-
ing analysis, as they have been fine-tuned for
instruction-following across a wide range of lan-
guages. We propose using such models for gener-
ating analogical demonstrations, as they may have
a stronger understanding of language families and
can produce diverse exemplars, which we believe
strong models may be able to deduce from.

3.3 Experimental Setup
Datasets. We primarily evaluate our approaches
on the modeLing dataset3 (Chi et al., 2024). This
dataset consists of 272 problems spanning 19 lan-
guages, written by the authors and hence unin-
volved in prior Linguistics Olympiads. This bench-
mark was released in 2024, written by experts
(problem writers for the Linguistics Olympiad con-
tests), and we rely on its recency to be more assured
that leakage is not a factor that drives performance.
We note that all problems examined are purely text-
based; while there exist linguistics puzzles that
require deduction from images, filling in diagrams,
etc., the benchmark we evaluate on does not in-
clude such problems. This suggests that future
work could study the performance of multimodal
models on these problem types. We also evalu-
ate on the LINGOLY dataset4 (Bean et al., 2024),
which features 1,133 problems covering 94 lan-
guages and expands beyond "Rosetta Stone" trans-
lation problems detailed in Section 2.1 to include
the following problem types: Pattern (translation
based on grammatical patterns), Match-up (match-
ing translation pairs), Monolingual (text purely in
an unknown language), Computational (identifying
errors in machine translation), and Text (longer text
in multiple, often higher-resource languages).

Models. We evaluate the performance of the fol-
lowing sets of models: (1.) OpenAI models: GPT-
4o5, GPT-4, GPT-3.5-turbo, (2.) open-weight mod-
els: Llama 3.1 {8B, 70B, 405B}-Instruct (Dubey
et al., 2024) and Mixtral {8x7B, 8x22B}-Instruct-
v0.1 (Jiang et al., 2024), and (3.) multilingual
instruction-tuned models: Aya-23 8B and 35B

3https://github.com/nathanchi/modeLing
4https://github.com/am-bean/lingOly
5Model version gpt-4o-2024-05-13, as in LINGOLY.

(Aryabumi et al., 2024). These are queried by the
OpenAI API, Together AI API, and Apple MLX.

4 Results

We report exact match (EM) scores for all ex-
periments performed. ChrF2 (Popović, 2015), a
character n-gram F-score measure, and corpus-
level BLEU scores (Papineni et al., 2002) are
recorded in Appendix C. We do not treat these
as primary metrics as BLEU ignores word ordering
nuances amidst short responses in machine trans-
lation, which is integral to measuring correctness
in the puzzles we explore (Callison-Burch et al.,
2006; Chi et al., 2024), and we find the ChrF scores
to be noisy relative to EM scores. Smaller mod-
els with weaker instruction-following capabilities
often failed to produce their output in the exact
desired format specified in the prompts. To ensure
reliable exact match scores while some responses
may have parsing issues relative to the expected
format, the authors of this work manually exam-
ined each response to confirm whether the output
generated contains the target response. To standard-
ize across our evaluation procedure, this was per-
formed for all experiments; however, this method
was not required for stronger models whose re-
sponses exactly followed the desired format.

4.1 Chain-of-Thought Linguistic Reasoning

The results of baseline methods are in Table 1.
The prompts for all experiments are included in
Appendix J; scores are averaged over 3 runs at a
temperature of 0.3. For the "CoT with rationale
experiment", we take the best of using 512 and
4096 max tokens (see Appendix D). For the "few
shot" results, we take the best out of two different
prompt settings, studied in Appendix E.

Our strongest baseline result is achieved with
Llama-3.1-405B-Instruct producing CoT ratio-
nales, at 65.81%. GPT-4o fails to exceed 60% on
any single run. We note that the zero-shot scores
fail to exceed 1.5% for any model, reinforcing
the claim that there is no leakage of the modeL-
ing dataset. Among smaller models, Llama-3.1-
8B-Instruct performs comparably to Aya-35B and
Mixtral-8x7B-Instruct, outperforming it on some
baselines, which may be attributable to a stronger
and more recent base model. The few-shot without
chain-of-thought results are consistently high, due
to instruction-following models producing ratio-
nales implicitly without including few-shot exem-
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Model Zero-Shot Few-Shot w/o CoT Few-Shot w/ CoT Few-Shot CoT w/ Rationales

GPT 3.5-Turbo 0% ± 0% 25.74% ± 0.60% 26.10% ± 0.30% 38.60% ± 0.79%
GPT-4 0% ± 0% 56.25% ± 1.59% 45.22% ± 0.30% 45.59% ± 0.60%
GPT-4o 1.10% ± 0.30% 59.19% ± 0.30% 58.82% ± 0% 55.88% ± 0.60%

Llama-3.1-8B-Instruct 0% ± 0% 22.79% ± 0.90% 16.91% ± 1.59% 23.16% ± 1.72%
Llama-3.1-70B-Instruct 0% ± 0% 45.22% ± 0.60% 44.49% ± 1.31% 42.28% ± 0.90%
Llama-3.1-405B-Instruct 1.47% ± 0% 61.76% ± 0.30% 59.19% ± 0.60% 65.81% ± 0.60%
Mixtral-8x7B-Instruct 0% ± 0% 22.43% ± 0.79% 22.06% ± 0.30% 16.18% ± 1.59%
Mixtral 8x22B-Instruct 0% ± 0% 45.59% ± 0% 43.38% ± 0.60% 39.71% ± 0.79%

Aya-23-8B 0% ± 0% 9.93% ± 1.72% 7.35% ± 1.87% 5.88% ± 2.08%
Aya-23-35B 0% ± 0% 23.53% ± 1.38% 20.59% ± 1.08% 14.34% ± 1.31%

Table 1: Baseline experimental results using chain-of-thought methods, reporting exact match. The models have
been split into three groups, corresponding to the models noted in Section 3.3. All results reported are average of 3
runs at a temperature of 0.3, to address sampling variance, with the standard deviations included after the ± symbol.

plars with rationales. The Mixtral models decline
in performance in the rationale-inducing setting,
as they perform uncertainty-based refusal. If the
model is unsure about the translation of a particu-
lar phrase, it abstains from producing a response,
unlike GPT-4o, which proposes several candidate
translations; we discuss this further in Appendix B,
and provide qualitative examples in Appendix H.

4.2 Two-Stage Analogical Reasoning

To critically explore the evaluation settings intro-
duced in Section 3.1, we select 2 frontier models
– GPT-4o and Llama-3.1-405B-Instruct – which
were the strongest performers in our baselines. We
select 2 weaker models – Aya-35B and Llama-
3.1-8B-Instruct – for the inference-time distillation
and weak-to-strong prompting experiments. These
models performed comparably to one another in
the baselines, and allow us to contrast multilin-
gual specialization against a generalist model with
multilingual support. The experiments with Llama-
3.1-8B-Instruct are included in Appendix M.

We also establish an upper bound on the per-
formance we can attain with our approach, by a
pseudo-open-book method with oracle language
families. That is, for each language in the evalua-
tion set, rather than prompting the model to implic-
itly infer the language family and other languages
which are a member of it, we directly provide the
language family in the prompt. We suggest that a
human expert with strong cross-lingual reasoning
abilities would be able to deduce such relationships
with similar languages, so providing language fam-
ily labels eliminates one source of uncertainty; the
results of this analysis are included in Figure 2b.

Analogical reasoning boosts frontier models.
We find that 2-stage analogical reasoning pushes
the boundaries of the performance of frontier mod-
els, relative to their best baseline results. Solely
considering the self-generation setting, GPT-4o im-
proves +7.2% (59.19% → 66.91%), and Llama-
3.1-405B-Instruct improves +1.8% (65.81% →
67.65%). We subsequently observe even stronger
gains for both models as the deducer, when select-
ing different models as the analogical exemplar
generator. In the first stage, both of these fron-
tier models identify the language family, select a
few languages from said family, and generate ana-
logical puzzles for those auxiliary languages, as
intended. Then, in the second stage, the model
considers the tokens in the test phrase, and ana-
lyzes how each is to be translated to the target
language, and combines them together in the ap-
propriate order following the syntactical patterns
observed from the given exemplars. Thus, it ap-
pears that the model uses the analogical exemplars
to better induce the mappings of words in the target
language to words in the source language, which it
then applies to the target phrase.

Weak analogical "supervision" improves per-
formance. We find that generating the ana-
logical exemplars with Aya-35B and applying
them to the test sample with Llama-3.1-405B-
Instruct yields 71.32%, a +5.5% improvement
over the best baseline for Llama-3.1-405B-Instruct
(65.81% → 71.32%). We similarly find that
leveraging Aya-35B-generated exemplars and ap-
plying them with GPT-4o yields a +6.2% im-
provement over the best GPT-4o baseline setting
(59.19% → 65.44%). With Llama-3.1-405B-
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Generator
Deducer

GPT-4o Llama-3.1-405B-Instruct Aya-23-35B

GPT-4o 66.91% ± 0.79% 71.69% ± 1.08% 21.32% ± 1.31%
Llama-3.1-405B-Instruct 67.28% ± 0.30% 67.65% ± 0.60% 20.22% ± 0.90%
Aya-23-35B 65.44% ± 0.60% 71.32% ± 0.90% 15.44% ± 1.31%

Table 2: Pairwise results with our 2-stage analogical prompting method. The left column denotes the model
generating the analogical exemplars, and the top row denotes the model applying the generated and provided
exemplars to answer the test puzzles. These results address the self-generated analogical reasoning, inference-time
distillation, and weak-to-strong prompting settings (Section 3.2). The mean and standard deviations values are
reported over 3 runs. The bolded values denote the highest score achieved for each deducer model (column).

Instruct, using Aya-generated exemplars outper-
forms using self-generated exemplars, by +3.7%
(67.65% → 71.32%). Our findings suggest that
when equipped with the right tools (analogical
demonstrations) from effective multilingual reason-
ers, strong deducers can thrive.

This claim is further reinforced by the inference-
time distillation results: smaller models such as
Aya-35B do not benefit from the analogical exem-
plars, regardless of the generator. At the same time,
using the GPT-4o exemplars applied by Llama-3.1-
405B-Instruct yields 71.69%, our strongest result
across all evaluation settings. Moreover, the reverse
direction (Llama-3.1-405B-Instruct exemplars ap-
plied by GPT-4o) yields an +8.09% improvement
over the best GPT-4o baseline result. Furthermore,
for the best combination of generator and deducer,
the ChrF2 and BLEU scores also slightly improve,
as shown in Appendix C. BLEU is a harsher met-
ric for producing different conjugations and word
ordering inversions, which we observe as the most
common reasons for not receiving exact match
credit, while ChrF2 is more lenient to such cases.
The overall ChrF2 score is also held back on a cor-
pus level by a few outlier samples which are further
away from the reference, pulling down the score
substantially in spite of other samples improving.

From these findings, we conclude that for strong
deductive reasoners, the analogical exemplars pro-
duced by various generators can aid in boosting
performance.6

Frontier models understand language families.
We compare model performance with and without

6We note that while it would have been beneficial to ac-
quire expert annotations on the correctness of the exemplars,
this is extremely challenging given the many endangered and
nearly-extinct languages present in the dataset, with only a
few thousand speakers in the world.

oracle language families, finding that prompting
models to infer the language family is superior. We
observe that frontier models such as GPT-4o and
Llama-3.1-405B, as well as specialized multilin-
gual models like Aya-35B, have a strong parametric
knowledge of language families, and do not need
to rely on language family labels to identify simi-
lar languages. Furthermore, the model performing
retrieval of the language family helps it to iden-
tify a few languages within the family, bootstrap-
ping from the provided exemplars. Conversely, pro-
viding the language family label results in a large
number of languages being listed, and the model
attempts to produce exemplars for all of them. We
hypothesize that this is a source of noise; demon-
strations beyond a certain number yield diminish-
ing returns in performance. Specific examples of
this behavior are included in Appendix H, and the
language families table is in Appendix K. We also
include further discussion on the language families
identified by GPT-4o and Llama-3.1-405B-Instruct
in the inferred families setting, in Appendix L, and
find that they achieve a high correctness rate rela-
tive to the oracle labels.

Language Isolates and Proxy Languages. Lan-
guage isolates would appear to pose particular dif-
ficulty to our models, as by definition, they do not
belong to any well-defined language family. As
a result, we rely solely on the models’ ability to
trace correspondences based on the languages it
has seen in pre-training, even for our experiments
with oracle language family labels. While in the
baseline experiments, our models often believed
that the target language is imaginary, prompting for
language families leads models to note that the lan-
guage is isolate. They then attempt to either follow
syntactic or morphological patterns to induce a new
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(a) Best baseline vs. best analogical (b) Inferred families vs. oracle families

Figure 2: Figure (a) is a comparison of the best baseline (in Table 1) with the best 2-stage analogical reasoning result
(in Table 2), for our two frontier models as the deducer. Our method improves GPT-4o by 8.1% and Llama-3.1-
405B-Instruct by 5.9%. Figure (b) compares self-generated analogical reasoning methods, using prompt-determined
language families ("inferred families") and human-annotated language family labels ("oracle families").

fictitious language which is similar to the target, or
select learned geographically-proximate languages.
For the language of Bangime, spoken in Mali, the
model either retrieves languages from families in
the same geographical region, such as Dogon, or
creates a new language (e.g. "Xangime") for which
it generates analogical exemplars (see Appendix H).
Analyzing at the instance level, this improves the
correctness on the Bangime puzzles from 27.8% to
50% for GPT-4o in the self-generated setting. In to-
tal, with GPT-4o, 46 out of 272 samples produced
exemplars in synthetic languages, with nearly all
of them (41) being instances where the target puz-
zles are in a language that is potentially consid-
ered to be an isolate. This includes 20 samples on
Bangime, 10 samples on Mapudungan, 10 samples
on Seri, and 1 sample on Kutenai; the correctness
rate across the 46 samples increases from 31.88%
(std. dev. 2.71) on its best baseline (few-shot with-
out CoT) to 52.90% (std. dev. 1.03) with our
method. We hypothesize that in-context learning
performance is boosted by “warming-up” reason-
ing over grammatical patterns in another set of
languages (higher-resource or synthetic), reflecting
a highly similar task format, which is then trans-
lated to the test puzzle. As such, we believe that
language isolates are a highly promising area of
future study based on these findings.

In summary, our results suggest that the ability
of the model to deduce by leveraging the given and
analogically-generated exemplars is the key perfor-
mance driver. This is lent credence by the efficacy
of weak-to-strong prompting (i.e. relying on the
exemplars of Aya-35b), while the performance of
inference-time distillation remains roughly similar.
Thus, we posit that the "strength" of a linguistic rea-
soning agent can be decomposed along two lenses,

corresponding to our two stages: (1.) generating
analogical exemplars by language identification
and multilingual reasoning, and (2.) deducing
from hypotheses in complex evaluation settings.

4.3 Expanding Beyond Rosetta Stone: Diverse
Linguistics Olympiad Tasks

To further the generalizability of our findings,
we also evaluate our 2-stage analogical reason-
ing method on the LINGOLY dataset (Bean et al.,
2024). This dataset includes several problem types
beyond the Rosetta Stone category, as described in
Section 3.3. The difficulty levels vary from Break-
through (easiest, for newcomers to the UKLO),
Foundation, Intermediate, Advanced, and Round 2
(hardest, invitational qualifier for the IOL). As such,
applying our approach with this dataset serves as
a valuable test of the transferability of this method
across datasets and tasks.

We report the improvement over the baseline re-
sults (reported in Bean et al. (2024)) with GPT-4o,
denoted ∆Baseline, in Table 3. The baseline results
and exact match scores for analogical prompting
are included in Appendix F for reference, in tabu-
lar form and in the bubble plot style of Bean et al.
(2024). The evaluation procedure was consistent
with that for modeLing, handling parsing issues
accordingly for reliable exact match scoring. Note
that all categories with a gray-shaded cell do not
have a problem of that type in the dataset at present
(i.e. there has not been such a problem in the re-
cent history of the UK Linguistics Olympiad, from
which the dataset was curated).

We find that our results either match or signifi-
cantly outperform the baseline across all difficulty
levels, and across all tasks. Moreover, the results
surpass the Claude-3 Opus state-of-the-art scores
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Computational Text Monolingual Match-up Pattern Rosetta
Breakthrough +0% +33% +7%
Foundation +0% +0% +2% +18%

Intermediate +25% +30%
Advanced +19% +17% +20% +25%
Round 2 +14% +12% +22% +29%

Table 3: ∆Baseline scores for all categories covered in LINGOLY, measuring the improvement yielded by our
Two-Stage Analogical Prompting method over the baseline results with GPT-4o; the baselines are included in
Appendix F. The categories that do not have problems in LINGOLY dataset are shaded gray.

reported in the LINGOLY paper on every single
setting, with the exception of the Breakthrough
Rosetta Stone (easiest problems), included in Ap-
pendix F. Specifically, we find that our 2-stage
analogical prompting method enables GPT-4o to
solve questions of the monolingual type which it
could not before (0% → 19% and 14%); further-
more, the correctness rates jump considerably for
some of the hardest categories over the baseline
(1.81x improvement in Round 2 Pattern, 1.96x in
Advanced Rosetta Stone, and 3.42x in Round 2
Rosetta Stone). It is especially worth noting that
the Round 2 Rosetta Stone results corroborate with
our results on modeLing in Section 4.2; while other
categories have some higher-resource languages
such as Dutch, Round 2 problems are often ex-
tremely low-resource. These findings suggest that
our method generalizes across both datasets and
question types.

5 Related Work

Inductive Reasoning in LLMs. Inductive and
deductive reasoning skills in language models have
often been studied in the context of logical or ab-
stract reasoning problems. Much of this prior work
studies evaluation settings with more clearly de-
fined rules to be inductively learned and then ap-
plied; these works suggest gaps relative to human
intelligence in performing both inductive and de-
ductive reasoning (Xu et al., 2024; Gendron et al.,
2024; Yang et al., 2024c). In particular, Yang et al.
(2024c) notes the need for more challenging tasks
in to better assess the boundaries of LM reason-
ing capabilities, such as hypothesis generation and
pattern induction.

Several works dive into the realm of hypothesis
search, determining the ability of LMs to pose hy-
potheses about the problem (e.g. rules which exem-
plars follow) before seeking to deductively apply
them (Zhu et al., 2024; Qiu et al., 2024; Wang et al.,

2024). These works show that LMs can propose or
infer rules from demonstrations, but rely on veri-
fication to ascertain the correctness of these rules,
which is much more challenging for the linguistic
reasoning task without expert feedback sources in
the loop. Qiu et al. (2024) shows that models can-
not consistently apply the rules that they propose.

Exemplar Generation and Automated Rea-
soning. Analogical prompting (Yasunaga et al.,
2024) has been demonstrated to be an effective
inference-time method to produce diverse, task-
conditioned exemplars, improving in-context learn-
ing. As noted above, this effectively serves as a
knowledge retrieval method which retrieves exem-
plars similar to (or directly from) the pre-training
distribution which the model has seen; RECITE
(Sun et al., 2023) similarly retrieves passages di-
rectly from the model’s memory. Methods such as
SG-ICL (Kim et al., 2022) and Auto-ICL (Yang
et al., 2024b) also self-generate in-context exem-
plars in a similar manner as analogical prompting.

Multilingual Reasoning Multilingual reasoning
in LMs for low-resource languages poses a unique
challenge, as the pretraining corpora and super-
vised fine-tuning datasets for many models are
largely concentrated on a few high-resource lan-
guages. XLT (Huang et al., 2023) introduces
a prompt template which translates problems in
other languages to English and solves the prob-
lem with chain-of-thought in English. Qin et al.
(2023) aligns each step in the chain-of-thought be-
tween the source language and English explana-
tions, then solves the problem given this alignment;
they also apply self-consistency with cross-lingual
alignments with a set of pre-specified target lan-
guages. Li et al. (2024) trains on code data with
multilingual comments, while using code prompts
at inference time with symbolic function API calls
as a structured way to solve the reasoning problem.
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6 Discussion

We apply analogical prompting to test the efficacy
of inductive reasoning from diverse exemplars for
challenging linguistic puzzles. We find that lan-
guage models can indeed follow grammatical simi-
larities within a language family to generate analog-
ical exemplars, and attempt to apply them adeptly.
This yields improved performance across analogi-
cal exemplar generators, both with strong models
(GPT-4o, Llama-3.1-405B) and weaker multilin-
gual models (Aya-35B), with said strong models
as the deducers. We also show that Llama-3.1-
405B-Instruct is the best current model for linguis-
tic reasoning, as the first model to achieve over 70%
on the modeLing benchmark with our approach,
attributable to the auxiliary exemplars generated.
Furthermore, the ability of smaller and specialized
multilingual models (Aya) to generate coherent ana-
logical exemplars, which improve frontier models
over their own self-generated exemplars, is promis-
ing towards developing widely-available multilin-
gual reasoners. We also show that our method
expands to other linguistic puzzle tasks on the LIN-
GOLY dataset, achieving substantial gains with
GPT-4o across nearly all categories. Notably, our
analogical prompting approach enables models to
solve problems in categories where it was previ-
ously unsuccessful at solving any problems, further
highlighting its potential.

Research at the intersection of machine trans-
lation and reasoning is important from a societal
perspective. With large language models being
adopted widely, the need for multilingual capa-
bilities and rapid adaptation grows, and our work
proposes an effective method by which this can be
performed at test-time, notably demonstrating evi-
dence that models can follow language similarities.
The gaps in the performance of current models rel-
ative to human reasoning, due to a deficiency in
deductively applying rules induced from exemplars
suggest that the linguistic reasoning task is an ex-
citing and challenging evaluation setting for LM
reasoning at large. Given our results with language
isolates, we suggest that future efforts in multilin-
gual adaptation be placed in identifying techniques
to guide models to support typologically unique
languages. We hope that these findings can inspire
future model releases to include evaluation on chal-
lenging multilingual tasks such as these puzzles,
and research on reasoning can further explore the
multilingual setting in depth.

Limitations. We note that the reliance on ex-
act match scoring as our primary signal of per-
formance is not ideal, as it is a binary indicator.
We have sought to examine other metrics which
correspond to "partial credit" such as ChrF2 and
BLEU; however, there are flaws in these methods as
well. A stronger human understanding of the rules
which these extremely low-resource languages fol-
low could guide us to better metrics, especially in
capturing semantic meaning and word ordering in-
versions, where appropriate. For instance, some
languages might retain the same meaning while
inverting the word order – exact match is sensi-
tive to this, and while ChrF2 and BLEU are not, we
should only be insensitive to ordering for languages
which follow this property. We also recognized
that the IOL 2024 problems could not be used as a
benchmark with our method, as they require mul-
timodality – our method only analyzes unimodal
text problems. Another limitation of our work is
that we do not have a reliable means of verifying
the correctness of analogical exemplars, nor con-
trasting the quality of exemplars generated across
models to determine the best analogical generator
model.

Access to expert annotators who could acutely
assess where a mistake was made in the model’s
reasoning process also would have been helpful
to yield further insights into the fallacies of cur-
rent models’ linguistic reasoning. This naturally
applies as well to studying the similarity between
generated puzzles and the test puzzle, as this would
require annotators to be acutely aware of the re-
lationship between the two languages’ grammar
constructs to assess their difficulty. Nonetheless,
developing alternative means of studying correct-
ness without reliance on human annotation is of
interest for future work. We have sought to address
this in part by studying a more easily verifiable
signal: namely, the language families identified
by each model, and e.g. if the model correctly
identifies language isolates. Nonetheless, our most
effective deducer models are able to leverage ex-
emplars generated by models of various sizes for
improved linguistic reasoning.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Libo Qin, Qiguang Chen, Fuxuan Wei, Shijue Huang,
and Wanxiang Che. 2023. Cross-lingual prompt-
ing: Improving zero-shot chain-of-thought reasoning
across languages. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2695–2709, Singapore. Associa-
tion for Computational Linguistics.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar,
Valentina Pyatkin, Chandra Bhagavatula, Bailin
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, and Xi-
ang Ren. 2024. Phenomenal yet puzzling: Testing
inductive reasoning capabilities of language models
with hypothesis refinement. In The Twelfth Interna-
tional Conference on Learning Representations.
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A Example Rosetta Stone Translation Problem

The problem below is from the modeLing dataset (Chi et al., 2024). The problem solver is given example
translations, converting English phrases to Rapa Nui, and then is given the test phrase "The bird bites
you". The solver uses the exemplars to infer the Rapa Nui phrase for each word in the test phrase, along
with the grammatical conventions for word ordering and conjugations inferred from the exemplars, to
produce the Rapa Nui translation.

Example Translation Demonstrations, English→ Rapa Nui
English: We see you. → Rapa Nui: tike’a tātou koe
English: I hear you. → Rapa Nui: ŋaro’a au koe
English: I see you. → Rapa Nui: tike’a au koe

English: We hear you. → Rapa Nui: ŋaro’a tātou koe
English: The person hits me. → Rapa Nui: pu’a taŋata au

English: The dog drinks the water→ Rapa Nui: unu paiheŋas bai
English: The fish drinks the blood. → Rapa Nui: unu ika toto

English: We bite the bone. → Rapa Nui: ŋau tātou ivi
English: We hit the bird. → Rapa Nui: pu’a tātou manu

Translate Test Phrase
English: The bird bites you. → Rapa Nui: ŋau manu koe

B Observations from Baseline Results on modeLing

Zero-Shot Performance We observe that GPT-4o and Llama-3.1-405B-Instruct do indeed solve a few
puzzles (2 and 4 samples, respectively) in the zero-shot setting. Given the former was released before
the modeLing dataset, and the latter was released just shortly after, we do not believe this to be a sign of
leakage; furthermore, each correct question was from a different language.

Strong models produce rationales without being instructed to. We find that strong models such as
GPT-4o and GPT-4 produce chain-of-thought stepwise rationales for responses, even in the zero-shot and
few-shot settings, without including a chain-of-thought prompt or including rationales in the exemplars.
This is a key reason why the few-shot without chain-of-thought setting performs the highest for both
models. Furthermore, when prompted with rationale-inducing exemplars (see Appendix J), these strong
models produce rule libraries from the exemplars, akin to (Zhu et al., 2024), leading to very lengthy
responses; some models such as Llama-3.1 70B fall into loops of repeating the same rule many times. This
necessitates the use of a higher number of max tokens to be generated, to ensure that the final answer is
indeed outputted; we report ablations on this in Appendix D. We report that subsequently urging the model
to produce a CoT, when the prompt without CoT already induces one, results in the model misconjugating,
generating responses that are close to the target, but off by a few characters. This would receive no credit
in exact match, but some credit with ChrF2, and hence result in an increase in scores; see Appendix C.

Certain models perform uncertainty-based refusal. Some models, such as Mixtral-8x7B-Instruct and
Mixtral-8x22B-Instruct respond to test instances by stating an inability to perform the desired task. This
behavior especially appears in CoT with rationale exemplars; interestingly, this occurs after the implicit
induction stage has been performed. For instance, with Mixtral-8x22B-Instruct, the model enumerates a
set of word-level translations between the target language and English, respectively, then upon recognizing
ambiguity in one of the word-level translations, it claims that solving the problem is impossible without
additional information. By contrast, models such as GPT-4o instead output multiple candidate answers
when it is not entirely certain. We include qualitative examples of this behavior in Appendix H. This
appears to reinforce the findings of the (Qiu et al., 2024) in that models are unable to reliably apply their
inductively learned rules.
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C Results with ChrF and BLEU Metrics

While our primary results are included in Section 4 with exact match scoring, we also include the ChrF2
and BLEU scores for those experiments. Although exact match is helpful for assessing performance
on absolute terms, character and word-level metrics can help in determining partial progress. BLEU
ignores word ordering nuances amidst short responses in machine translation, which is integral to
measuring correctness in the puzzles we explore (Callison-Burch et al., 2006; Chi et al., 2024). Despite
these challenges of using BLEU, we include the corpus-level scores as it is a commonly-employed
metric in machine translation settings. We use the ChrF2 score (Popović, 2015) as implemented in
sacreBLEU(https://github.com/mjpost/sacrebleu). (Post, 2018); this metric doubles the precision value in
the denominator of the F-score, placing more value on the recall. The inclusion of a character-level metric
is useful for robustness to morphologically rich languages in our low-resource setting. However, we find
the ChrF2 scores to be noisy relative to EM scores, which are the gold standard of performance most akin
to human judges for the Linguistics Olympiad competitions.

C.1 ChrF2 Scores for Baseline Experiments

Model Zero-Shot Few-Shot w/o CoT Few-Shot w/ CoT Few-Shot CoT w/ Rationales

GPT 3.5-Turbo 4.37 30.61 12.93 37.50
GPT-4 32.61 38.46 35.71 40.54
GPT-4o 37.50 39.47 40.54 40.54

Llama-3.1-8B-Instruct 0.25 40.54 48.39 45.45
Llama-3.1-70B-Instruct 38.46 34.09 38.46 41.67
Llama-3.1-405B-Instruct 27.27 38.46 38.46 38.46
Mixtral-8x7B-Instruct 39.47 4.10 1.49 12.30
Mixtral 8x22B-Instruct 42.86 38.46 2.42 34.88

Aya-23-8B 21.13 39.47 30 41.67
Aya-23-35B 27.27 46.88 46.88 45.45

Table 4: Baseline experiments as reported in Table 1, but with the ChrF2 metric instead.

These results seem to suggest that while they do not perform as well as the frontier models on exact
match, Llama-3.1-8B-Instruct and Aya-35B attain high ChrF2 scores, due to being close to the target
translation, but e.g. making a few character insertions or deletions, or word order changes. To that effect,
ChrF2 serves as a useful measure of "partial credit".

C.2 BLEU Scores for Baseline Experiments

Model Zero-Shot Few-Shot w/o CoT Few-Shot w/ CoT Few-Shot CoT w/ Rationales

GPT 3.5-Turbo 0.06 5.33 14.65 19.96
GPT-4 0.52 40.07 16.70 6.14
GPT-4o 0.75 50.53 34.76 36.33

Llama-3.1-8B-Instruct 0.02 0.54 0.09 0.06
Llama-3.1-70B-Instruct 0.47 0.65 0.57 0.36
Llama-3.1-405B-Instruct 0.19 3.34 1.22 6.28
Mixtral-8x7B-Instruct 0.04 0.52 0.32 0.31
Mixtral 8x22B-Instruct 0.09 11.36 3.84 7.45

Aya-23-8B 0.04 4.54 4.24 5.88
Aya-23-35B 0.12 11.37 11.55 0.58

Table 5: Baseline experiments as reported in Table 1, with corpus-level BLEU scores.
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We find that BLEU scores are highest for GPT-4o. However, this is a somewhat noisy signal, as
Llama-3.1-405B attains the highest exact match performance, but very low corpus-level BLEU scores,
below several models which it outperforms on the stricter (EM) metric.

C.3 ChrF2 Scores for Analogical Reasoning Experiments

Generator
Deducer

GPT-4o Llama-3.1-405B-Instruct Aya-23-35B

GPT-4o 40.54 38.46 46.88
Llama-3.1-405B-Instruct 40.54 42.86 46.88
Aya-23-35B 38.46 32.86 46.88

Table 6: Analogical reasoning experiments as reported in Table 2, with ChrF2 scores.

C.4 BLEU Scores for Analogical Reasoning Experiments

Generator
Deducer

GPT-4o Llama-3.1-405B-Instruct Aya-23-35B

GPT-4o 39.50 6.95 3.66
Llama-3.1-405B-Instruct 41.76 2.35 2.82
Aya-23-35B 30.27 3.11 3.81

Table 7: Analogical reasoning experiments as reported in Table 2, with corpus-level BLEU scores.

D Ablations on Max Token Lengths for Rationale Generation

For the chain-of-thought baseline where English-Spanish translation with rationales is provided (from
(Chi et al., 2024)), we observe that frontier models produce verbose outputs. These outputs include
explaining the meaning of each word in the exemplars for the target language (inductive learning), before
applying them to the test sample. We find that including a max token length of 4096 as opposed to 512
yields vastly different results.

Model 512 Max Tokens 4096 Max Tokens

GPT 3.5-Turbo 30.51% 38.60%
GPT-4 41.91% 45.59%
GPT-4o 55.51% 55.88%

Llama-3.1-8B-Instruct 19.85% 23.16%
Llama-3.1-70B-Instruct 42.28% 1.1%
Llama-3.1-405B-Instruct 37.87% 65.81%
Mixtral-8x7B-Instruct 16.18% 11.76%
Mixtral 8x22B-Instruct 30.88% 39.71%

Table 8: Ablations on max token length, comparing max tokens to generate values of 512 and 4096.

In particular, we find that Llama-3.1-405B-Instruct, Mixtral-8x22B-Instruct-v0.1, and GPT-3.5-Turbo
improve significantly, by over 8%. Notably, Llama-3.1-405B-Instruct with the ability to generate up
to 4096 tokens yields our strongest baseline result of 65.81%. Conversely, Llama-3.1-70B-Instruct

22796



surprisingly drops to 1.1%, performing almost as poorly as the zero-shot baseline. Upon manual inspection,
we find this to be due to entering loops of repeating the same rationale step until the max token limit is
reached.

E Few-Shot Prompt Ablations

We also include the results with the provided few-shot exemplars, while using two different instructions.
The "zero-shot prompts" are the system prompt and instruction used for zero-shot evaluation, where no
reference is made to the existence of few-shot exemplars. The few-shot prompt used is a close adaptation
of that used in (Chi et al., 2024). Surprisingly, we find that this makes a slight, yet noticeable difference in
results. The prompts used can be found in Appendix J.

Model "Zero-Shot" Prompts "Few-Shot" Prompts

GPT 3.5-Turbo 25.74% 12.50%
GPT-4 56.25% 53.68%
GPT-4o 58.09% 59.19%

Llama-3.1-8B-Instruct 21.32% 22.79%
Llama-3.1-70B-Instruct 42.65% 45.22%
Llama-3.1-405B-Instruct 60.29% 61.76%
Mixtral-8x7B-Instruct 11.76% 22.43%
Mixtral 8x22B-Instruct 45.59% 44.49%

Table 9: Comparison between two different few-shot prompting scenarios; the first involves providing the exemplars
to the model, but making no mention of them in the instruction. The later also provides the exemplar, but instructs
the model to only use those to solve the problem.

Notably, GPT-3.5-Turbo and GPT-4 perform better with the "zero-shot prompts"; we believe this to be
attributable to the few-shot prompt specifying to solve the puzzle only using the in-context exemplars.
This perhaps could be limiting the model from drawing from its knowledge base to solve the problem. At
the same time, Mixtral-8x7B performs much better with the few-shot prompts.

F Baseline and Two-Stage Analogical Prompting Results on LINGOLY

We include below the baseline results with GPT-4o in both tabular (Table 10) and bubble plot (Figure
3) format, as reported in Bean et al. (2024), as well as the results of our method in both tabular (Table
11) and bubble plot (Figure 4) formats. Lastly, we include the results of Claude 3 Opus from Bean et al.
(2024), the present state-of-the-art results, and the ∆Baseline scores for our method on GPT-4o relative to
this, in Tables 12 and 13, respectively.

Computational Text Monolingual Match-up Pattern Rosetta
Breakthrough 100% 47% 79%
Foundation 0% 100% 67% 62%

Intermediate 58% 34%
Advanced 0% 33% 53% 26%
Round 2 0% 30% 27% 12%

Table 10: Baseline results with GPT-4o, as reported in LINGOLY (Bean et al., 2024), on exact match.
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Figure 3: Baseline Results with GPT-4o on LINGOLY. The size of the bubbles correspond to the number of
subquestions of that type present in the dataset.

Figure 4: Two-Stage Analogical Prompting (Ours) Results with GPT-4o on LINGOLY. The size of the bubbles
correspond to the number of subquestions of that type present in the dataset.
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Computational Text Monolingual Match-up Pattern Rosetta
Breakthrough 100% 80% 86%
Foundation 0% 100% 69% 80%

Intermediate 83% 64%
Advanced 19% 50% 73% 51%
Round 2 14% 42% 49% 41%

Table 11: Results with Two-Stage Analogical Prompting (Ours) with GPT-4o on exact match.

Computational Text Monolingual Match-up Pattern Rosetta
Breakthrough 100% 67% 93%
Foundation 0% 100% 69% 72%

Intermediate 53% 46%
Advanced 5% 47% 58% 41%
Round 2 5% 37% 35% 20%

Table 12: Baseline results with Claude 3 Opus, as reported in LINGOLY (Bean et al., 2024), on exact match.

Computational Text Monolingual Match-up Pattern Rosetta
Breakthrough +0% +13% -7%
Foundation +0% +0% +0% +8%

Intermediate +30% +18%
Advanced +14% +3% +15% +10%
Round 2 +9% +5% +14% +21%

Table 13: ∆Baseline scores for all categories covered in LINGOLY, measuring the improvement yielded by our
Two-Stage Analogical Prompting method with GPT-4o over the baseline results with Claude 3 Opus.

As noted in Section 4.3, our method matches or improves relative to the Claude 3 Opus state-of-the-art
on all categories except for Breakthrough Rosetta problems. Notably, the most sizable gains are in the
more difficult problems in the Intermediate, Advanced, and Round 2 levels.

G Correctness of Generated Exemplars

While one would ideally prefer to have a validator which, given a set of rules for a language, can determine
if they are being appropriately applied for each of the analogical exemplars, this is very challenging at
scale. In the context of Linguistics Olympiad problems, only a small fraction of the population who are
experts in such tasks (equivalent to achieving a high score on these contests) would be able to reliably
annotate solution rationales for these extremely low-resource translation puzzles. Furthermore, the notion
of correctness is ambiguous – we rely on exact match relative to an annotated "correct" response, but
it is unclear if there could be more than "correct" response which is context-specific, or if partial credit
assignment could be possible. Given the models’ lack of zero-shot knowledge of these languages (else,
there would likely be leakage), we also cannot reliably use another LM / instance of the model as a
validator. As a result, we leverage all generated exemplars by the model for inference, and assume each
problem has one correct solution.
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H Qualitative Examples

H.1 Analogical Demonstrations
Analogical exemplars generated by GPT-4o for target language Ngadha:

"Based on the provided translations, it appears that Ngadha is a language that belongs to the
Austronesian family, specifically within the Central-Eastern Malayo-Polynesian group. Other
languages in this subgroup include those from the Flores-Lembata languages, such as Rembong and
Lamaholot. Below are some example puzzles translating from Rembong and Lamaholot to English,
and vice versa.

Translating from Rembong to English Rembong: ua gina English: big house
Rembong: ga’e buin English: small flower
Rembong: kafi gala English: black chair
Rembong: watu lin English: long stone
Rembong: regu boku English: white cloud
Rembong: poa mina English: green forest

Translating from English to Rembong English: big river Rembong: rehu gina
English: small bird Rembong: ki’i buin
English: black mask Rembong: meke gala
English: long road Rembong: jalan lin
English: white sky Rembong: ara boku
English: green grass Rembong: lea mina

Translating from Lamaholot to English Lamaholot: mawar gete English: big rose
Lamaholot: sarik wena English: small rock
Lamaholot: moto wulan English: black moon
Lamaholot: jalan rake English: long street
Lamaholot: lopo puti English: white hut
Lamaholot: nara hoban English: red boat

Translating from English to Lamaholot English: big tree Lamaholot: po’o gete
English: small river Lamaholot: wae wena
English: black cloud Lamaholot: lero wulan
English: long valley Lamaholot: tana rake
English: white mountain Lamaholot: weling puti
English: red fruit Lamaholot: bua hoban"
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GPT-4o generated analogical exemplars for target language:

**[Example Puzzle: Quechua to English]** Quechua: ñawi English: eye Quechua: hamuy English:
come Quechua: wasi English: house Quechua: sacha English: forest Quechua: yacu English: water

**[Test Puzzle: Quechua to English]** Quechua: llapa English: **[all]** Quechua: pacha
English: **[time]** Quechua: chay English: **[that]** Quechua: puñuy English: **[sleep]**
Quechua: qhari English: **[man]**

**[Example Puzzle: Nahuatl to English]** Nahuatl: atl English: water Nahuatl: calli English:
house Nahuatl: mixtli English: cloud Nahuatl: teotl English: god Nahuatl: cuauhtli English: eagle

**[Test Puzzle: Nahuatl to English]** Nahuatl: tlitl English: **[fire]** Nahuatl: yollotl English:
**[heart]** Nahuatl: in English: **[the]** Nahuatl: michin English: **[fish]** Nahuatl: huitzilin
English: **[hummingbird]**

Analogical exemplars generated by Aya-23-35B for target language Kalam (an example of generating
new languages which it believes to be similar as Kalam):

Here are some puzzles for translating from and to languages in the same family as Kalam:

*Puzzle 1: Translating from Languge X to English** X: fey English:
fly X: fey-gaw English: (fly) away
X: gaw English: go
X: gaw-fey English: (go) away
X: nack English: take
X: nack-fey English: take (and) fly
X: nack-gaw English: take (and) go
X: nack-fey-gaw English: take, fly, and go

*Puzzle 2: Translating from English to Language Y**
English: walk Y: yack
English: walk quickly Y: yack-yack
English: run Y: yack-fey
English: run away Y: yack-fey-gaw
English: take and walk Y: nack-yack
English: take and fly Y: nack-fey
English: take, walk, and fly Y: nack-yack-fey

*Puzzle 3: Translating from English to Language Z**
English: eat Z: ze
English: eat quickly Z: ze-ze
English: drink Z: ze-fey
English: drink water Z: ze-fey-gaw
English: take and eat Z: nack-ze
English: take, eat, and drink Z: nack-ze-ze-fey

These puzzles help establish the relationships between the languages and English, with
each puzzle focusing on a specific theme (going/flying, eating/drinking, and taking) to illustrate the
translation patterns. Please note that the languages X, Y, and Z are fictional and used for illustrative
purposes only.
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Analogical exemplars generated by Aya-23-35B for target language Bangime:

Here are some puzzles translating from and to languages in the same family as Bangime:

*Puzzle 1: Translating from Mande languages to English**
- Manding: M̈i na soo.Ënglish: Ï see you.¨
- Manding: T̈a na firi.Ënglish: Ẅe hear you.¨
- Manding: T̈a na biri.Ënglish: Ẅe bite the bone.¨

*Puzzle 2: Translating from English to Mande languages**
- English: Ï am flying.M̈anding: M̈i na fodoo.¨
- English: T̈he dog drinks.M̈anding: D̈ugulü na kurü.¨
- English: T̈he fish sleeps.M̈anding: P̈ishulü na sara.¨

*Puzzle 3: Translating from Niger-Congo languages to English**
- Igbo: M̈ uwe.Ënglish: Ï see you.¨
- Igbo: M̈ nwunye.Ënglish: Ẅe hear you.¨
- Igbo: M̈ gbuo.Ënglish: Ẅe bite the bone.¨

*Puzzle 4: Translating from English to Niger-Congo languages**
- English: Ï am hitting.Ïgbo: M̈ uwu.¨
- English: T̈he person drinks.Ïgbo: Öme na kurü.¨
- English: T̈he bone sleeps.Ïgbo: Ëji na sara.¨

These puzzles showcase the translation relationships between Bangime and other languages in the
same language family, helping to establish patterns and rules for accurate translation.

H.2 Uncertainty-Based Refusal
Mixtral-8x22B-Instruct-v0.1 expressing an inability to answer the question, despite producing a "rule
library" based on the given exemplars. This is due to the incompleteness of the library in understanding
what the phrase "mise" means, from the exemplars.

Based on the given examples, we can infer the following:
1. "eni" means "we" 2. "moni" means "see" 3. "syiene" means "hear" 4. "wo" means "you" 5.

"fyani" means "fly" 6. "dhi" means "eat" 7. "ubhwo" means "bird" 8. "mise" is not given a direct
translation in the examples, but we can infer that it is a noun because it follows the pattern of other
nouns in the sentences.

Given the sentence "eni mise", we can break it down as follows:
1. "eni" means "we" 2. "mise" is a noun, but we don’t have a direct translation for it.
Therefore, the sentence "eni mise" translates to "We [mise]". Without more context or examples,

we cannot provide a more specific translation for "mise".

I Reproducibility Statement

We include all prompts used for generating our baseline experimental results, and all analogical prompting
methods, in Appendix J. We have also broken down the two stages of our analogical reasoning method for
clarity on how the method should be applied with two separate models (e.g. weak-to-strong prompting,
inference-time exemplar distillation). We evaluate our work on the modeLing and LINGOLY datasets,
which are publicly available. We have included details of the platforms through which the models we
evaluate have been queried (OpenAI API, TogetherAI API, Apple MLX), along with the list of models
studied and the temperature and max tokens hyperparameter values used in Sections 3.3 and 4.1.
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J Prompts Used in Experiments

J.1 Zero-Shot Prompts
J.1.1 System Prompt

’You are an experienced linguist with background in a wide variety of languages, and translating
them to and from English. You have been asked to translate a series of phrases from a language to
English, or from English to that language. You have never seen this language before, but you are
confident in your ability to translate the phrases accurately.’

J.1.2 Instruction

’This is a translation puzzle. Here is a phrase in Language (a never-seen-before foreign language)
or in English. If the test phrase is in English, your task is to translate it into Language. If the test
phrase is in Language, your task is to translate it into English. When you are done with your answer,
provide your outputs in the format of **[your answer]**.’

J.2 Few-Shot and Analogical Reasoning System Prompt

’You are an experienced linguist with background in a wide variety of languages, and translating
them to and from English. You have been asked to translate a series of phrases from a language to
English, or from English to that language. You have never seen this language before, but you have
been given a few examples of phrases in the language and their English translations to help you. You
are confident in your ability to translate the phrases accurately.’

J.3 Few-Shot, no Chain-of-Thought

’This is a translation puzzle. Below are example phrases in Language (a never-seen-before foreign
language) as well as their English translations. Some test phrases follow them. If the test phrase is in
English, translate it to Language; if the test phrase is in Language, then translate it to English. Your
task is to look closely at the example phrases and use only the information from them to translate the
test phrases. When you are done with your answer, provide your outputs in the format of **[your
answer]**.’

J.4 Few-Shot with Chain-of-Thought, no Rationale

’This is a translation puzzle. Below are example phrases in Language (a never-seen-before foreign
language) as well as their English translations. Some test phrases follow them. Your task is to look
closely at the example phrases and use only the information from them to translate the test phrases. If
the test phrase is in English, translate it to Language; if the test phrase is in Language, then translate
it to English. Take a deep breath and work on this problem step-by-step in a logical way, using
careful analytical reasoning to get the correct result. When you are done with your answer, provide
your outputs in the format of **[your answer]**.’
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J.5 Few-shot Chain-of-Thought with rationale prompt

’This is a translation puzzle. In a moment, you will use logic and analytical reasoning to translate
from a never-seen-before language (Language) to English. If the test phrase is in English, translate it
to Language; if the test phrase is in Language, then translate it to English. As a training example,
here are some expressions in Spanish and their translations in English.
1. Spanish: ventana roja English: red window
2. Spanish: ventana azul English: blue window
3. Spanish: manzana azul English: blue apple

Using the above examples, translate the following.
Spanish: manzana roja

EXPLANATION: The first step we notice is that the word “ventana” must mean window
because (1) the word “ventana” appears twice between sentences 1 and 2, and (2) the only word
that appears twice in the English translation is “window.” Next, we infer that “roja” must be “red”
and “azul” must be “blue” by process of elimination. Next, we guess that in Spanish, the noun
precedes the adjective because “ventana” comes before “roja” and “azul.” Therefore, the noun
in sentence 3 (“apple”) must correspond to the word preceding the adjective (“manzana”) in the
Spanish translations. Putting this together, “manzana roja” must mean “red apple” in English.
ANSWER: English: red apple.

Now, given the following test phrase, please translate it. Take a deep breath and work on
this problem step-by-step in a logical way, using careful analytical reasoning to get the correct result.
When you are done with your answer, provide your outputs in the format of **[your answer]**.’

J.6 One-Stage Analogical Prompting

"This is a translation puzzle. In a moment, you will use logic and analytical reasoning to translate
from a never-seen-before language (Language) to English. Given a few example puzzles translating
from Language to English (or English to Language), generate 3 similar puzzles translating other
languages in the same family as Language to English, and 3 similar puzzles translating from English
to those languages in the same family as Language. The puzzles that you generate should be distinct
from one another, the example puzzles, and the test puzzle. They also should be from a diverse
set of languages within the same language family as the test puzzle. Your task is to look closely
at the example puzzles and the puzzles that you have generated in order to solve the test puzzle.
Take a deep breath and work on this problem step-by-step in a logical way, using careful analytical
reasoning to get the correct result. When you are done with your answer, provide your outputs in the
format of **[your answer]**."
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J.7 Two-Stage Analogical Prompting
J.7.1 Analogical Exemplar Generation Prompt, Inferred Language Families

"Given a few example puzzles translating from {name} to English (or English to {name}), identify
few other languages in the same family as {name}, generate a puzzle similar to translating other
languages in the same family as {name} to English, and another puzzle translating from English to
those languages in the same family as {name}. The puzzles that you generate should be distinct from
one another than the example puzzles, and the test puzzle but should help establish the relationships
for translation between {name} and English. They also should be from a diverse set of languages
within the same language family as the test puzzle. Provide your outputs in the format of **[your
answer]**."

J.7.2 Analogical Exemplar Generation Prompt, Oracle Language Families

"Given a few example puzzles translating from name to English (or English to {name}), identify few
other languages in the {lang_family} family, generate a puzzle similar to translating other languages
in the same family as {name} to English, and another puzzle translating from English to those
languages in the same family as {name}. The puzzles that you generate should be distinct from one
another than the example puzzles, and the test puzzle but should help establish the relationships
for translation between {name} and English. They also should be from a diverse set of languages
within the same language family as the test puzzle. Provide your outputs in the format of **[your
answer]**."

J.7.3 Deduction Step Prompt

"This is a translation puzzle. In a moment, you will use logic and analytical reasoning to translate
from a never-seen-before language ({name}) to English. Your task is to look closely at the example
puzzles and the puzzles that you have generated in order to solve the test puzzle. Take a deep breath
and work on this problem step-by-step in a logical way, using careful analytical reasoning to get the
correct result. When you are done with your answer, provide your outputs in the format of **[your
answer]**."
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K Oracle Language Families

We include here the table of oracle language family labels used for the oracle vs inferred families
experiments in Section 4.2. These labels were curated by the authors, and are generally faithful to their
respective language taxonomies. For instance, for the language of Seri, which some linguists consider to
be a member of the Hokan language family while others treat it as an isolate, we provide the "Hokan"
label when prompting the model to produce exemplars from the same family.

Target Language Oracle Language Family

Abun West Papuan
Ainu Ainu / Language Isolate

Ayutla Mixe Mixe-Zoque
Bangime Language Isolate

Chimalapa Zoque Mixe-Zoque
Dogon Niger-Congo

Engenni Niger-Congo
Guugu Yimithirr Pama-Nyungan

Kalam Kalam
Komi-Ziran Uralic

Kutenai Language Isolate
Mapudungan Araucanian

Misantla Totonac Totonacan
Mixtepec Zapotec Oto-Manguean

Ngadha Austronesian Malayo-Polynesian
Niuean Malayo-Polynesian

Rapa Nui Austronesian Malayo-Polynesian
Seri Hokan / Language Isolate

Totonac Totonacan

Table 14: Oracle language families used for the results in Figure 2b, where we present a language family label to
the model rather than (implicitly) instructing it to infer the language family.

L Language Identification in Analogical Prompting with Inferred Families

We analyze the ability for frontier models (GPT-4o, Llama-3.1-405B-Instruct) to produce the correct
language family labels solely by being prompted to produce exemplars in the same language family. The
results for Llama-3.1-405B-Instruct are included in Table 15, and the results for GPT-4o are included in
Table 16. The phrase "synthetic" is used as a catch-all for the model determining that the language is
"constructed", "synthetic", "fictional", "hypothetical", or any similar synonym. There are some instances
where the model does not produce any label for the language family, and begins immediately producing
exemplar puzzles from some implicitly chosen set of languages, without stating that list; this is listed in
the tables as "None".

For Language Isolates that are debated (e.g. Seri, which is considered an isolate by some linguists, and
a member of the Hokan language family by others), we specify which label was provided, but assign either
as correct when determining each model’s correctness rate. Furthermore, the model may not necessarily
produce the leaf-level language family, but rather, a larger family which includes the leaf-level one (e.g.
producing the label of Trans-New Guinea instead of Kalam, which is a member of the Trans-New Guinea
family).

Our analysis reveals that both models are quite adept at identifying language families reliably. In fact,
Llama-3.1-405B-Instruct’s language family correctness out of the 272 samples, relative to the oracle
labels in Appendix K is an astounding 249

272 = 91.54%, while GPT-4o’s rate is 202
272 = 74.26%.
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Target Language Number of Questions Inferred Language Family

Abun 4 West Papuan (4)
Ainu 8 Language Isolate (8)

Ayutla Mixe 4 Mixe-Zoque (4)
Bangime 36 Isolate (25), Niger-Congo (11)

Chimalapa Zoque 12 Zoquean (12)
Dogon 8 Niger-Congo (6), None (2)

Engenni 25 Niger-Congo (25)
Guugu Yimithir 10 Pama-Nyungan (10)

Kalam 6 Trans-New Guinea (6)
Komi-Ziran 6 Uralic (6)

Kutenai 5 Language Isolate (5)
Mapudungan 24 Araucanian (14), Synthetic (10)

Misantla Totonac 4 Totonacan (4)
Mixtepec Zapotec 24 Oto-Manguean (24)

Ngadha 14 Austronesian (14)
Niuean 18 Polynesian (18)

Rapa Nui 37 Polynesian (37)
Seri 21 Hokan / Isolate (17), Isolate (4)

Totonac 6 Totonacan (6)

Table 15: Inferred language families by Llama-3.1-405B-Instruct, where the model is prompted in our 2-stage
approach to first produce exemplars in the same language family and then apply them to solve the test phrase. The
model often identifies the language family which the target language is a member of ("label") which we report
below, prior to identifying languages within that family, that are geographically proximal, or if the model predicted
that it is an isolate or believes the language to be synthetic, produces similar synthetic languages.

We report anecdotally that while both models appear to have a strong understanding of the leaf-level
language families (e.g. the Edoid family), Llama-3.1-405B-Instruct seems to have a stronger taxonomical
understanding, producing outputs such as "Chimalapa Zoque is a member of the Zoquean branch of
the Zoque-Tzeltalan language family, which is part of the larger Mayan language family." By contrast,
GPT-4o often would solely identify the direct parent of the language in question, producing outputs such
as "Chimalapa Zoque belongs to the Mixe-Zoque language family." It appears that by the statements
made at the start of the response, GPT-4o appears to (at least claim to) base its choice of language
family based on the structure of the source-target provided exemplar translations, such as the following:
"Based on the examples provided in Mapudungan 3, it seems to encode simple noun phrases with an
adjective-noun structure. To generate similar puzzles from other languages potentially in the same family
(Araucanian), we should maintain this structure and ensure variety in the adjectives and nouns used."
Similarly, it produces statements such as "Based on the examples provided in Rapa Nui, I can infer
common Polynesian morphological and syntactical patterns that will help in generating puzzles for
other related languages within the Austronesian language family, specifically the Polynesian subfamily."
Nonetheless, both models appear to select a similar set of languages within each family when correctly
identified, which appears to yield useful exemplars applied by the deducer model.

Furthermore, through the process of obtaining the counts in the tables listed here, we observed that
both models struggled when it was specified that there were multiple separate problems for a given
language. For instance, both models do not struggle much with identifying the correct language family for
"Mapudungan 1" as Araucanian, but completely either fail to identify any language family (GPT-4o) or
suggest that the language is synthetic when given "Mapudungan 4". This is an interesting phenomenon
that we propose merits further study.
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Target Language Number of Questions Inferred Language Family

Abun 4 West Papuan (3), Lakes Plain (1)
Ainu 8 Language Isolate (8)

Ayutla Mixe 4 Mixe-Zoque (4)
Bangime 36 Isolate (18), Niger-Congo (2), Synthetic (16)

Chimalapa Zoque 12 Mixe-Zoque (12)
Dogon 8 Niger-Congo (6), Isolate (1), None (1)

Engenni 25 Niger-Congo (21), Synthetic (2), None (2)
Guugu Yimithir 10 Pama-Nyungan (10)

Kalam 6 Trans-New Guinea (5), Austronesian (1)
Komi-Ziran 6 Uralic (4), Synthetic (2)

Kutenai 5 Language Isolate (5)
Mapudungan 24 Araucanian (3), Synthetic (3), None (18)

Misantla Totonac 4 Totonacan (4)
Mixtepec Zapotec 24 Oto-Manguean (24)

Ngadha 14 Austronesian (14)
Niuean 18 Polynesian (16), Synthetic (1), None (1)

Rapa Nui 37 Polynesian (30), Synthetic (3), None (4)
Seri 21 Isolate (6), Hokan (3), Synthetic (6), None (6)

Totonac 6 Totonacan (6)

Table 16: Inferred language families by GPT-4o.

M Ablations with Llama-3.1-8B-Instruct

We also examine the performance of another weak model, namely Llama-3.1-8B-Instruct. This model
achieves similar performance on the baseline experiments as Aya-35B, and despite not being a specialized
multilingual model like Aya, has seen 15T tokens of multilingual pre-training data, as well as large
volumes of multilingual SFT and post-training data, leveraging human annotations by a constructed
multilingual expert pre-trained model. We report these results in a 3x3 grid as in Section 4.2, where
the model on the left side is the analogical exemplar generator, and the right hand side is the model
which applies inductively learned rules; this includes the self-generation (diagonal), inference-time
distillation, and weak-to-strong settings. Note that the results of the top left 2x2 (between GPT-4o and
Llama-3.1-405B-Instruct) are the same as those reported in Section 4.2.

Generator
Deducer

GPT-4o Llama-3.1-405B-Instruct Llama-3.1-8B-Instruct

GPT-4o 66.91% 71.69% 22.30%
Llama-3.1-405B-Instruct 67.28% 67.65% 19.12%
Llama-3.1-8B-Instruct 63.36% 70.96% 20.10%

Table 17: The results of Table 2, mixing-and-matching the generator and deducer models, with Llama-3.1-8B-
Instruct in place of Aya-35B.

Like Aya-35B, Llama-3.1-8B-Instruct does not improve with inference-time exemplar distillation.
However, despite smaller gains (4.2% over baseline) in the weak-to-strong setting with GPT-4o as the
deducer, we achieve nearly 71% with Llama-3.1-405B as the deducer. This further reinforces the notion
that Llama-3.1-405B is the strongest current model at inductive and deductive reasoning, as it attains
higher results than the next best model, GPT-4o, across all analogical generator models.
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N 1-Stage Analogical Prompting

We study the 1-stage analogical prompting setting as posed in (Yasunaga et al., 2024), where analogical
exemplars are generated and applied through the same instruction, all at once.

Model 1-Stage Analogical Prompting

GPT-3.5-Turbo 2.21%
GPT-4 34.93%
GPT-4o 38.60%
Llama-3.1-8B-Instruct 3.31%
Llama-3.1-70B-Instruct 27.21%
Llama-3.1-405B-Instruct 22.43%
Mixtral-8x7B-Instruct 1.1%
Mixtral-8x22B-Instruct 34.56%

Table 18: Results with 1-stage analogical prompting (where both generation and application occur through a single
instruction).

From our error analysis, we observe that even our strongest models such as GPT-4o are confused by the
1-stage analogical reasoning prompt. That is, prompting models to identify the language family of the test
sample, identify multiple languages in that family, produce several puzzles of exemplars translating to and
from English to those languages such that they are sufficiently diverse from one another, and apply all of
the exemplars to the test puzzle made for an overloaded instruction. Splitting the instruction into 2 stages –
generating analogical exemplars, then prompting with both the provided and generated exemplars – is a
natural solution. Evidently, as shown in Table 2, using 2-stage analogical prompting proves effective.

O Additional Related Work

Few-shot Chain-of-Thought Reasoning. In-context learning has emerged as an exciting phenomenon
in language models, enabling them to learn from few-shot demonstrations at inference-time to generalize
to various tasks (Brown et al., 2020; Wei et al., 2022). At the same time, the chain-of-thought (CoT)
reasoning method guides language models to think systematically through a problem, in a step-by-step
manner (Wei et al., 2024; Kojima et al., 2022). In particular, applying chain-of-thought prompting (zero-
shot or few-shot) with the goal to induce rationales yields explanations of why each step was performed,
along with performance and faithfulness improvements (Nye et al., 2021; Lampinen et al., 2022). Various
similar approaches (Yao et al., 2023; Wang et al., 2023; Besta et al., 2024) have been proposed to sample
more diverse generations from models, leveraging test-time compute to improve reasoning performance;
we believe such methods make for interesting lines of future research for the linguistic reasoning task.

Linguistic Reasoning Benchmarks. The PuzzLing Machines dataset (Şahin et al., 2020) first introduced
a set of Linguistics Olympiad problems to study the ability of language models to learn from a small
amount of data; they apply RoBERTa-based neural machine translation methods, but demonstrate a vast
gap (attaining less than 4% exact match performance). With concerns of potential leakage given the vast
web scraping performed in procuring pre-training tokens for language model training, modeLing (Chi
et al., 2024) introduced a new set of hand-written Linguistics Olympiad problems, demonstrating the
performance of current models with CoT methods. The LINGOLY (Bean et al., 2024) dataset presents
problems from the UK Linguistics Olympiad competition, and studies zero-shot and few-shot performance
of current models categorized by question type.
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P Ethics and Risks

Our analogical reasoning method can potentially be used to generate synthetic data comprised of model-
generated exemplars. However, in the absence of a verification mechanism for the correctness of
said exemplars, training models on data of this nature could actually lead to worse performance in
adapting to these low-resource languages. Furthermore, the dissemination of such data could lead to
a misrepresentation of the contained languages’ nature, negatively impacting future work. With due
diligence in employing human verifiers, these risks can be mitigated; as our work designed to be an
inference-time intervention, this is beyond the intended use of our method.
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