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Abstract

The explosion of textual data has made manual
document classification increasingly challeng-
ing. To address this, we introduce a robust, effi-
cient domain-agnostic generative model frame-
work for multi-label text classification. Instead
of treating labels as mere atomic symbols, our
approach utilizes predefined label descriptions
and is trained to generate these descriptions
based on the input text. During inference, the
generated descriptions are matched to the pre-
defined labels using a finetuned sentence trans-
former. We integrate this with a dual-objective
loss function, combining cross-entropy loss and
cosine similarity of the generated sentences
with the predefined target descriptions, ensur-
ing both semantic alignment and accuracy. Our
proposed model LAGAMC stands out for its pa-
rameter efficiency and versatility across diverse
datasets, making it well-suited for practical ap-
plications. We demonstrate the effectiveness of
our proposed model by achieving new state-
of-the-art performances across all evaluated
datasets, surpassing several strong baselines.
We achieve improvements of 13.94% in Micro-
F1 and 24.85% in Macro-F1 compared to the
closest baseline across all datasets.

1 Introduction

Text classification automates the analysis and or-
ganization of large datasets, enabling efficient la-
beling, categorization, and valuable insights. In
text classification, two main categories arise: multi-
class and multi-label classification. Multi-class
classification assigns a single category to a text,
while multi-label classification (MLTC) (Xiao et al.,
2019) assigns multiple relevant labels to a docu-
ment. Real-world applications include topic recog-
nition (Yang et al., 2016), question answering (Ku-
mar et al.,, 2016), sentiment analysis (Cambria
etal., 2014), information retrieval (Gopal and Yang,
2010), and text categorization (Schapire and Singer,
2000), among others.

In the field of multi-label text classification, vari-
ous approaches including traditional machine learn-
ing, deep learning, and hybrid models have been
proposed (Chen et al., 2022). Several state-of-
the-art methods (Huang et al., 2021; Xiao et al.,
2019) emphasize the importance of label descrip-
tions or metadata in improving model performance
and capturing label correlations. However, these
approaches often face limitations in their generaliz-
ability and adaptability. Some models rely on label
hierarchies or meta-path graphs (Ye et al., 2024),
which, although effective in certain contexts, hin-
der scalability and flexibility. Additionally, some
models are designed for specific tasks, such as legal
or financial applications, integrating label descrip-
tions for specialized classifiers (Chalkidis et al.,
2020; Khatuya et al., 2024). Despite their advance-
ments, these methods remain limited to particular
domains, highlighting the need for a more general-
izable approach to MLTC.

Large Language Models (LLMs), with their ex-
tensive pretraining, are capable of understanding
similarities and relationships based on textual pat-
terns (Naveed et al., 2024). This motivated us
to propose a novel domain-agnostic pipeline that
leverages recent generative models in a parameter-
efficient setup employing Low-Rank Adaptation
(LoRA) (Hu et al., 2021), for the MLTC task.
Unlike previous approaches that treat label de-
scriptions as metadata, our proposed approach
LAGAMC trains the generative model to generate
these descriptions directly. This enables us to har-
ness the full potential of LLMs, providing a more
nuanced representation of label relationships and
their connections to the corresponding text.

Obtaining label descriptions manually for multi-
label datasets is both labor-intensive and subjective.
To overcome this, we automate the process by lever-
aging GPT-3.5 (Brown et al., 2020) and Wikipedia,
enabling the efficient creation of label descriptions
with minimal human intervention. By leveraging
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a generative model while providing semantic in-
formation about labels, our method consistently
outperforms state-of-the-art models, achieving a
9.32% improvement in Micro-F1 and 15.25% in
Macro-F1 over the closest baseline.

We further integrate a dual-objective loss func-
tion, combining cross-entropy loss with a cosine
similarity-based loss. This results in an additional
increase of 4.62% and 9.60% in Micro-F1 and
Macro-F1 respectively. Using such a hybrid loss
helps bring the embeddings of the outputs of the
generative model and that of the predefined label
description closer in the representation space, mak-
ing it easier to map the generated outputs with final
labels. This hybrid approach ensures the model
comprehends label distinctions and avoids over-
fitting to token-level matches, contributing to im-
proved performance across diverse datasets.

Empirical evaluations on diverse datasets span-
ning social media, news, academic, and health-
care domains demonstrate the effectiveness of
our approach LAGAMC. Across various datasets,
our method consistently outperforms state-of-the-
art models, achieving an overall improvement of
13.94% in Micro-F1 and 24.85% in Macro-F1 over
the closest baseline. Additionally, our model shows
strong performance on rare labels and exhibits zero-
shot capability, further enhancing its applicability.
In summary, the key contributions of this paper are
as follows:

* We generated label descriptions for datasets lack-
ing them, using an annotation process guided by
GPT-3.5 (Brown et al., 2020) and Wikipedia. Our
dataset! and code are publicly available at this
anonymous link?.

* We developed a novel parameter-efficient gener-
ative approach for MLTC, leveraging label de-
scriptions to improve classification accuracy.

* We introduced a dual-objective loss function, in-
corporating a semantic similarity-based loss to
enhance the model’s semantic understanding.

* Our method generalizes well across domains, as
demonstrated by performance metrics on various
datasets. For all the datasets, our proposed model
LAGAMC, achieves huge improvements over

'Data: https://drive.google.com/drive/folders/
TnrCKgmEtYrMImQHIu3-eKXEtRA1IUDiO?usp=sharing

2Code: https://anonymous.4open.science/r/
GenerativeMultilabel_Classification-5415/README.
md

baselines. Furthermore, our model excels on rare
labels and demonstrates zero-shot capability.

2 Related Works

Multi-label text classification has been approached
through a range of techniques, including extend-
ing single-label classifiers, employing neural net-
work architectures, and, more recently, utilizing
transformer and pretrained language models based
works. Neural network-based approaches have
shown great success, with methods leveraging
CNNs (Liu et al., 2017), RNNs (Liu et al., 2016),
and hybrid CNN-RNN models (Chen et al., 2017).
Attention-based models (Yang et al., 2016; You
et al., 2019; Adhikari et al., 2019) have also im-
proved document representation, but often overlook
label semantics and dependencies.

More recent approaches utilize pretrained trans-
formers such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), which have been
adapted for multi-label tasks. For instance, (Ameer
et al., 2023) applies multiple attention layers over
RoBERTa’s final layer to enhance label correlation
learning. (Ma et al., 2023) explores various loss
functions designed to mitigate the impact of class
imbalance in datasets.

Most of these do not leverage the information
contained in label descriptions. Some of the works
that utilize label descriptions to enhance perfor-
mance (Ye et al., 2024) are not scalable as they
require extra information like label hierarchy. Ad-
ditionally, some models are built for specific tasks
(Khatuya et al., 2024), making it difficult to gener-
alize to datasets from different domains.

There also exists popular extreme multi-label
classification frameworks like GalaXC (Saini
et al., 2021), SiameseXML (Dahiya et al., 2021a),
DEXA (Dahiya et al., 2023), Renee (Jain et al.,
2023), InceptionXML (Kharbanda et al., 2024) etc.
These works focus more on efficiency given the
large set of labels to predict from, but rarely utilize
label descriptions to enhance performance.

3 Datasets and Label Description
Generation

We curated popular multi-label classification
datasets from social media, news, academic, and
healthcare domains for our experiments.
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3.1 Overview of Datasets

CAVES [Social Media]: The CAVES dataset (Pod-
dar et al., 2022) contains 10K anti-vaccine tweets
related to COVID-19, labeled manually.

Reuters [Newswire]: Reuters-21578 (Hayes and
Weinstein, 1990) consists of documents from the
1987 Reuters newswire, with a skewed distribution.
AAPD [Academic Text]: The Arxiv Academic
Paper Dataset (AAPD) (Yang et al., 2018) contains
abstracts from the computer science domain.
SemEval [Social Media]: SemEval-2018 Task 1C
(Mohammad et al., 2018) includes emotion-labeled
tweets from 2016-2017 in English.

PubMed [Healthcare]: A processed version of the
PubMed dataset® from BioASQ 9 Task A*, avail-
able on Kaggle’, manually annotated with Medical
Subject Headings (MeSH) by biomedical experts.

3.2 Dataset Enhancement with Label
Descriptions

Many existing datasets in multi-label classification
tasks provide only the final label predictions with-
out offering detailed descriptions for each label.
However, label descriptions are essential for im-
proving contextual understanding and enhancing
model performance. In this study, we address this
gap by augmenting the datasets with refined label
descriptions. The CAVES dataset (Poddar et al.,
2022), from the social media domain, is the only
dataset in our study that already includes this.

For the remaining datasets, we generated label
descriptions using GPT-3.5 (Brown et al., 2020)
in combination with predefined Wikipedia defini-
tions. Initially, we retrieved label definitions from
Wikipedia, referred to as "initial descriptions." To
better align these definitions with the specific con-
text of each dataset, we refined them by providing
GPT-3.5 with the initial Wikipedia definition and
two relevant examples from the dataset where the
label appeared in the predictions. The model was
then prompted to generate a more contextually ap-
propriate description for each label, ensuring better
alignment with the dataset’s context.

For example, the following prompt was used for
the label ‘Anger’ in the SemEval dataset:

Label: Anger
Initial Description: Anger, emotion that involves
annoyance and rage.

3https://pubmed.ncbi.nlm.nih.gov/

4http: //participantsarea.bioasq.org/general_
information/Task9a/

Shttps://t.1y/FWWuQ

Dataset: Contains tweets and corresponding emo-
tion annotations.

Examples from the dataset:

Tweet 1: "Tears and eyes can dry but  won’t, I'm
burning like the wire in a lightbulb."

Prediction: Anger

Tweet 2: "We're going to get City in the next round
for a revenge."

Prediction: Anger

Task: Generate a suitable label description for
‘Anger’ that fits the context of this dataset.

Dataset | Train Dev Test | # Labels | Max Labels | Avg. Desc. Length
CAVES 6,957 987 1,977 12 3 28.17
SemEval | 6,838 886 3,259 12 6 61.11
Reuters 6,769 1,000 | 3,019 90 11 13.41
AAPD 53,840 | 1,000 1,000 54 8 50.34
PubMed | 40,000 | 10,000 | 10,000 14 13 91.40

Table 1: Dataset statistics. The last three columns show
the total number of labels, the maximum number of
labels per sample, and the average label description
length for each dataset.

Evaluation Metrics: To evaluate the performance
of our model, we consider 1) Micro-F1 and 2)
Macro-F1 metrics.

4 Baselines

We validate our model with different baselines
ranging from traditional RNN and CNN based ap-
proaches like TextCNN (Kim, 2014), TextRNN
(Liu et al., 2016), Attentive ConvNet (Yin and
Schiitze, 2018) to transformer based approaches
like BERT (Devlin et al., 2019), XLNet (Yang
et al., 2020), RoBERTa (Liu et al., 2019), Star-
Transformer (Guo et al., 2022). We also compared
the performance of LAGAMC against various pop-
ular extreme multi-label classification frameworks
like (AttentionXML (You et al., 2019), (GalaXC
(Saini et al., 2021) , SiameseXML (Dahiya et al.,
2021a), DEXA (Dabhiya et al., 2023), DeepXML
(Dahiya et al., 2021b) and Renee (Jain et al., 2023).

We also created our own generative baselines
TS-Base (Raffel et al., 2020) and T5-Large (Raf-
fel et al., 2020). Lastly, with the emergence of
ChatGPT (Brown et al., 2020), we were curious to
check it’s performance for this task using the same
instruction prompt for 500 random samples using
gpt-3.5-turbo © API.

6https: //platform.openai.com/docs/models/
gpt-3-5
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Figure 1: Our proposed framework. Extraction module takes as input a task-specific instruction and the input
text to classify. In this module, FLAN-TS is trained along with a Sentence transformer on a dual objective loss.
FLAN-T5-generated label descriptions subsequently flows into the Label Matcher that predicts the final labels for

that text using the trained Sentence transformer.

5 Proposed Framework for Multi-label
Classification

The proposed framework LAGAMC for multi-label
classification (Figure 1), is divided into two stages:
a supervised generative phase, and an unsupervised
description-to-label matching phase.

Problem Formulation: Given an input sequence

Input Text (;y,p.¢): This is the input text sequence
which in our case can range from an abstract of a
paper to a tweet. The Zp,ompt 1s constructed by
concatenation of the Instruction x;,s, Task De-
scription T ges. and Input Text ;.. An example
from the SemEval dataset is given in Table 2.

Prompt (wprornpt) [ Target (ytaTget)

Instruction: First read the task de-
scription. There could be multiple

Anger, which can also encompass an-
noyance and rage, is a powerful emo-
categories description for a tweet. tion that arises when one feels slighted
Task: Multi-label Text Classifica- | or wronged. Disgust, which can in-
tion volve disinterest, dislike, and even
Description: Generate label descrip- | loathing, is the strong aversion or re-
tion for the given texts. vulsion towards something unpleasant

Tinput = {21, T2, ..., T, }, the task is to assign text-
class labels Yy, = {y1, y2, ..., Y} C Y 10 Tinpus
(the text to classify) where Y = {y1, y2, ...., yp}
contains all possible labels of that dataset. We

adopt prompt-based learning paradigm, generating
text conditioned on a given input prompt.

5.1 Generative Phase

In the first stage, we frame the problem as a gener-
ative task, instructing the model to generate label
descriptions from a given document using task-
specific prompts.

Prompt Construction: We construct a prompt
Tprompt cOMprising three components:
Instruction (z;,s): provides a brief overview of
input (see Table 2 for an example).

Task description (x4.,.): describes the exact task
which needs to be performed. For example in our
work when the task the x e 1S -

“Task: Multi-label Text Classification
Description: Generate label description for the
given texts.

1t’s hot as shit and its fogging up my or offensive.
glasses.

Table 2: Example of prompt (instruction and input text)
and target (the label descriptions, separated by a full-
stop) from the SemEval dataset.

5.2 Response Construction

The proposed generative model is expected to gen-
erate a textual response ¥;q,ge¢ Which is a concate-
nation of pre-defined label description of the true
labels of the corresponding text. So, if the expected
output has k labels = {y1, y2, ...., Y.} then Yiarger =
{ Y} e, y;.} where 3/} denotes the pre-defined
label description for the i*" label (concatenated
and separated using a stop). Example of ¥4 get
can be seen in the Target column of Table 2. In this
generative phase, we formulate 2 ompt, Ytarget for
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each data point in training dataset. We provide this
Tprompt as input with target as y;qrges to our model.

5.3 Hybrid Loss

In text generation tasks, models like FLAN-T5
are trained with cross-entropy (CE) loss. Cross-
entropy loss operates at a token level, meaning
it only rewards exact matches at each position in
the sequence. The primary limitation arises from
its inability to account for semantically equivalent
sentences that use different tokens. Hence, we in-
corporate a semantic similarity based term in the
loss function while training the generative model,
which prevents the model from overfitting to ex-
act matches. Using such a hybrid loss helps bring
the embeddings of the outputs of the generative
model and the embeddings of the predefined la-
bel description closer in the representation space,
making it easier to map the generated outputs with
final labels. We define the hybrid loss function as
follows:

ﬁhybrid =A- ﬁCE + (1 - )\) : Esemantic (1)

where: Lcg = — Zthl y¢ log(y) represents the
traditional cross-entropy loss, which is computed at
the token level. Here, y; is the ground-truth token
at position ¢, and g; is the predicted probability for
the token at the same position.

Liemantic = 1 — CosSim(Vgen, Viarget) 18 the se-
mantic similarity loss, where vgen and vgarger TEp-
resent the embeddings produced by the sentence
transformer for the generated output from gener-
ative model and the target yiqrget, respectively.
CosSim denotes the Cosine similarity between
the generated and target embeddings. The sentence
transformer is allowed to train and adapt during
the learning process. A is a learnable parameter
that dynamically adjusts the balance between cross-
entropy loss and semantic similarity loss.

5.4 Label Matching Phase

During inference, we employ a Label Matcher
module to assign labels based on similar-
ity between generated and predefined descrip-
tions. We utilize the trained sentence trans-
former from the generative phase to obtain
embeddings for both the generated sentences
{gendescy, gendesca, . . ., gendescy } and the pre-
defined label descriptions. For each generated
sentence gendesc;, we compute its cosine simi-
larity with all label embeddings and select the label

with the highest similarity as the final prediction
predLabel;. This approach ensures robust match-
ing, even when the generated descriptions deviate
from the predefined labels.

5.5 Generative Models Explored

To evaluate the viability of a generative approach
for this task, we conduct a comprehensive assess-
ment of multiple generative models, varying in size
and training strategies. First, we fine-tune T5-Base
(220M parameters) and T5-Large (780M parame-
ters), to generate target descriptions. Next, we fine-
tune FLAN-TS Large (Longpre et al., 2023; Chung
et al., 2022), which benefits from extensive pre-
training on over 1.8K instruction-based tasks. For
efficient fine-tuning, we apply Low-Rank Adapta-
tion (LoRA) (Hu et al., 2021) for all the generative
models updating just 0.08% of model parameters.
Details on trainable parameters for our models and
baselines are provided in Table 3.

6 Experimental Setup

For all our model variants (performed on NVIDIA
A100 80G GPUs), we obtain the pre-trained check-
points from the Huggingface Library’. For training
the models with LoRA, the rank for the trainable
decomposition matrices was set to 2. FLAN-TS5-
Large model is instruction-tuned for 20 epochs,
with batch-size of 8 and with an Ir of 2e — 4 with
LoRA (training time: 56 minutes/epoch, inference
time: 2 minutes/sample). These hyperparameters
were selected based on the best Macro-F1 results
on the validation set. The input length was set by
the average number of input tokens per dataset,
while the output length was based on the average
label description length for each dataset.

7 Results and Discussion

We report the results of our proposed generative
model variants and various baselines in Table 3 for
all the datasets. We first finetune pretrained trans-
formers such as BERT, XLLNet, RoBERTa with a
projection layer for the task of MLTC. Next we
compare with baselines designed specifically for
the task of MLTC such as GalaXC, DeepXML, Re-
nee, etc. We observe that among the baselines the
models designed specifically for MLTC task out-
perform the finetuned transformers. To check the
robustness of our proposed generative framework,

"https://huggingface.co/
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CAVES SemEval Reuters AAPD PubMed #TP(M)
Models Mi-F1 M-F1 | Mi-F1 M-F1 | Mi-F1 M-F1 | Mi-F1 M-F1 | Mi-F1 M-F1
Baselines
BERT 70.36 6529 | 70.70 56.30 | 87.73 3498 | 71.30 55.90 | 85.05 70.99 | 110
XLNet 71.61 63.83 | 58.01 3531 | 88.54 51.99 | 70.07 5839 | 85.33 70.81 | 110
RoBERTa 7134  63.82 | 59.82 40.55 | 88.27 42.63 | 69.14 5488 | 85.19 70.54 | 125
TextCNN 55.48  39.64 | 5455 39.51 | 81.89 3396 | 67.71 49.85 | 82.62 664 | 3.88
TextRNN 57.70 4217 | 5242 3794 | 81.72 3326 | 69.28 5227 | 83.11 67.72 | 3.86
StarTransformer | 53.86 3598 | 51.42 3896 | 80.22 36.39 | 68.22 49.36 | 8235 67.35 | 3.84
AttentiveConvNet 54.22  38.15 | 51.61 37.21 | 79.77 31.86 | 68.11 49.21 | 82.65 66.33 | 3.91
ChatGPT 5722 4447 | 41.61 2721 | 69.77 3586 | 48.11 2921 | 42.65 26.33 | -
AttentionXML | 67.12  52.83 | 61.55 4832 | 7843 4357 | 69.01 56.28 | 84.39 69.11 | 112
GalaXC 69.84  56.12 | 62.34 50.79 | 81.23 4639 | 70.65 58.17 | 8591 71.34 | 41
SiameseXML 72.16  59.89 | 6542 52.84 | 8422 4899 | 72.48 60.43 | 8642 7298 | 115
DEXA 74.81 62.35 | 66.57 5432 | 86.07 51.12 | 7421 63.12 | 87.25 7422 | 134
DeepXML 7753  65.84 | 68.76 5598 | 88.52 5379 | 75.63 64.58 | 88.41 7596 | 161
Renee 79.46 6793 | 71.18 5843 | 90.29 6621 | 77.82 66.04 | 89.74 78.12 | 82
Proposed
T5-Base 86.84 7122 | 83.12 70.13 | 90.89 69.23 | 82.25 71.22 | 89.87 78.56 | 22.32
T5-Large 88.33 81.89 | 84.35 7223 | 91.12 7132 | 8423 71.59 | 89.90 79.35 | 22.68
LAGAMC 9246 89.11 | 87.81 78.06 | 96.48 80.85 | 95.64 88.43 | 89.93 80.81 | 22.69

Table 3: Performance evaluation based on Micro F1 and Macro F1 scores across multiple datasets. The best
performance is highlighted in bold, and the strongest baseline result is underlined. The last column TP (M) indicate

approx. no of trainable parameters in million.

we try out with different base models such as T5-
Base, T5-Large. Our devised generative baselines
outperform the best baselines across all datasets.
We also report ChatGPT’s performance by provid-
ing the same prompt as provided to LAGAMC.

LAGAMC on an average improves by 13.94%
in Micro-F1 and 24.85% in Macro-F1 when com-
pared with the best baseline for the given dataset.
The best performance boost is seen for SemEval 3
and the second best for the CAVES dataset. The
performance of LAGAMC compared to the respec-
tive SOTA models in domains ranging from tweet
sentiment to medical domain dataset, academic text
showcases its adaptability and versatility.

7.1 Parameter Efficiency

The last column of Table 3 compares the number
of trainable parameters across different baselines,
including the generative models we trained. Our
best-performing model, LAGAMC along with our
generative baselines, demonstrates parameter effi-
ciency by having significantly fewer trainable pa-
rameters compared to most of the closest compet-
ing baselines.

$Public leaderboard
https://paperswithcode.com/sota/
emotion-classification-on-semeval-2018-task

available at

7.2 Utility of Label Descriptions

To understand the importance of label descriptions,
we perform an experiment where we set atomic
labels instead of their descriptions, as the target.
Accordingly, the Label Matcher module now com-
pares the embeddings of the generated and ground
truth labels (and not descriptions). From the Ta-
ble 5, we observe a average drop of 36.04% in
Macro-F1.

7.3 Utility of Semantic Loss

We assess the significance of semantic loss by com-
paring the performance of our proposed hybrid loss
function with that of the standard cross-entropy
loss. The results, summarized in Table 5, show a
drop of 3.96 % and 7.33 % in Micro-F1 and Macro-
F1, respectively, when using only cross-entropy
loss.

8 Analysis

We now present different analyses and ablations of
LAGAMC.

8.1 Zero Shot Capability

To evaluate the zero shot capability of our proposed
model, we constructed a test dataset with labels not
seen during training. Specifically, 4-5 labels from
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each dataset were randomly selected as unseen la-
bels, appearing only in test instances. We then
trained the model on the modified dataset to assess
its ability to predict unseen labels. As shown in
Figure 2, the average Macro-F1 score across all
datasets was 83.45 with full training, compared
to 70.61 in the zero-shot setting—demonstrating
strong performance in the more challenging zero-
shot scenario. This reduces the need for retraining
and also accelerates real-world deployment.

100
—zero Shot
89.11 88.43 Ful Shot

80.05 80.81

80 78.06 76. 12
i I I 65.28
o I I

CAVES SemEval Reuters PubMed
Datasets

Macro-f1
g 2

N
S

Figure 2: Zero-shot performance of LAGAMC , achiev-
ing an average macro-F1 score of 70.61.

8.2 Performance on Least Frequent Labels

We evaluate the model’s performance on the least
frequent labels as this is critical for real-world ap-
plications, where rare labels may represent signifi-
cant events. We identified the least frequent 15%
of labels from each dataset’s training set and com-
puted the Macro F1-score on test samples where
the ground truth labels were part of this rare label
set. As illustrated in Figure 3, our model demon-
strates superior performance over the closest base-
line across all datasets, with an average improve-
ment of 22% in Macro-f1.

100
- LAGAMC
Renee
85.50

80
70.00 68.21
63.38 63.19
58.15
51.62 50.81
a0
32.40
20
0

CAVES SemEval PubMed
Datasets (Least Frequent 15% Labels)

3

Macro-F1

Figure 3: Comparison of Model Performance on Least
Frequent Labels: Our proposed model demonstrates
superior performance compared to closest baseline.

8.3 Evaluation of Recent LLM’s

‘We also evaluated recent LLMs, such as Llama-2-
7b (Touvron et al., 2023), Mistral-7B (Jiang et al.,
2023) for multi-label classification. The initial re-
sults shown in Table 4 were promising, as these

models outperformed all baseline methods (except
Micro-F1 on PubMed which is close to the best
baselines). However, their accuracy was lower than
our proposed LAGAMC, which uses FLAN-TS5.
Due to limited GPU resources, we could not fully
fine-tune these models or conduct an extensive hy-
perparameter search for LoRA fine-tuning, which
likely contributed to the lower performance. We
also expect that increasing the context length could
improve results. These findings indicate that our
pipeline is effective and can be applied to other
LLMs for multi-label classification. We also eval-
uated our pipeline with Llama-3.1-7B (Grattafiori
etal., 2024) and observed an improvement of nearly
1% in Micro-F1 and 2% in Macro-F1.

Dataset Model Mi-F1/M-F1
Ours 92.46/89.11
Ours with threshold 91.46 / 88.55
CAVES Llama-2-7B with threshold 90.97/87.13
Llama-2-7B w/o threshold 89.67 / 83.65
Mistral-7B with threshold 90.17 / 86.52
Mistral-7B w/o threshold 88.59/82.25
Ours 87.81/78.06
SemEval Ours with thre§h01d 86.18 / 77.60
Llama-2-7B with threshold 86.54/77.11
Llama-2-7B w/o threshold 84.67/75.65
Mistral-7B with threshold 85.54/76.25
Mistral-7B w/o threshold 84.45/74.45
Ours 96.48 / 80.85
Reuters Ours with threshold 94.48 / 76.15
Llama-2-7B with threshold 93.62 /74.65
Llama-2-7B w/o threshold 92.18 /72.88
Mistral-7B with threshold 95.17/76.43
Mistral-7B w/o threshold 93.55/74.15
Ours 95.64 / 88.43
AAPD Ours with threshold 94.46 / 86.73
Llama-2-7B with threshold 93.46/86.11
Llama-2-7B w/o threshold 89.12/75.97
Mistral-7B with threshold 92.76 / 86.07
Mistral-7B w/o threshold 87.57/74.15
Ours 89.93/80.81
PubMed Ours with threghold 89.22/78.91
Llama-2-7B with threshold 89.92/79.71
Llama-2-7B w/o threshold 86.75/77.45
Mistral-7B with threshold 89.67/79.55
Mistral-7B w/o threshold 87.65/78.35

Table 4: Performance comparison (Mi-F1 / M-F1) on
multiple datasets using different LLMs.

8.4 Robustness of the Model

To assess the robustness of our approach, we cre-
ated a unified dataset by randomly selecting 500
training samples and 100 test samples from each
dataset. The average Macro-F1 score was 83.45
across all datasets, compared to 78.38 for the mixed
dataset. Despite predicting from 181 ground truth
labels (sum of Labels column in Table 1), our
model shows only a 5.07% drop in performance,
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while the closest baseline declines by 14.3% .

Dataset Models Mi-F1/M-F1
Ours 92.46/89.11

CAVES w/o Semantic loss 89.67/85.25
w/o Label Description  67.63 / 62.98

Ours 87.81/78.06

SemEval w/o Semantic loss 85.53/74.79
w/o Label Description ~ 64.24 / 54.35

Ours 96.48 / 80.85

Reuters w/o Semantic loss 94.97/78.12
w/o Label Description ~ 68.24 /43.12

Ours 95.64 / 88.43

AAPD w/o Semantic loss 86.94/73.13
w/o Label Description ~ 65.27 / 53.28

Ours 89.93/80.81

PubMed w/o Semantic loss 86.77/74.12
w/o Label Description ~ 67.29 / 53.21

Table 5: Performance comparison with, without label
descriptions and without Semantic loss across datasets.
Results highlight the importance of label descriptions
and Semantic loss for multi-label classification.

Descriptions Length vs Performance: We eval-
uate our model’s performance based on the length
of concatenated label descriptions. To do this, we
group label descriptions into buckets with an equal
number of test samples. Longer descriptions cor-
respond to more ground truth labels, increasing
prediction complexity. Figures 4 and 5 show a
slight performance drop for very long descriptions,
a trend consistent across datasets.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Figure 4: CAVES Figure 5: SemEval

Figure 6: Impact of label description length

Actual vs Predicted No of Labels: For each
dataset, we analyze the number of samples with a
given number of labels and compare it to the num-
ber of samples predicted to have the same number
of labels (Table 6). We have analyzed upto five
label counts. The model tends to give single-label
predictions for the SemEval and Caves datasets.

8.5 Analysis of Label Matcher Module

We examine the computational efficiency of the
module and propose a threshold-based approach to
prevent label assignments from hallucinated text.

Computation Efficiency: The Label Matcher mod-
ule (Section 5.4) assigns labels by computing co-

Labels Caves SemEval Reuters AAPD PUBMED
1 (1386, 1562) | (288,456) | (2592,2583) - - (--)
2 (579,369) | (1486, 1367) | (279,308) | (642, 690) (50, 105)
3 (12, 46) (1078, 1055) (86, 63) (264,225) | (376, 535)
4 (--) (395, 316) (32,32) (69, 62) | (1438, 1503)
5 (-,-) (11, 60) (17, 15) (23,21) | (2200, 2404)

Table 6: Comparison of actual and predicted sample
counts based on number of labels. Each cell (x, y) indi-
cates the number of actual samples (x) and the number
of predicted samples (y) for a specific label count.

sine similarity between sentence and label embed-
dings. Using NumPy’s (Harris et al., 2020) matrix
operations for parallel computation significantly
improves efficiency. For example, with 10,000 sen-
tences and 1,000 labels using 1,024-dimensional
embeddings, the matrix-based approach completes
in 0.089s, compared to 0.354s with the sequential
method. In the worst-case with all 1,000 labels
present in a single instance, inference takes just
0.007s (matrix-based) versus 0.043s (sequential).
Hallucination in Predictions: During label match-
ing, each output sentence is assigned the nearest
label based on cosine similarity. However, LLM-
generated text may include hallucinated sentences,
leading to incorrect predictions. To mitigate this,
we enforce a minimum similarity threshold, ensur-
ing a sentence is assigned a label only if its highest
similarity score exceeds a set value. Our analysis
finds 0.4 threshold to be optimal. As shown in
Table 4, this slightly reduces performance for our
model (FLAN-T5-based) but improves results for
larger LL.Ms like Llama-2 and Mistral, likely due
to their tendency to generate longer outputs.

Model CAVES | SemEval | Reuters | AAPD | PubMed
(M-F1) | (M-F1) (M-F1) | (M-F1) | (M-F1)
Ours 89.11 78.06 80.85 88.43 80.81
w S-BERT-L12 | 82.80 74.30 58.60 71.40 74.10
w ST5-xx1 83.20 74.70 56.70 71.40 75.00
w/o Instruction 81.30 74.80 56.40 71.60 74.30

Table 7: Ablation study results: M-F1 scores for

LAGAMC and its variations.

8.6 Ablation study of model components

We conduct ablations on our best model to assess
module significance. For Label Matcher, replac-
ing fine-tuned Sentence-BERT-Transformer with
Sentence-T5-xx1 or Sentence-BERT-L12 (Reimers
and Gurevych, 2019) lowers performance (Table 7).
Similarly, instruction-tuning FLAN-T5-Large with-
out task-specific instructions results in a perfor-
mance drop across all datasets, highlighting the
importance of instruction alignment.
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8.7 Effect of Label Descriptions in Existing
Models

We conducted additional experiments by integrat-
ing label descriptions into two strong baselines:
BERT and DeepXML. For the BERT-based multi-
label classification baseline, we adopted a joint
encoding strategy where both the input text and the
label descriptions are encoded using a shared BERT
encoder. This allows the model to learn interactions
between label semantics and text representations.

For DeepXML, which supports metadata incor-
poration, we introduced label descriptions as aux-
iliary features. Additionally, during the clustering
phase, we replaced label names with their corre-
sponding descriptions to influence label partition-
ing based on semantic content.

We evaluated these modified models on the
CAVES and SemEval datasets. The results are
presented in Table 8. We observe that incorpo-
rating label descriptions provides consistent but
modest performance improvements over the orig-
inal versions of BERT and DeepXML. However,
our proposed generative approach with the label
matcher module achieves significantly better per-
formance, demonstrating the advantage of a design
that integrates label semantics into the prediction
process.

8.8 Error Analysis

To characterize the errors committed by our model,
we check when our model predicts wrong label or
provides a subset of ground truth labels. We notice
that our model sometime struggles against complex
inputs. The first example stated in Table 9 is about
a news related to a company dealing with gold but
the news excerpt is regarding acquisition of it. This
confuses our model because even though the word
gold is mentioned multiple times, the main subject
of the news is regarding the acquisition rather than
about gold commodities.

Sometime due to limitations in input context,
our model may not predict all corresponding labels
accurately. Instead, it tends to predict a subset of

Model CAVES Mi-F1/M-F1 SemEval Mi-F1/M-F1
BERT 70.36/ 65.29 70.70/56.30
BERT + Label Desc. 73.00/67.50 72.20/58.00
DeepXML 77.53/65.84 68.76 / 55.98
DeepXML + Label Desc. 79.50/67.20 70.12/57.30

Table 8: Performance of baselines with and without
label descriptions.

Abstract Ground Ours Renee
Truth
CRA SOLD FOR- | acq
REST GOLD FOR
76 MLN DLRS...
It also owns an
undeveloped  gold
project.

The covid vaccine is conspiracy
not a vaccine... the ineffec-
next round of manu- | tive
factured flu. side-
effect

joy, love

Dataset

Reuters acq, gold acq, gold

CAVES conspiracy | side-effect

I used to make the
peanut butter energy
balls all the time.
My famjam loved
them!

SemEval joy, love joy, love,

optimism

Table 9: Examples showing errors in predictions by our
model and the closest baseline (Renee).

labels. Our model outperforms the best baseline
by accurately distinguishing correlated labels, such
as ‘joy’, ‘love’, and ‘optimism’, which frequently
co-occur. While the baseline model misclassified
approximately 33% of samples predicting as, ‘joy
love optimism’, our model correctly predicts for all
such samples. One such example is shown in last
row of Table 9.

9 Conclusion

In this work, we propose a parameter-efficient gen-
erative approach equipped with a dual loss objec-
tive to tackle the challenging problem of multilabel
classification. Our method introduces a novel and
domain-agnostic framework that is flexible enough
to be adapted across various applications. By lever-
aging both generative modeling and discriminative
supervision, the approach effectively captures label
correlations and enhances prediction robustness.
Through extensive experiments, we compare our
method against several state-of-the-art models and
strong baseline systems specifically designed for
the task. Our results show that LAGAMC achieves
significant performance gains, demonstrating its
superiority across multiple evaluation metrics. Fur-
thermore, we conduct detailed ablation studies and
empirical analyses to validate the contribution of
each component within the framework.

10 Limitations

A limitation of our proposed framework is that the
approach relies on the availability of label descrip-
tions, which may not always be readily accessible
and would need to be generated when absent. Ad-
ditionally it has not been tested on extreme multi-
label classification datasets.
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