Dolphin: Document Image Parsing via Heterogeneous Anchor Prompting

Hao Feng, Shu Wei, Xiang Fei, Wei Shi, Yingdong Han, Lei Liao, Jinghui Lu, Binghong Wu, Qi Liu, Chunhui Lin, Jingqun Tang, Hao Liu, Can Huang


Abstract
Document image parsing is challenging due to its complexly intertwined elements such as text paragraphs, figures, formulas, and tables. Current approaches either assemble specialized expert models or directly generate page-level content autoregressively, facing integration overhead, efficiency bottlenecks, and layout structure degradation despite their decent performance. To address these limitations, we present Dolphin ( Document Image Parsing via Heterogeneous Anchor Prompting), a novel multimodal document image parsing model following an analyze-then-parse paradigm. In the first stage, Dolphin generates a sequence of layout elements in reading order. These heterogeneous elements, serving as anchors and coupled with task-specific prompts, are fed back to Dolphin for parallel content parsing in the second stage. To train Dolphin, we construct a large-scale dataset of over 30 million samples, covering multi-granularity parsing tasks. Through comprehensive evaluations on both prevalent benchmarks and self-constructed ones, Dolphin achieves state-of-the-art performance across diverse page-level and element-level settings, while ensuring superior efficiency through its lightweight architecture and parallel parsing mechanism. The code and pre-trained models are publicly available at https://github.com/ByteDance/Dolphin
Anthology ID:
2025.findings-acl.1130
Volume:
Findings of the Association for Computational Linguistics: ACL 2025
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
21919–21936
Language:
URL:
https://preview.aclanthology.org/landing_page/2025.findings-acl.1130/
DOI:
Bibkey:
Cite (ACL):
Hao Feng, Shu Wei, Xiang Fei, Wei Shi, Yingdong Han, Lei Liao, Jinghui Lu, Binghong Wu, Qi Liu, Chunhui Lin, Jingqun Tang, Hao Liu, and Can Huang. 2025. Dolphin: Document Image Parsing via Heterogeneous Anchor Prompting. In Findings of the Association for Computational Linguistics: ACL 2025, pages 21919–21936, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
Dolphin: Document Image Parsing via Heterogeneous Anchor Prompting (Feng et al., Findings 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/landing_page/2025.findings-acl.1130.pdf