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Abstract
Several studies have shown that Large Lan-
guage Models (LLMs) can answer medical
questions correctly, even outperforming the
average human score in some medical exams.
However, to our knowledge, no study has been
conducted to assess the ability of language mod-
els to validate existing or generated medical
text for correctness and consistency. In this pa-
per, we introduce MEDEC1, the first publicly
available benchmark for medical error detec-
tion and correction in clinical notes, covering
five types of errors (Diagnosis, Management,
Treatment, Pharmacotherapy, and Causal Or-
ganism). MEDEC consists of 3,848 clinical
texts, including 488 clinical notes from three
US hospital systems that were not previously
seen by any LLM. The dataset has been used in
the MEDIQA-CORR 2024 shared task to eval-
uate seventeen participating systems. In this
paper, we describe the data creation methods
and we evaluate recent LLMs (e.g., o1-preview,
GPT-4, Claude 3.5 Sonnet, Gemini 2.0 Flash,
and DeepSeek-R1) for the tasks of detecting
and correcting medical errors requiring both
medical knowledge and reasoning capabilities.
We also conducted a comparative study where
two medical doctors performed the same task
on the MEDEC test set. The results showed that
MEDEC is a sufficiently challenging bench-
mark to assess the ability of models to validate
existing or generated notes and to correct medi-
cal errors. We also found that although recent
LLMs have a good performance in error detec-
tion and correction, they are still outperformed
by medical doctors in these tasks. We discuss
the potential factors behind this gap, the in-
sights from our experiments, the limitations of
current evaluation metrics, and share potential
pointers for future research.

1 Introduction

A survey study from US health care organizations
showed that one in five patients who read clinical

1https://github.com/abachaa/MEDEC

notes reported finding mistakes and 40% perceived
the mistake as serious, with the most common cat-
egory of mistakes being related to current or past
diagnoses (Bell et al., 2020).

On the other hand, more and more medical doc-
umentation tasks (e.g., clinical note generation)
are being supported by LLMs. In multiple studies,
LLMs have shown the ability to answer accurately
questions from medical exams (Gilson et al., 2023;
Johnson et al., 2023; Schubert et al., 2023) and to
imitate clinical reasoning in providing diagnoses
(Savage et al., 2024).

However, one of the main obstacles in adopting
LLMs in medical documentation tasks is their po-
tential to generate hallucinations or incorrect infor-
mation (Tang et al., 2023) and harmful content that
might alter clinical decision making (Chen et al.,
2024). Rigorous validation methods are essential
to mitigate these risks and make LLMs safer to
use for medical content generation (Karabacak and
Margetis, 2023).

Relevant benchmarks are required to assess
whether such validation can be fully automated.
A key task in this regard is the ability to detect and
correct medical errors in clinical texts.

Most previous studies on (common sense) er-
ror detection have focused on the general domain
(Wang et al., 2020; Onoe et al., 2021). In this paper,
we tackle the problem of identifying and correct-
ing medical errors in clinical texts. From a human
perspective, identifying and correcting these errors
requires medical expertise, specialized knowledge,
and sometimes practical experience. We introduce
a new dataset, MEDEC, and experiment with dif-
ferent recent LLMs (e.g., Claude 3.5 Sonnet, o1-
preview, Gemini 2.0 Flash, and DeepSeek-R1). To
the best of our knowledge, this is the first publicly
available benchmark and study on automatic error
detection and correction in clinical notes.
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Figure 1: Examples from the MEDEC (MS) dataset.

2 Related Work

Jang et al. (2022) introduced a benchmark for con-
sistency evaluation and evaluated pretrained lan-
guage models (e.g, BERT, T5, and GPT-2) on three
main categories: semantic, logical, and factual con-
sistency. They found that those language models
do not perform well in every test case and have a
high level of inconsistency in many cases. Jang
and Lukasiewicz (2023) investigated the trustwor-
thiness of more recent language models, ChatGPT
and GPT-4, regarding semantic consistency and
found that while both models appear to show an
enhanced language understanding and reasoning
ability, they often fail at generating logically con-
sistent predictions.

In the medical domain, several recent studies
evaluated large language model accuracy and con-
sistency. Johnson et al. (2023) conducted a study
to assess the accuracy and reliability of medical re-
sponses generated by ChatGPT. Thirty-three physi-
cians across 17 specialties generated 284 medi-
cal questions with different levels of difficulty and

graded ChatGPT’s answers for accuracy and com-
pleteness. While most of the generated text was
evaluated by physicians as accurate, there were
potential limitations in handling complex medical
questions.

In two separate studies, Schubert et al. (2023)
and Gilson et al. (2023) found that GPT models can
answer medical questions correctly in neurology
board–style examinations and the United States
Medical Licensing Examination (USMLE) Step 1
and Step 2 exams, even outperforming the average
human score in some instances.

Chen et al. (2024) assessed the effect and safety
of LLM-assisted patient messaging, as one of the
earliest applications of LLMs in electronic health
records (EHRs). The fact that LLM-assisted re-
sponses were more similar to the LLM drafts than
to the manual responses, together with the im-
proved interphysician agreement, suggested that
doctors might adopt the LLM’s responses and as-
sessments. The study also found that a minority of
LLM drafts, if left unedited, could lead to severe
harm or death.
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The safe introduction and use of LLMs in med-
ical documentation tasks requires reliable and au-
tomatic validation methods. However, as far as we
know, no benchmark was made publicly available
to assess the ability of LLMs in validating exist-
ing or generated medical text for correctness and
consistency.

In this paper, we present MEDEC, the first
benchmark for medical error detection and correc-
tion in clinical notes. We describe the data creation
methods and we evaluate recent state-of-the-art
open domain LLMs for these tasks.

The MEDEC dataset has been used in the first
shared task on medical error detection and correc-
tion, MEDIQA-CORR 2024, to evaluate models
and solutions from seventeen participating teams
(Ben Abacha et al., 2024).

3 MEDEC Dataset

MEDEC contains 3,848 clinical texts from differ-
ent specialties. Eight medical annotators partici-
pated in the annotation task. The dataset covers
five types of errors:

• Diagnosis: The provided diagnosis is inaccu-
rate.

• Management: The next step provided in man-
agement is inaccurate.

• Pharmacotherapy: The recommended phar-
macotherapy is inaccurate.

• Treatment: The recommended treatment is
inaccurate.

• CausalOrganism: The indicated causal organ-
ism or causal pathogen is inaccurate.

These error types were selected after analyzing the
most frequent question types identified in official
medical board exams. The distribution of error
types followed the original distribution of question
types found in the analyzed question-answer pairs.
Figure 2 presents the distribution of error types (Di-
agnosis, Management, Treatment, Pharmacother-
apy, and Causal Organism) in the MEDEC dataset.

Each clinical text in the dataset is either correct
or contains one error introduced using one of two
different methods: MS (described in Section 3.1)
and UW (described in Section 3.2). The main moti-
vation for using two different data creation methods
was to diversify the errors through different error
injection approaches (i.e., leveraging questions and
answers from medical board exams in MS vs. man-
ual modification of medical entities or spans in
original clinical notes in UW). By using varied

Figure 2: MEDEC - Error Type Distribution.

clinical texts and multiple error injection methods,
we aim to enable a more comprehensive evaluation
of the models’ ability to handle a broader range of
scenarios.

Table 1 presents the training, validation, and
test splits. The MS training set contains 2,189
clinical texts. The MS validation set contains 574
clinical texts and the UW validation set contains
160 clinical texts. The MEDEC test set consists of
597 clinical texts from the MS collection and 328
clinical texts from the UW dataset. 51.3% of the
test notes contain errors while 48.7% of the notes
are correct.

The MEDEC dataset is available at: https://
github.com/abachaa/MEDEC. The MS subset is
publicly available. The UW subset requires signing
a data usage agreement (DUA). Figure 1 presents
examples from the MEDEC-MS collection.

3.1 Data Creation Method #1 (MS)
In this method, we leverage medical board ex-
ams from the MedQA collection (Jin et al., 2020).
These exams present realistic medical scenarios
and provide valuable resource for assessing medi-
cal knowledge and identifying gaps in clinical un-
derstanding.

Four annotators with medical backgrounds re-
viewed the medical narratives and multiple-choice
questions, first verifying the accuracy of the origi-
nal question–answer pairs and excluding those with
errors, ambiguity, or missing context (e.g., required
exam results). They then modified the scenario text
by injecting a plausible but incorrect answer, fol-
lowing these guidelines:

• Using medical narrative multiple choice ques-
tions, introduce a wrong answer into the sce-
nario text and create two versions with the
error injected either in the middle of the text
or at the end.

• Using medical narrative multiple choice ques-
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Collection Training Validation Test Total
MS # texts 2,189 574 597 3,360
UW # texts - 160 328 488
MEDEC # texts 2,189 734 925 3,848

# texts without errors 970 (44.3%) 335 (45.6%) 450 (48.7%) 1,755 (45.6%)
# texts with errors 1,219 (55.7%) 399 (54.4%) 475 (51.3%) 2,093 (54.4%)

Table 1: MEDEC Dataset: Training, Validation, and Test Sets

tions, introduce the right answer into the sce-
nario text to create a correct version, as de-
scribed in Figure 3 (Generated Text with Cor-
rect Answer).

• Check manually if the automatically rewritten
text is faithful to the original scenario and the
included answer.

We randomly selected one correct and one incor-
rect version for each note from the two different
scenarios (error injected in the middle of the text
or at the end) in the final dataset.

3.2 Data Creation Method #2 (UW)

We used a database of real clinical notes between
2009 and 2021 from three University of Washing-
ton (UW) hospital systems2: Harborview Medical
Center, UW Medical Center, and Seattle Cancer
Care Alliance.

From this database, we randomly selected 488
out of 17,453 diagnosis supports, which summarize
patients’ medical conditions and provide rationales
for treatments.

A team of four medical students manually intro-
duced errors into 244 of these notes. Initially, each
note was marked with several candidate entities
identified as Unified Medical Language System
(UMLS)3 concepts by QuickUMLS4.

An annotator either selected a concise medical
entity from these candidates or created a new span.
This span was then labeled with one of the five
error types. The annotator then replaced this span
with an erroneous version using similar but distinct
concepts, crafted by the annotators themselves or
provided by a SNOMED- and LLM-based method.
This method was used to suggest alternative con-
cepts to the annotators without using the input
text. Medical annotators decided on the final con-
cepts/errors to inject manually in the text.

During this process, each error span was required
to contradict at least two other parts of the clinical
notes (and annotators provided a justification for

2The MEDEC-UW subset requires signing a DUA. Examples presented in
this paper are selected from the MEDEC-MS subset.

3
https://www.nlm.nih.gov/research/umls/licensedcontent/

umlsknowledgesources.html
4
https://github.com/Georgetown-IR-Lab/QuickUMLS

each error introduced). We de-identified the clin-
ical notes (post error injection) with Philter5 for
automatic de-identification. Each note was then
independently reviewed by two annotators to en-
sure proper de-identification. A third annotator
adjudicated any remaining discrepancies.

4 Medical Error Detection & Correction
Approaches

In order to evaluate models on medical error de-
tection and correction, we divide the process into
three subtasks:

• Subtask A: Predicting the error flag (0: if the
text has no error; 1: if the text contains an
error).

• Subtask B: Extracting the sentence that con-
tains the error for flagged texts (-1: if the text
has no error; Sentence ID: if the text contains
an error).

• Subtask C: Generating a corrected sentence
for texts flagged as containing errors (NA:
if the text has no error; Generated sen-
tence/correction: if the text has an error).

For comparison, we build LLM-based solutions
using two different prompts to generate the outputs
required to assess the models on the three subtasks:

• P#1: The following is a medical narrative about a

patient. You are a skilled medical doctor reviewing the

clinical text. The text is either correct or contains one

error. The text has one sentence per line. Each line

starts with the sentence ID, followed by a pipe charac-

ter then the sentence to check. Check every sentence

of the text. If the text is correct return the following

output: CORRECT. If the text has a medical error re-

lated to treatment, management, cause, or diagnosis,

return the sentence id of the sentence containing the er-

ror, followed by a space, and then a corrected version of

the sentence. Finding and correcting the error requires

medical knowledge and reasoning.

• P#2 Similar to the first prompt, but includes
an example, randomly selected from the train-
ing set: Here is an example. 0 A 35-year-old woman

presents to her physician with a complaint of pain and

5
https://github.com/BCHSI/philter-deidstable1_mirror
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Figure 3: Method #1: Correct answer injected in the question text to create the reference note. The same process
was used to inject a selected incorrect answer and to create another version of the note containing a medical error.

stiffness in her hands. 1 She says that the pain began 6

weeks ago a few days after she had gotten over a minor

upper respiratory infection (...). In this example, the er-

ror is in the sentence number 10: Methotrexate is given.

The correction is: Prednisone is given. The output is:

10 1 Prednisone is given. End of Example.

5 Experiments & Results

5.1 Language Models

We experiment with several recent small and large
language models:

1. Phi-3-7B, a Small Language Model (SLM)
(Abdin et al., 2024)

2. Claude 3.5 Sonnet (2024-10-22), the latest
model from the Claude 3.5 family offer-
ing state-of-the-art performance across sev-
eral coding, vision, and reasoning tasks (An-
thropic, 2024).

3. Gemini 2.0 Flash: the latest/most advanced
Gemini model (Google, 2024). Other Google
models such as Med-PaLM models (Singhal
et al., 2023), designed for medical purposes,
were not publicly available.

4. ChatGPT (Brown et al., 2020; OpenAI, 2023a)
and GPT-4, a "high-intelligence" model (Ope-
nAI, 2023c,b).

5. GPT-4o providing "GPT-4-level intelligence
but faster" (OpenAI, 2024a) and the GPT-4o-
mini (gpt-4o-2024-05-13) small model for fo-
cused tasks (OpenAI, 2024b).

6. The recent o1-mini (o1-mini-2024-09-12)
(OpenAI, 2024d) and o1-preview (o1-preview-
2024-09-12) models with "new AI capabili-
ties" for complex reasoning tasks (OpenAI,

2024c).
7. DeepSeek-R16, an open-source large lan-

guage model that uses reinforcement learn-
ing to perform reasoning tasks (DeepSeek-AI
et al., 2025).

Few models (e.g., Phi-3 and Claude) required
minimal automatic post-processing to correct some
formatting issues.

5.2 Evaluation Metrics
To evaluate the models’ performance in recogniz-
ing medical errors in texts, we relied on Accuracy
for Error Flag Prediction (subtask A) and Error
Sentence Detection (subtask B).

To further analyze the error detection results for
each error type, we also computed the Recall using
the subset of test examples with errors (i.e., error
flag = 1) for each type.

To evaluate the generated corrections (subtask
C), we selected lexical, contextual embedding-
based, and medical knowledge-graph embedding-
based metrics:

• Three open-domain Natural Language
Generation (NLG) metrics, that outperformed
other standard NLG metrics in terms of
correlation scores with medical experts on
clinical datasets (Ben Abacha et al., 2023):
ROUGE − 1 (Lin, 2004), BLEURT
(Sellam et al., 2020), and BERTScore
(microsoft/deberta-xlarge-mnli) (Zhang
et al., 2020), and their Aggregate Score
(AggregateScore), which is the average of
these three NLG metrics.

6We used DeepSeek-R1 available in Azure AI Foundry:
https://learn.microsoft.com/en-us/azure/ai-studio/how-to/
deploy-models-deepseek?pivots=programming-language-python.
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• The medical metric MIST (Ben Abacha et al.,
2023) that relies on medical knowledge-graph
embedding models to compute the similar-
ity between UMLS concepts associated with
the medical entities extracted from the ref-
erence and automatic texts7. The MIST-
COMB variant combines MIST, ROUGE-1-R,
and BERTScore-R. MIST and MIST-COMB
showed positive correlation with medical ex-
perts’ judgments on clinical datasets.

We computed these error correction scores when
both the reference and system corrections are
provided (other than NA). Our evaluation scripts
are available at: https://github.com/abachaa/
MEDIQA-CORR-2024/tree/main/evaluation.

5.3 Comparison with Expert Labeling

Two medical doctors performed the same subtasks
on the MEDEC dataset to assess the difficulty of
detecting and correcting the errors. The doctors
annotated 569 clinical notes from the full test set
of 925 texts, with 242 notes annotated by both to
compute inter-annotator agreement (IAA).

Given a clinical text from the test set without the
ground truth (without the error flag, error sentence,
and reference correction), the medical doctors were
tasked to (i) judge whether a medical error exists
in the text, (ii) if an error exists, write the sentence
ID of the sentence where the error occurred, and
(iii) provide the most likely error correction and its
type (e.g., diagnosis, management, treatment).

The IAA between the two doctors, measured
by accuracy, was 69.01% on error flag detection
and 57.85% on error sentence detection, which
highlights the challenging nature of the task.

5.4 Results

Table 2 presents the results of the manual anno-
tation performed by the medical doctors and the
results of several recent LLMs using the two zero-
shot and one-shot prompts described above. Claude
3.5 Sonnet outperformed the other LLM-based
methods in error flag detection with 70.16% Accu-
racy and in error sentence detection with 65.62%
Accuracy. The o1-mini model achieved the second
best error flag detection Accuracy of 69.08%.

In error correction, o1-preview achieved the
best Aggregate Score of 0.698, followed by

7Medical entities and their UMLS Concept Unique
Identifiers (CUIs) are extracted using the scispaCy
(en_core_sci_scibert) medical entity linking model (Neumann
et al., 2019) with a threshold of 0.7.

DeepSeek-R1 with 0.675 Aggregate Score. Al-
though DeepSeek-R1 had lower performance in
error flag and error sentence detection, the model
was able to provide high-quality corrections on the
subset of correctly detected errors.

The medical NLG metric MIST highlighted
Claude 3.5 Sonnet as the best model in generat-
ing corrections that are similar to the references in
terms of medical concepts. This result is in align-
ment with Claude’s best accuracy scores in error
flag and error sentence detection.

Table 3 presents the error detection Accuracy
and error correction scores on each MEDEC col-
lection. The MS subset was more challenging
for Claude 3.5 Sonnet and Doctor #2, while the
UW subset was more challenging for o1-preview
and Doctor #1.

The results show that recent LLMs have a good
performance in error detection and correction, rel-
ative to the doctors’ scores, but they are still out-
performed by the medical doctors in these tasks.
This could be explained by the fact that such error
detection and correction tasks are relatively rare
online and in medical textbooks, which means that
these large models are less likely to have encoun-
tered such data in their pretraining. This can be
seen specifically in the o1-preview results where
the model achieved 73% and 69% Accuracy in
error and sentence detection on the MS subset
that was built from publicly available clinical texts,
while achieving only 58% and 48% Accuracy on
the UW collection of private clinical notes.

Another factor is that the task consists in an-
alyzing and fixing an existing text that was not
generated by LLMs, which might have a higher
level of difficulty than drafting new answers from
scratch.

We observed in early experiments that prompt-
ing strategies such as in-context learning (P#2)
and chain-of-thoughts improved the performance
of older LLMs but did not outperform zero-shot
prompting with newer LLMs such as o1-preview.
This is likely due to larger pre-training data and
improved generalization capabilities of the more
recent models. Beyond strategies P#1 and P#2,
several additional and potentially more effective
prompting approaches remain to be explored for
the MEDEC tasks, such as retrieval-augmented
prompting (which incorporates relevant external
knowledge into the prompt) and instruction-based
prompting (where the model is given explicit direc-
tives).
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Model
Error Detection Accuracy Error Correction
Err Flag Err Sentence ROUGE-1 BERTScore BLEURT AggScore MIST MIST-COMB

Phi-3 0.5276 0.2443 0.2606 0.1514 0.4683 0.2935 0.7506 0.5475
GPT-4o-mini 0.6086 0.4757 0.5148 0.5089 0.5640 0.5292 0.6882 0.6236
o1-mini 0.6908 0.5968 0.6052 0.6275 0.6246 0.6191 0.6277 0.6284
Claude 3.5 Sonnet 0.7016 0.6562 0.2253 0.1033 0.5100 0.2795 0.9325 0.6943
Claude 3.5 Sonnet∗ 0.6800 0.6508 0.2249 0.1125 0.5081 0.2818 0.9120 0.7074
Gemini 2.0 Flash 0.5805 0.3535 0.3769 0.3127 0.4865 0.3920 0.7774 0.6425
ChatGPT 0.4811 0.4800 0.4198 0.3235 0.5133 0.4189 0.6717 0.5982
GPT-4o 0.6584 0.5665 0.5517 0.5373 0.5852 0.4682 0.6751 0.6345
GPT-4o∗ 0.6368 0.5449 0.5805 0.5401 0.6022 0.5743 0.6600 0.6269
o1-preview 0.6746 0.6140 0.6884 0.7095 0.6949 0.6976 0.7027 0.7198
GPT-4 0.6573 0.5568 0.5553 0.5804 0.5896 0.5751 0.6528 0.6245
GPT-4∗ 0.6519 0.5773 0.6271 0.6522 0.6368 0.6387 0.6507 0.6613
DeepSeek-R1 0.5168 0.4605 0.6630 0.6921 0.6703 0.6751 0.7111 0.7068

Medical Doctors

Doctor #1 0.7961 0.6588 0.3863 0.4653 0.5066 0.4527 0.6213 0.5165
Doctor #2 0.7161 0.6677 0.7260 0.7315 0.6780 0.7118 0.6738 0.7141

Table 2: Accuracy of error (flag & sentence) prediction and error sentence correction scores. ∗ Uses P#2 prompt.
Best LLM scores are double underlined. Second best scores are underlined. Best Error Detection Accuracy achieved
by Claude followed by o1-mini (but lower than both doctors’ accuracy scores). o1-preview and DeepSeek-R1
achieved the best error correction AggregateScore (but lower than Doctor#2 score).

Dataset
Error Detection Accuracy Error Correction

Error Flag Error Sentence ROUGE-1 BERTScore BLEURT AggregateScore

Claude 3.5 Sonnet (2024-10-22)

MS Subset 0.6750 0.6348 0.1822 0.0793 0.4996 0.2537
UW Subset 0.7500 0.6951 0.3100 0.1508 0.5305 0.3304

o1-preview (2024-09-12)

MS Subset 0.7286 0.6884 0.6857 0.7227 0.7046 0.7043
UW Subset 0.5762 0.4787 0.6936 0.6848 0.6767 0.6850

Medical Doctor #1

MS Subset 0.8125 0.7670 0.4199 0.5127 0.5394 0.4907
UW Subset 0.7595 0.4177 0.3073 0.3542 0.4298 0.3638

Medical Doctor #2

MS Subset 0.6890 0.6459 0.6845 0.6981 0.6503 0.6776
UW Subset 0.7723 0.7129 0.8016 0.7926 0.7284 0.7742

Table 3: Accuracy and error correction scores on each subset: MS & UW test sets. The MEDEC-MS subset was
more challenging for Claude and Doctor #2. MEDEC-UW was more challenging for o1-preview and Doctor #1.

Table 4 presents the error detection Recall and
error correction scores for each error type (Diag-
nosis, Management, Treatment, Pharmacotherapy,
and Causal Organism). The o1-preview model had
substantially higher error flag and sentence detec-
tion Recall scores across all error types compared
to Claude 3.5 Sonnet and both doctors. Combined
with the overall Accuracy results (cf. Table 2),
where the doctors achieved better Accuracy, these
results indicate that the model(s) had a substan-
tial issue on the Precision side and hallucinated
error presence in many cases compared to medical

doctors.

The results also show that there is a ranking dis-
crepancy between classification performance and
error correction generation performance. For in-
stance, Claude 3.5 Sonnet was first in Accuracy
of error flag and sentence detection among all the
models, but was last in correction generation scores
(cf. Table 2). Also, o1-preview was fourth in error
detection Accuracy among all the LLMs, but was
first and substantially ahead in correction genera-
tion. The same pattern could be observed between
the two medical doctors.
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Error Type
Error Detection Recall Error Correction

Error Flag Error Sentence ROUGE-1 BERTScore BLEURT AggregateScore

Claude 3.5 Sonnet (2024-10-22)

Diagnosis 0.5977 0.5344 0.2416 0.1051 0.5390 0.2953
Management 0.6131 0.4881 0.2157 0.0968 0.4877 0.2667
Treatment 0.6034 0.5345 0.1607 0.0831 0.4890 0.2442
Pharmacotherapy 0.7017 0.6316 0.2577 0.1401 0.5089 0.3023
Causal Organism 0.8333 0.7222 0.2422 0.0851 0.5130 0.2801

o1-preview (2024-09-12)

Diagnosis 0.9655 0.8391 0.7706 0.7852 0.7447 0.7668
Management 0.9345 0.7679 0.5697 0.6039 0.6125 0.5954
Treatment 0.9310 0.8965 0.7034 0.7628 0.7207 0.7289
Pharmacotherapy 0.9649 0.8947 0.7536 0.7369 0.7406 0.7437
Causal Organism 1.0000 1.0000 0.7131 0.6802 0.7318 0.7084

Medical Doctor #1

Diagnosis 0.8333 0.6863 0.4810 0.5616 0.5668 0.5365
Management 0.8267 0.6000 0.2788 0.3375 0.4371 0.3511
Treatment 0.7200 0.6800 0.2726 0.4032 0.4316 0.3691
Pharmacotherapy 0.8000 0.7200 0.4377 0.5319 0.5371 0.5022
Causal Organism 0.7273 0.7273 0.3664 0.4309 0.5090 0.4354

Medical Doctor #2

Diagnosis 0.7232 0.6786 0.8121 0.8128 0.7413 0.7887
Management 0.6893 0.6311 0.6763 0.6774 0.6487 0.6675
Treatment 0.7273 0.6970 0.5594 0.6147 0.5770 0.5837
Pharmacotherapy 0.8182 0.7576 0.7592 0.7464 0.6774 0.7277
Causal Organism 0.4286 0.2857 0.4474 0.4632 0.4141 0.4415

Table 4: Recall and error correction scores for each error type using the subset of test examples with errors. The size
of each reference subset is as follows: Diagnosis (174 texts), Management (168), Treatment (58), Pharmacotherapy
(57), and Causal Organism (18).

Part of it could be explained by the difficulty of
the correction generation task, but also, the limita-
tions of current SOTA text generation evaluation
metrics in capturing synonyms and similarities in
medical texts.

Table 5 presents examples from the reference
texts, doctors’ annotations, and automatically gen-
erated corrections by Claude 3.5 Sonnet and GPT
models. For instance, the reference correction of
the second example indicates that the patient is di-
agnosed with Bruton agammaglobulinemia, while
the LLMs provided correct answers mentioning
X-linked agammaglobulinemia (a synonym of the
same rare genetic disease).

Also, some LLMs such as Claude provide long
answers/corrections with more explanation. Sim-
ilar observations can be found within the doctors’
annotations, where Doctor #1 provided longer cor-
rections than Doctor #2, and both doctors had dif-
ferent opinions in some examples/cases, reflect-
ing some of the differences in style and content
found in clinical notes written by different doc-
tors/specialists.

Our observations suggest that future research on
medical error detection and correction could bene-
fit from incorporating in-context learning strategies
and retrieval-augmented prompting. In this intro-
ductory study, we focused on evaluating state-of-
the-art open-domain LLMs; however, future work
should also consider specialized medical language
models and explore new evaluation metrics tailored
to clinical texts.

6 Conclusion

This paper presented the MEDEC benchmark for
medical error detection and correction in clinical
notes. An empirical evaluation of LLM-based
methods showed that, while recent LLMs have a
good performance, they are still outperformed by
medical doctors. The results of the doctors’ anno-
tation showed that the MEDEC dataset is a suffi-
ciently challenging benchmark to assess the ability
of models to validate existing or generated notes
and to correct medical errors. We hope that this
dataset will enable further studies on medical error
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MEDEC Dataset (Text with Error and its Correction) Doctors’ corrections LLMs’ corrections
Text with Error highlighted in Bold Reference Doctor #1 Doctor #2 GPT Claude

D
iagnosis

(m
s-test-141)

A 23-year-old man presents with
sudden loss of consciousness while
pitching in a baseball game. There is
no history of injury. Consciousness
is regained after cardiopulmonary re-
suscitation. Past medical history is
negative for any neurological and car-
diovascular problems. Patient is di-
agnosed with aortic stenosis af-
ter physical examination reveals a
prominent A wave on the jugular
venous pulse and a double apical
impulse. There are no audible mur-
murs. An S4 is present.

Patient is di-
agnosed with
hypertrophic

cardiomyopathy
after physical ex-
amination reveals
a prominent A
wave on the
jugular venous
pulse and a double
apical impulse.

The patient s
diagnosed with
hypertrophic
cardiomyopathy
afte physical
examination
reveal a double
apical impulse,
prominent "a
wave" and S4.

Patient is di-
agnosed with
hypertrophic
cardiomyopathy
after physical
examination re-
veals a prominent
A wave on the
jugular venous
pulse and a double
apical impulse.

[GPT-4 & GPT-
4o & o1-preview
& o1-mini] Pa-
tient is diagnosed
with hypertrophic
cardiomyopathy
after physical
examination re-
veals a prominent
A wave on the
jugular venous
pulse and a double
apical impulse.

A systolic ejection murmur
is present at the right up-
per sternal border. The er-
ror is in sentence 5. In aor-
tic stenosis, a characteris-
tic systolic ejection murmur
is typically heard best at
the right upper sternal bor-
der (2nd right intercostal
space) and often radiates to
the carotid arteries. This is
one of the key diagnostic
features of aortic stenosis,
along with the other find-
ings mentioned in the case
(prominent A wave in JVP,
double apical impulse, and
S4)...

D
iagnosis

(m
s-test-234)

A 4-year-old boy presents with
a history of recurrent bacterial
infections, including several
episodes of pneumococcal sep-
sis. His 2 maternal uncles died
after having had similar com-
plaints. Patient is diagnosed with
common variable immunodeficiency

after lab investigations reveal an
undetectable level of all serum
immunoglobulins.

Patient is diag-
nosed with Bruton

agammaglobulinemia
after lab investiga-
tions reveal an
undetectable level
of all serum im-
munoglobulins.

The differen-
tial diagnosis
includes auto-
somal recessive
agammaglob-
ulinemia,
but further
evaluation is
necessary.

Patient is diag-
nosed with X-linked
agammaglobulinemia
after lab investiga-
tions reveal an
undetectable level
of all serum im-
munoglobulins.

[GPT-4 & GPT-4o
& o1-preview & o1-
mini] Patient is diag-
nosed with X-linked
agammaglobulinemia
after lab investiga-
tions reveal an
undetectable level
of all serum im-
munoglobulins.

Patient is diag-
nosed with X-linked
agammaglobulinemia after
lab investigations reveal an
undetectable level of all
serum immunoglobulins.
The error is in sentence
2. Given the clinical
presentation (young male
patient with recurrent
bacterial infections),
family history (maternal
uncles affected, suggesting
X-linked inheritance), and
laboratory findings...

M
anagem

ent(m
s-test-261)

A 50-year-old woman visits her
primary care practitioner with the
complaints of generalized weakness,
lightheadedness, and fatigability for
the past month. She also claims
to have epigastric pain, heartburn,
and a sensation of a lump in her
throat. Her family history is ir-
relevant, but her medical history
is significant for a Pap smear that
reported atypical squamous cells
of undetermined significance (AS-
CUS), which was followed up with
a cervical biopsy negative for ma-
lignancy. She occasionally takes
over-the-counter medicines to cope
with the heartburn, and recently
her hemoglobin was found to be
11 g/dL, for which she received
iron and vitamin B12 supplemen-
tation. Fecal occult blood test is
completed. Physical examination is
unremarkable, except for pale skin,
and a pulse of 120/min.

The patient is
referred for an
endoscopy .

She has not had
followup after
her cervical
biopsy and
HPV testing is
indicated.

Text annotated as
CORRECT

[GPT-4-P1] Phys-
ical examination
is unremarkable,
except for pale
skin, and a pulse of
100/min. [GPT-4-P2
& GPT-4o-P1 &
GPT-4o-P2] Text
annotated as COR-
RECT. [GPT-4o-
mini & o1-preview
& o1-mini] She
occasionally takes
over-the-counter
medicines to cope
with the heartburn,
and recently her
hemoglobin was
found to be 11
g/dL, for which
she received iron
supplementation.

Text annotated as COR-
RECT

Table 5: Examples of manual & automatic corrections. Incorrect annotations/outputs are highlighted in Grey.

detection and correction in clinical notes, enhanc-
ing clinical reasoning capabilities of LLMs, and
facilitate additional efforts on evaluation metrics
for clinical texts and applications.

7 Limitations

The paper does not cover all types of possible meth-
ods and models for the detection and correction of
medical errors. The dataset is also limited in terms
of size and types of medical errors. The MS col-
lection, created based on official medical board
exam materials, reflects the original content and
answer choices as provided in those sources. How-
ever it is possible that medical professionals may
hold differing opinions or perspectives. The new
benchmark is intended for research purposes on
evaluating both medical knowledge and reasoning

capabilities of language models and should not be
used for medical diagnosis or treatment.
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