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Abstract

Recent progress in developing general purpose
text embedders has been driven by training
on ever-growing corpora of synthetic LLM-
generated data. Nonetheless, no publicly avail-
able synthetic dataset exists, posing a barrier to
studying its role for generalization. To address
this issue, we first reproduce and publicly re-
lease the synthetic data proposed by Wang et al.
(2024) (Mistral-E5). Our synthetic data is high
quality and leads to consistent improvements
in performance. Next, we critically examine
where exactly synthetic data improves model
generalization. Our analysis reveals that ben-
efits from synthetic data are sparse and highly
localized to individual datasets. Moreover, we
observe trade-offs between the performance on
different categories and data that benefits one
task, degrades performance on another. Our
findings highlight the limitations of current
synthetic data approaches for building general-
purpose embedders and challenge the notion
that training on synthetic data leads to more
robust embedding models across tasks.
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1 Introduction

Mirroring the success of generative LLMs (Ouyang
et al., 2022; Jiang et al., 2023; Llama Team,
2024), the NLP community has invested in build-
ing general-purpose embedding models—single
models capable of producing embeddings for a
wide array of embedding tasks, spanning classi-
fication, clustering, retrieval, reranking, and text-
similarity estimation (Li et al., 2023; Wang et al.,
2024; Springer et al., 2024; BehnamGhader et al.,
2024; Muennighoff et al., 2024; Lee et al., 2025).

Beyond architectural innovations and progress
in base models, much of the recent progress on
general-purpose embedders can be attributed to
training on synthetic training data—for example,
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Figure 1: Performance on MTEB across time. Start-
ing with Wang et al. (2024), models trained on syn-
thetic data have led to considerable improvements on
the MTEB leaderboard. We exclude more recent models
that were trained on in-domain data.

by leveraging GPT-4 to produce synthetic data that
expands existing training datasets for embeddings
to new tasks (see Figure 1) (Wang et al., 2024).
Leveraging synthetic data is based on the premise
that LLMs generate more diverse and high-quality
data compared to human-annotated datasets, which
are often limited in size.

In our work, we critically examine the im-
plicit assumption of this paradigm that training
on synthetic data will broadly improve the general-
purpose quality of the model. We approach this
by training models on different compositions of
synthetic data to estimate the influence of differ-
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ent commonly adopted types of synthetic data on
the downstream performance of the model. Strik-
ingly, we find that training on synthetic exam-
ples designed for a particular task can degrade
the performance of other tasks, challenging the
notion that training on more diverse synthetic
data is strictly better. Moreover, we observe that
synthetic data leads to sparse improvement across
tasks, showing no statistically significant improve-
ment on a majority of MTEB tasks.

To conduct our analysis, we reproduce the syn-
thetic data from Wang et al. (2024) and release this
data publicly. In our reproduction, we compare the
effectiveness of LLaMA-3.1-8B and LLaMA-3.1-
70B for generating synthetic data, both of which
are more cost-efficient than the GPT-family mod-
els used by Wang et al. (2024) and are publicly
available (Llama Team, 2024). Our results show
that synthetic data generated by LLaMA-3.1-8B
performs nearly as well as data from the larger 70B
model, while costing 5× less than the 70B model
and over 50× less than GPT-4o.

In total, our results underscore the need to de-
velop broad and robust methods for generating and
training on synthetic data that do not exhibit trade-
offs, and we hope that our public release of syn-
thetic training data will accelerate open research
into the development and understanding of general-
purpose embedding models.

2 Generating high quality synthetic data

Wang et al. (2024) have demonstrated that the addi-
tion of large quantities of LLM generated synthetic
data can led to substantial improvements in embed-
ding quality. In fact, synthetic data has been so
successful that the current gold standard text em-
bedding benchmark—MTEB (Muennighoff et al.,
2023)—is largely dominated by models that train,
at least in part, on synthetic data (Lee et al., 2025;
Muennighoff et al., 2024; Meng et al., 2024).

However, the synthetic datasets used to train
these models are typically generated using propri-
etary LLMs and remain unavailable to the scientific
community, making it difficult to understand their
role for the generalization of general-purpose em-
bedding models.

We address this by reproducing and publicly re-
leasing the synthetic data from our replication of
Wang et al. (2024). We describe our approach for
generating synthetic data as follows.

Dataset generation pipeline. We generate data
following the pipeline proposed by Wang et al.
which offers an effective method to generate syn-
thetic data that has diverse structure and content.
More specifically, we generate data of six different
categories based on query and document length:
short-short, long-long, short-long, long-short, bi-
text, and STS. Short examples, such as queries in
short-long—consist of a few words or a single sen-
tence, while long examples comprise multiple sen-
tences. In short-short, long-long, STS, and bitext
pairs, queries and documents are drawn from the
same distribution, modeling semantic similarity es-
timation. In contrast, long-short and short-long
pairs involve different distributions, covering tasks
such as classification and retrieval. To ensure diver-
sity of content, we generate data in two steps:

1. Brainstorming: We generate task descriptions
for each of the categories outlined above.

2. Instance generation: We generate training ex-
amples based on both the output of the brain-
storming stage and the associated category.
Each training example consists of an instruc-
tion, a query, a positive example relevant to
the query, and a hard negative example1 that
is only superficially relevant to the query.

Following the pipeline described above, we gener-
ate approximately 500k synthetic examples from
LLaMA-3.1-8B and LLaMA-3.1-70B, respectively.
More details of the generation process along with
prompts, examples, and the final composition of
synthetic data are in Appendix B.

Training and evaluation setup. We experiment
with three different models: Mistral-v0.1-7B,
Mistral-v0.2-7B (Jiang et al., 2023), and Qwen2-
1.5B (Yang et al., 2024), and compare training with-
out synthetic data to training with synthetic data
sourced from either Llama-3.1-70B or Llama-3.1-
8B. We follow Wang et al. (2024) and mix our
synthetic data with the public E5 dataset, using the
version released by Springer et al. (2024).2

We evaluate on the Massive Text Embedding
Benchmark (MTEB; Muennighoff et al. 2023),
which consists of 56 embedding datasets spanning
seven different tasks. For a full list of tasks and

1In some cases, the hard negative is mined instead of gen-
erated. We refer to Appendix B for details.

2Springer et al. (2024) is the only work that replicates the
dataset curation of Wang et al. (2024) and publicly releases it.
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Figure 2: Improvement in MTEB score when adding
synthetic data to the training mixture. Across all set-
tings, our results are consistent with Wang et al. (2024),
showing that training on synthetic data leads to higher
MTEB performance.

datasets along with the details of our evaluation,
see Appendix D.

Synthetic data leads to improvements on MTEB.
We compare our synthetic data to Wang et al.
(2024), and Chen et al. (2024)—a method involving
generating synthetic data from smaller language
models that are fine-tuned to produce high quality
synthetic data.

As shown in Table 1 and Figure 2, our synthetic
data replicates the overall relative improvement of
Wang et al. (2024) as well as Chen et al. (2024).
We note that we do not match the exact scores
of Wang et al. (2024), likely due to differences
in the hyperparameters and general setup used for
training. However, in all cases our synthetic data
substantially improves performance. In fact, our
Mistral-v0.2-7B model trained on LLaMA-3.1-70B
synthetic data outperforms the scores reported by
Wang et al. (2024), and Chen et al. (2024) reaching
an absolute score of 66.9. It is noteworthy that syn-
thetic data especially benefits Qwen2-1.5B (+5.1
points compared to +2.4 points for Mistral-v0.1-
7B).

3 Investigating task influence

Having replicated the findings of Wang et al.
(2024), i.e, that synthetic data improves MTEB
performance on average, we now turn to studying
to what extent the different task types of the syn-
thetic data influences performance of each category
of MTEB. More specifically, does each type of syn-
thetic data broadly improve performance, or are
improvements localized to particular tasks? Even
more importantly, are there inherent performance
trade-offs between different tasks based upon the
exact synthetic data composition? Having answers

Base model Pub. data L-8B L-70B

Mistral-v0.1-7B 63.1 65.0 65.5
Mistral-v0.2-7B 65.4 66.6 66.9
Qwen2-1.5B 58.3 63.4 63.3

Wang et al. 64.6 66.6∗
Chen et al. 66.5∗

Table 1: MTEB scores for different base models and
synthetic data generators. In all cases, adding synthetic
data to the training mixture leads to improved perfor-
mance. Note that Wang et al. and Chen et al. use the
GPT model family for at least part of their synthetic
data generation. See Appendix 3 for more detailed eval-
uations.

to these questions is crucial for our understanding
on how synthetic data impacts the overall general-
ization of text embedding models.

Estimating data influence. To address the ques-
tions posed above, we measure how each synthetic
subset affects model performance with an influ-
ence function, which estimates the typical improve-
ment that a specific subset of the training data
contributes to the final performance. We consider
specifically four of the synthetic data categories:
short-short, short-long, long-long, and long-short.
We train models with all possible 24 = 16 com-
binations of this synthetic data, with the addition
of a non-synthetic base dataset D. To estimate
the influence of a specific category S, we split
the 16 models into two groups: one group P+i of
the eight models with training data that includesS, and another group P−i of the eight remaining
models that exclude S from the training data. We
measure the influence of S by computing the differ-
ence between the mean performance of each group:
EP ∈P+i [perf(D∪P )]−EP ∈P−i [perf(D∪P )]. This
difference quantifies the improvement we expect to
observe by training on each synthetic data category.

In addition to computing influence functions, we
use a two-sided t-test to determine whether each
synthetic category has a statistically significant
(non-zero) contribution to MTEB performance.

Training and evaluation setup. We run experi-
ments with Mistral-v0.2-7B and Qwen2-1.5B, and
compare training on synthetic data from Llama-
3.1-8B, and Llama-3.1-70B. For training, we adopt
the same setup as §2. Evaluation also follows §2
(MTEB) with the caveat that retrieval datasets are
replaced with their faster versions. We refer the
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Figure 3: Influence of different training data cate-
gories on the MTEB evaluation categories when training
Mistral-v0.2-7B on synthetic data from Llama-3.1-70B.
Colored cells indicate statistically significant influence
(p < 0.05). The color indicates the normalized influence:
influence is rescaled so that the maximum (absolute)
influence has a value of ±1. Additional results in Ap-
pendix 3.

reader to Appendix C for full details.

Cross-category generalization is sometimes neg-
ative. Figure 3 plots the influence of each syn-
thetic data set on each task category for Mistral-
v0.2-7B using synthetic data from Llama-3.1-70B.
Surprisingly, we find a trade-off between the perfor-
mance of different categories. For example, train-
ing on the synthetic long-short dataset benefits clas-
sification and clustering performance by 6.65 and
1.19 points on average. Similarly, short-long im-
proves reranking performance (+0.27 points) but
harms sentence similarity (−1.34 points). We ob-
serve similar trade-offs when using Qwen2-1.5B
as a base model, and when training with LLaMA-
3.1-8B synthetic data.

Synthetic data improves performance sparsely.
We indicate the statistical significance of each in-
fluence estimate in Figure 3. Often, the synthetic
data has no statistically significant influence on
many of the MTEB evaluation categories. In fact,
short-short data has no statistically significant im-
provement for any MTEB category.

Even within a particular evaluation category that
improves with synthetic data, the majority of tasks
observe no statistically significant improvement
with synthetic data. For example, we observe
that the long-short dataset, which generally im-
proves the performance of clustering tasks, only
improves StackExchangeClusteringP2P and Arxiv-
ClusteringP2P with significance (see Figure 4).
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Figure 4: Influence of different training data categories
on MTEB clustering tasks when training Mistral-v0.2-
7B on synthetic data from Llama-3.1-70B. Colored cells
indicate statistically significant influence (p < 0.05).
The color indicates the normalized influence: influence
is rescaled so that the maximum (absolute) influence
has a value of ±1. Additional results in Appendix 3.

4 Related work

General-purpose text encoders. A major chal-
lenge when training embedding models is that the
notion of similarity these models learn is corpus-
driven and hence, models often fail to generalize
beyond the similarity definitions they saw during
contrastive training (Thakur et al., 2021; Muen-
nighoff et al., 2023; Ravfogel et al., 2024).

Driven by benchmarks such as BEIR (Thakur
et al., 2021) and MTEB (Muennighoff et al., 2023),
the community has shifted its focus on building
text embedding methods that generalize to multiple
tasks and domains. While prior BERT-based ap-
proaches relied on complex multi-stage pipelines to
achieve this goal (Li et al., 2023; Xiao et al., 2023,
inter alia), recent approaches which are based on
decoder-only LLMs have shown superior perfor-
mance (Wang et al., 2024; BehnamGhader et al.,
2024; Springer et al., 2024; Muennighoff et al.,
2024; Lee et al., 2025, inter alia). Leveraging
advances in instruction-following capabilities of
LLMs, these models achieve improved generaliza-
tion to novel tasks and domains by using natural
language instruction combined with multi-task con-
trastive learning.

Synthetic data for text embeddings. Synthetic
data has been previously used in the information
retrieval literature to generate pseudo queries or
hypothetical documents (Nogueira et al., 2019; Dai
et al., 2023; Wang et al., 2023, inter alia). Re-
cently, Wang et al. (2024) extended this paradigm
to general-purpose text embedding methods, by us-
ing LLMs to generate high-quality training data for
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diverse embedding tasks. Since then, synthetic data
generation has become a widely adopted strategy
for improving text embedding models, particularly
for models competing on the MTEB leaderboard.

5 Conclusion

In this work, we investigate how training on syn-
thetic data influences downstream text embedding
tasks. Our experiments confirm previous findings
that synthetic data can significantly boost overall
performance on MTEB, but offer a more nuanced
perspective: we find that training on certain syn-
thetic data categories can exhibit trade-offs in the
task-specific performances. For example, while
some synthetic data categories improve classifica-
tion or clustering, they may degrade retrieval per-
formance. Our results highlight that the addition
of synthetic data does not always strictly improve
text embedding models. Instead, its benefits are
nuanced, requiring refined generation and training
strategies to balance trade-offs.

Beyond our analysis, we contribute a high qual-
ity reproduction of the synthetic data of Wang et al.
(2024) which we release publicly, along with code
for our reproduction. By releasing our data and
code, we aim to support further research into opti-
mizing synthetic training for general-purpose text
embeddings.

Limitations

Role of the base dataset. In our experiments, we
follow previous work (Wang et al., 2024; Muen-
nighoff et al., 2024) and combine synthetic data
with an existing mixture of publicly available
datasets (Springer et al., 2024). There might be
some non-trivial interactions between our synthetic
dataset and the existing data which we did not con-
trol for in our setup. We hope that releasing our syn-
thetic data will encourage future work to explore
potential interactions between the base dataset and
the synthetic data added to it.

Synthetic data generated from more capable
models. We cannot rule out the possibility that
synthetic data generated from more capable LLMs
might lead to different conclusions from ours. How-
ever, as with the role of the base dataset discussed
above, we hope that by releasing our data to the
community, we make it easy for future work to com-
pare to our data and investigate potential properties
of synthetic data that are responsible for (larger)
improvements in generalization.
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A Background

Let V be a finite vocabulary of tokens. A se-
quence s ∈ V∗ is a finite concatenation of to-
kens s = (s1, . . . , s∣s∣) where each si ∈ V . Our
goal is to train an embedder ϕ ∶ V∗ → Rd, pa-
rameterized by θ ∈ Rp, which maps sequences to
embeddings. The ideal embedder accurately esti-
mates the similarity between any pair of examples
s1, s2 ∈ V∗, parameterized by a metric of similar-
ity between the embeddings. We follow common
practice in the embedding literature and use cosine
similarity as to estimate the similarity between ex-
amples f̂(s1, s2) = cos(ϕ(s1), ϕ(s2)) (Li et al.,
2023; Wang et al., 2024; Springer et al., 2024;
BehnamGhader et al., 2024; Muennighoff et al.,
2024, inter alia).

Contrastive learning. We train a general-
purpose embedding model via contrastive learn-
ing on a dataset D = {⟨si, s+i, s−i⟩}ni=1. Below we
state the loss for a single instance ⟨si, s+i, s−i⟩:
L(⟨si, s+i, s−i⟩) (1)

= − log exp(f̂(si, s+i))
exp(f̂(si, s+i)) + exp(f̂(si, s−i)) .

For simplicity, we stick to a single negative ex-
ample above but note that in practice, we typically
consider multiple negative examples per instance.
In that case, the second term in the denominator be-
comes ∑j exp(s(si, s−i,j)), where we take a sum
over all negative examples for a given input si.

B Synthetic data generation

We follow the synthetic data generation pipeline
of Wang et al. (2024). We follow their prompt
template for both brainstorming and instance gen-
eration. The composition of synthetic data for both
LLaMA-3.1-8B and LLaMA-3.1-70B across dif-
ferent categories in detailed in Table 2. We also
provide an example of short-short category sam-
ple in Table 4, short-long in Table 5, long-short in
Table 6, and long-long in Table 7.

C Training details

Wang et al. (2022) were among the first to demon-
strate that a powerful decoder-only LLM can be
transformed into a high-quality text encoder. To
obtain text embedding, they appended an [EOS]
token to each input and constructed an embedding
form its last layer representation. They fine-tuned

on sentence-pair data using a contrastive learning
objective (see Appendix A) to ensure that the re-
sulting text representations effectively capture the
semantic content of the input text. Wang et al.
trained Mistral-7B (Mistral-7B-v0.1, Jiang et al.
2023) on 1.8 million sentence pairs. They per-
form parameter-efficient fine-tuning via LoRA (Hu
et al., 2022), using a batch size of 2048. The entire
fine-tuning process takes roughly 18 hours on 32
V100 GPUs.

Our training procedure largely follows Wang
et al., but we make minor modifications inspired
by subsequent work. First, we use a more re-
cent base model from the same model family
(Mistral-7B-Instruct-v0.2). Next, following
BehnamGhader et al. (2024) and Muennighoff et al.
(2024), we enable bidirectional connections within
the model architecture and employ mean pooling
over the token embeddings instead of relying on
the final [EOS] token representation.

For the public portion of Wang et al.’s training
data, we use the replication provided by Springer
et al. (2024). This data consists of about 1.5M sam-
ples. For the synthetic portion, we generate about∼500,000 samples following the methodology de-
scribed in §2.

We train the models with LoRA r = 16 and
α = 16 using a batch size of 2048. We use a maxi-
mum sequence length of 512 tokens for fair compar-
ison to previous approaches. We use the AdamW
optimizer with a learning rate of 4e−4, linear learn-
ing rate warm-up for the first 100 steps, and weight
decay with 0.1 coefficient afterwards. We train
all models for one epoch. Training Mistral-7B on
public + synthetic data (∼2M samples) takes about
16 hours on 8 H100 GPUs. We will release the
dataset, pre-trained models and the training code
upon publication.

D MTEB evaluation details

Text embeddings have been widely used in various
NLP tasks, however, traditionally the evaluation of
text embeddings has been limited to a small set of
datasets from a single task such as semantic textual
similarity or text retrieval (Karpukhin et al., 2020;
Wang et al., 2021), making it difficult to estimate
generalization of the proposed methods.

To address this issue, Muennighoff et al. (2023)
proposed MTEB – Massive Text Embedding
Benchmark – a single comprehensive evaluation
suite that spans a total of 56 datasets across 7 dis-
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Model short-short short-long long-long long-short bitext STS Total

LLaMA-3.1-8B 19,769 146,717 17,344 106,577 88,228 99,612 478,247
LLaMA-3.1-70B 19,932 153,934 19,236 108,487 89,611 99,791 490,991

Table 2: Composition of synthetic data from LLaMA-3.1-8B and LLaMA-3.1-70B across different categories.

tinct tasks (retrieval (15), reranking (4), classifi-
cation (12), clustering (11), pair classification (3),
semantic textual similarity (STS, 10), and sum-
marization (1). The individual dataset sizes vary
widely: STS datasets range from 1K to 20K pairs,
classification datasets range from 500-5000 sam-
ples, and retrieval datasets such as MS MARCO
(Bajaj et al., 2018) include thousands of queries
with a 6M document corpus.

In MTEB, every task is reformulated as an em-
bedding task where the only requirement is that
the model produces a vector (embedding) for each
text input. For example, in classification, MTEB
uses the embeddings as fixed features and trains a
lightweight linear classifier (typically logistic re-
gression) on top. The performance of the classi-
fier is treated as a proxy for the quality of the em-
beddings. In clustering, embeddings are fed into
standard clustering algorithms (like mini-batch k-
means) to group similar texts. Retrieval, rerank-
ing and STS follow standard evaluation protocol
is which embeddings of pairs of text are compared
using cosine similarity.

The unified casting of diverse tasks into an em-
bedding framework, simplicity of use, open-source
evaluation code3, and a public leaderboard4 has
led to widespread use of this benchmark within the
NLP community, making it the de facto standard
for evaluating text embedding models.

Faster version of MTEB. One drawback of
MTEB is that evaluating a model is very compu-
tationally intensive. This is largely due to the re-
trieval task category, where each dataset has sepa-
rate corpus containing millions of documents. To
address this, Enevoldsen et al. (2025) developed
smaller versions of the retrieval datasets contained
in MTEB by carefully selecting candidate docu-
ments for each query in the dataset. They showed
that keeping only 250 documents per query, se-
lected via hard-negative mining, maintains the abso-
lute scores and model ranking compared to evaluat-
ing on the original datasets. While we use original

3https://github.com/embeddings-benchmark/mteb
4https://huggingface.co/spaces/mteb/leaderboard

datasets for evaluation in §2 for a fair comparison
with Wang et al. (2022), our analysis in §3 uses the
faster version of the retrieval datasets.

E Additional evaluations

E.1 Full MTEB evaluations
We evaluate each model that we consider in the
main paper on MTEB in Table 1. In this section,
we expand these results by plotting the average
scores for each of the categories in Table 3. We
find that our synthetic data improves clustering
performance most substantially.

E.2 Omitted influence plots
We extend Figures 3 and 4 with the results from
all four settings: Mistral-v0.2-7B and Qwen2-
1.5B base models, trained on LLaMA-3.1-8B or
LLaMA-3.1-70B synthetic data. We plot the re-
sults in Figures 5, 6, 7, 8, and 9. In general, we
observe similar trends from the main paper.
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Cls. Clust. P. Clas. Rera. Retr. STS Sum. Mean
# of datasets→ 12 11 3 4 15 10 1 56

Qwen2-1.5B Public data only 70.2 42.3 83.1 51.6 48.2 76.2 31.4 58.3
Qwen2-1.5B LLaMA-3.1-8B 76.6 47.0 86.2 55.5 54.1 80.2 30.8 63.4
Qwen2-1.5B LLaMA-3.1-70B 76.5 47.2 86.9 55.0 54.4 79.3 29.7 63.3

Mis.-v0.1-7B Public data only 75.6 44.3 86.3 57.5 54.7 81.4 30.0 63.1
Mis.-v0.1-7B LLaMA-3.1-8B 77.6 47.3 87.3 58.2 56.5 83.1 30.8 65.0
Mis.-v0.1-7B LLaMA-3.1-70B 77.9 49.1 87.4 57.6 57.1 82.9 30.1 65.5

Mis.-v0.2-7B Public data only 76.7 46.8 87.6 59.0 58.7 83.7 30.1 65.4
Mis.-v0.2-7B LLaMA-3.1-8B 78.7 49.8 87.9 58.5 59.1 83.7 30.7 66.6
Mis.-v0.2-7B LLaMA-3.1-70B 78.3 50.5 88.2 60.0 58.2 85.7 31.3 66.9

Table 3: Full MTEB evaluations for each model.
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(a) Mistral-v0.2-7B cross influence with LLaMA-3.1-8B.
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(b) Mistral-v0.2-7B cross influence with LLaMA-3.1-70B.
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(c) Qwen2-1.5B cross influence with LLaMA-3.1-8B.
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(d) Qwen2-1.5B cross influence with LLaMA-3.1-70B.

Figure 5: Comparison of cross-influence results for different models and synthetic datasets.

Synthetic data category: short-short
Instruction: Identify a famous painting from a brief description.

Llama-3.1-70B
Generated data: {
"query": "Painting of a woman with a mysterious smile",
"positive": "The Mona Lisa by Leonardo da Vinci",
"negative": "Claude Monet"
}

Llama-3.1-8B
Generated data: {
"query": "a woman with a clock",
"positive": "Girl with a Pearl Earring by Johannes Vermeer",
"negative": "a toy that runs using a spring"
}

Table 4: Sample from short-short subgroup of the synthetic data.
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Figure 6: Detailed breakdown of Mistral-v0.2-7B influence on various tasks with LLaMA-3.1-8B synthetic data.
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Figure 7: Detailed breakdown of Mistral-v0.2-7B influence on various tasks with LLaMA-3.1-70B synthetic data.
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Figure 8: Detailed breakdown of Qwen2-1.5B influence on various tasks with LLaMA-3.1-8B synthetic data.
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Figure 9: Detailed breakdown of Qwen2-1.5B influence on various tasks with LLaMA-3.1-70B synthetic data.
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Synthetic data category: short-long
Instruction: Search for documentaries about the effects of pollution on human health.

Llama-3.1-70B
Generated data: {
"query": "Documentaries exploring the long-term health effects of microplastic consumption in human populations",
"positive": "The Devil We Know is a 2018 documentary that examines the effects of plastics on human health and the
environment. The film focuses on the history of plastics and their impact on human health, including the leaching of chemicals
into food and water. ...truncated for brevity .... While the film does not focus exclusively on microplastic consumption, it
provides a comprehensive overview of the issue and its effects on human health. The documentary has been praised for its
thorough research and engaging storytelling, and has won several awards for its contribution to the public understanding of
environmental issues. The film is a valuable resource for anyone looking to understand the impact of plastics on human
health, and the ways in which individuals and communities can work to reduce their exposure to these pollutants.",
"negative": "Plastic Ocean is a 2016 documentary that explores the impact of plastic pollution on marine ecosystems. The
film follows a team of researchers as they travel the world, documenting the effects of plastic waste on ocean life. ...truncated
for brevity .... The film has been praised for its visually stunning footage and its ability to raise awareness about the issue of
plastic pollution."
}

Llama-3.1-8B
Generated data: {
"query": "The effects of particulate matter on cardiovascular disease in low-income communities in urban areas with high
levels of air pollution",
"positive": "Air pollution is a significant public health concern worldwide, particularly in low-income communities. The
World Health Organization (WHO) estimates that 9 out of 10 people worldwide breathe polluted air, resulting in over 7
million premature deaths annually. One of the primary pollutants responsible for this alarming rate is particulate matter (PM).
...truncated for brevity ....To mitigate the effects of PM on cardiovascular disease, several strategies can be implemented.
These include reducing emissions from vehicles, industrial sites, and power plants, increasing the use of renewable energy
sources, and promoting green infrastructure such as green roofs and urban parks. Additionally, improving air quality
monitoring and public education can help raise awareness about the risks associated with PM exposure. In conclusion, the
effects of particulate matter on cardiovascular disease in low-income communities in urban areas with high levels of air
pollution are a pressing public health concern. It is essential to address this issue through a combination of policy changes,
technological innovations, and community-based interventions to reduce PM exposure and protect the health and well-being
of vulnerable populations.",
"negative": "The effects of air pollution on human health have been a topic of interest for many years. However, the
relationship between particulate matter and cardiovascular disease is not as clear-cut as previously thought. While some
studies have found a link between PM exposure and cardiovascular disease, others have found no significant association. A
2019 study published in the Journal of Exposure Science & Environmental Epidemiology found that exposure to PM2.5
was associated with an increased risk of cardiovascular disease in a cohort of older adults. However, this study had several
limitations, including a small sample size ...truncated for brevity .... In conclusion, while some studies have found a link
between PM exposure and cardiovascular disease, the evidence is not conclusive, and more research is needed to fully
understand the relationship between these two factors. It is essential to consider the complexity of the issue and the potential
confounding variables when interpreting the results of studies on this topic.
}

Table 5: Sample from short-long subgroup of the synthetic data.
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Synthetic data category: long-short
Instruction: Classify data breach notifications into high, medium, and low risk categories.

Llama-3.1-70B
Generated data: {
"query": "A security incident has been reported at a prominent e-commerce platform, affecting the sensitive information of
over 500,000 customers. According to the company’s investigation, a vulnerability in their login system allowed unauthorized
access to their database. While the company assures that no financial data was compromised, email addresses, phone
numbers, and physical addresses were exposed. The incident occurred due to a misconfigured security update, which left
the system open to attacks for a period of three weeks. The company is working closely with law enforcement agencies to
identify the perpetrators and has implemented additional security measures to prevent similar incidents in the future. As a
precautionary measure, all affected customers have been notified and advised to change their passwords immediately.",
"positive": "high risk",
"negative": "medium risk"
}

Llama-3.1-8B
Generated data: {
"query": "A sophisticated phishing attack targeted a large corporation’s IT department, resulting in the unauthorized access
to sensitive customer data. The attackers used a combination of social engineering tactics and zero-day exploits to breach
the company’s network, ultimately gaining access to over 1 million customer records. The breach was discovered after a
routine security audit revealed suspicious network activity. The affected data includes names, addresses, and payment card
information. The company is taking immediate action to notify affected customers and is cooperating with law enforcement
to investigate the incident.",
"positive": "high",
"negative": "medium"
}

Table 6: Sample from long-short subgroup of the synthetic data.

22566



Synthetic data category: long-long
Instruction: Given comprehensive insights into the utility of meditation, locate opposing views arguing against its psycho-
logical benefits.

Llama-3.1-70B
Generated data: {
"query": "While numerous studies have demonstrated the benefits of meditation for both physical and mental well-being,
a growing body of research has begun to challenge the notion that meditation is a universally beneficial practice. Critics
argue that meditation can have negative effects on certain individuals, particularly those with a history of trauma or mental
health issues. For example, some studies have found that mindfulness meditation can exacerbate symptoms of anxiety and
depression in individuals who are prone to rumination, or the tendency to repetitively think negative thoughts. Additionally,
meditation can be used as a form of avoidance, allowing individuals to disengage from their problems rather than confronting
and resolving them. Furthermore, the emphasis on individualism and self-improvement in Westernized forms of meditation
can be alienating for individuals from collectivist cultures, who may view meditation as a selfish pursuit. Moreover, the
commercialization of meditation has led to the proliferation of inexperienced and unqualified teachers, who may not be
equipped to provide adequate guidance and support to students. In light of these findings, it is essential to approach the
practice of meditation with a critical and nuanced perspective, recognizing both its potential benefits and limitations.",
"positive": "The benefits of meditation have been extensively researched and documented, with studies demonstrating its
positive impact on both physical and mental health. ...truncated for brevity .... As the scientific evidence supporting the
benefits of meditation continues to grow, it is becoming increasingly clear that this ancient practice has the potential to
improve overall well-being and quality of life.",
"negative": "A recent study published in the Journal of Clinical Psychology found that participants in an MBSR program
exhibited significant reductions in symptoms of anxiety and depression, as well as improved mood and quality of life. The
study, which was conducted at a large urban medical center, included 100 participants who were randomly assigned to
either an MBSR group or a wait-list control group. ...truncated for brevity .... Participants in the wait-list control group
did not receive any mindfulness training, but were given the option to participate in the MBSR program after the study was
completed. The results of the study showed that participants in the MBSR group exhibited significant reductions in pain and
improved mood, compared to participants in the wait-list control group. The study’s authors note that further research is
needed to fully understand the mechanisms by which MBSR programs achieve their benefits for individuals with chronic
pain, but suggest that the program may be a useful tool for improving pain management outcomes."
}

Llama-3.1-8B
Generated data: {
"query": "The effectiveness of meditation in reducing stress and anxiety has been extensively documented in various
scientific studies. Meditation has been shown to decrease the production of stress hormones, such as cortisol, and increase the
production of neurotransmitters that promote feelings of relaxation and well-being. Regular meditation practice has also been
linked to improved sleep quality, reduced blood pressure, and a stronger immune system. Furthermore, meditation has been
used as a tool for managing chronic pain, depression, and anxiety disorders. The benefits of meditation are not limited to
physical health; it has also been shown to improve cognitive functioning, including attention, memory, and problem-solving
skills. Meditation can be practiced in various forms, including mindfulness meditation, loving-kindness meditation, and
transcendental meditation. The scientific community has extensively studied the effects of meditation, and the evidence
suggests that it is a valuable tool for promoting overall well-being and reducing stress and anxiety. What are some opposing
views that argue against the psychological benefits of meditation?",
"positive": "Meditation has been widely accepted as a valuable tool for promoting mental and physical well-being. Research
has shown that regular meditation practice can reduce stress and anxiety, improve sleep quality, and even alleviate symptoms
of depression and anxiety disorders....truncated for brevity .... The scientific community has extensively studied the effects
of meditation, and the evidence suggests that it is a valuable tool for promoting overall well-being and reducing stress and
anxiety. Regular meditation practice has been shown to have a positive impact on both physical and mental health, making it
an important component of a healthy lifestyle.",
"negative": "While the benefits of prioritizing mental health are well-documented, there are also potential drawbacks to
consider. For example, a study published in the Journal of Behavioral Addictions found that excessive exercise and physical
activity can actually exacerbate anxiety and depression in some individuals (Kvam et al., 2016). ...truncated for brevity ....
Moreover, some researchers have argued that the emphasis on individual responsibility for mental health can be problematic,
as it can lead to stigma and shame for those who are struggling (Slaby, 2002). By taking a more nuanced approach to mental
health, one that acknowledges the complexities and limitations of the current understanding, we can work towards creating a
more comprehensive and effective approach to mental health support."

}

Table 7: Sample from long-long subgroup of the synthetic data.
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