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Abstract

Large language models (LLMs) have demon-
strated impressive generative capabilities, yet
their inner mechanisms remain largely opaque.
In this work, we introduce a novel approach
to interpret LLMs generation process through
the lens of an explicit Bayesian framework by
inferring latent topic variables via variational
inference. Specifically, we leverage a varia-
tional autoencoder-based neural topic model to
dynamically approximate the posterior distri-
bution over the high-level latent topic variables
at each generation step. By reconstructing the
LLM’s next-token predictions through these
latent topics and maintaining a regularized la-
tent space, our method yields interpretable and
diverse topic representations but also has the
ability to effectively captures semantic shifts
throughout the text. We validate our approach
on multiple datasets, showing that our latent
topics outperform state-of-the-art topic models
on intrinsic measures of coherence and diver-
sity. Furthermore, we demonstrate the utility
of our approach in downstream applications by
using the inferred topic distributions to retrieve
relevant demonstration examples for in-context
learning, resulting in significant gains on clas-
sification and summarization tasks.

1 Introduction

Large Language Models (LLMs) have achieved
impressive performance across a variety of bench-
marks (Brown et al., 2020; OpenAl et al., 2024;
Touvron et al., 2023a,b; Grattafiori et al., 2024).
This can primarily be attributed to the large-scale
pre-training on massive text corpora, where they
learn to generalize by outputting the appropriate
continuation given the task prompts. However, at
such large scales, understanding their inner work-
ings becomes very challenging due to the opaque
nature of deep neural networks. One promising
direction to understand their behavior is through
the Bayesian framework (Xie et al., 2022; Wang

et al., 2023; Dalal and Misra, 2024), where the
model learns to first infer a posterior distribution
over some latent variables conditioned on the previ-
ous context before predicting the next token. When
these latent variables are disentangled (Kingma and
Welling, 2014; N et al., 2017; Higgins et al., 2017;
Adel et al., 2018), each component can reflect a
distinct interpretable feature (e.g., a topic) in the
generation process, where the model then uses the
inferred distribution over these features to guide its
predictions. Thus, the activations of these latent
variables may provide a transparent overview of the
model’s internal structures during the generation
process. In this work, we focus on inferring latent
topic variables, which are high-level thematic di-
mensions of the model represented as clusters of
related words and concepts.

However, since LLMs do not explicitly learn
a latent topic distribution (Xie et al., 2022), sup-
plementary techniques are required to infer the
posterior distribution over latent topics from the
model predictions. For example, the recent work
by Wang et al. (2023) used prompt tuning to learn a
set of token embeddings as the optimal latent vari-
able values under the Empirical Bayesian frame-
work. However, their fixed topic embeddings are
difficult to interpret and cannot be used to reveal
how the model’s topical shifts at each step. In-
stead, we propose a novel framework that uses
variational inference to approximate the posterior
distribution over the latent topics at each gener-
ation step. Specifically, we train a Neural Topic
Model (NTM) (Srivastava and Sutton, 2017) based
on the variational autoencoder (VAE) architecture
(Kingma and Welling, 2014) to dynamically infer a
distribution over topic variables at each generation
step, where topics are represented as distributions
over the vocabulary. At each step of the genera-
tion, the VAE constructs the LLM’s predicted token
probability based on the sampled topic distribution
conditioned on the previous context.
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We empirically validate the effectiveness of our
proposed method by performing an intrinsic and ex-
trinsic evaluation of the latent topics. For intrinsic
evaluation, we perform experiments to assess the
interpretability of the inferred latent topics of an
LLM by training our model on a collection of docu-
ments from the AG News (Zhang et al., 2015), DB-
Pedia, and GovReports dataset (Huang et al., 2021).
Comparison against state-of-the-art topic model-
ing techniques reveals that our method can consis-
tently learn high-quality topics which can be used
directly by humans for analyzing the given text cor-
pus (Section 4). For extrinsic evaluation, we con-
duct experiments to assess the effectiveness of the
inferred topics on two popular downstream tasks—
text classification and summarization—using in-
context learning. In these tasks, the topic distribu-
tion serves as a text embedding to identify demon-
strations with similar topic distributions (see Sec-
tion 5).

In summary, our contributions are three fold:

1. We propose a novel technique to infer the la-
tent topic variables of LLMs through VAEs
as a form of approximated Explicit Bayesian
Inference.

2. We perform an intrinsic evaluation of the topic
quality which indicated that the latent topic
yielded by our proposal outperformed SOTA
topic models.

3. We also perform an extrinsic evaluation of the
learned topics showing that they can be effec-
tively used to dynamically retrieve demonstra-
tion examples for ICL.

2 Related Work

In subsection 2.1, we describe the Bayesian Frame-
works for interpreting LLMs. While in subsec-
tion 2.2 and subsection 2.3, we discuss recent
works on topic modeling and in-context learning,
respectively.

2.1 Bayesian Frameworks for LLMs

Most neural networks including LLMs can be in-
terpreted as probabilistic models that predict a cat-
egorical distribution given the context. In contrast,
than relying solely on a single set of parameters ob-
tained via maximum likelihood estimation (MLE)
or maximum a posteriori (MAP), Bayesian meth-
ods maintain a posterior over the parameters or la-
tent variables such as topics. This approach yields

the posterior predictive distribution, which inte-
grates over all latent variable (e.g., topics) configu-
rations. The Bayesian generative framework offers
more interpretability by requiring an explicit spec-
ification of the data-generating process through
priors and likelihood functions, which allows for a
more transparent view of how predictions are made
(Afrabandpey et al., 2020; Mihaljevié et al., 2021;
Xie et al., 2022).

While LLMs do not explicitly learn a latent
variable distribution, many recent studies have
attempted to interpret LLMs in the context of a
Bayesian inference framework. For example, Xie
et al. (2022) interpreted the few-shot inference
(through in-context learning) of LLMs as perform-
ing implicit Bayesian inference over latent con-
cepts. Specifically, during pretraining, the data
exposed to the LLMs can be modeled as being
generated from a mixture of Hidden Markov Mod-
els (HMMs), each representing a different latent
concept 0 (e.g., topics or tasks). During inference,
when the model is given a prompt consisting of
in-context examples, it implicitly infers the shared
latent concept underlying these examples to gen-
erate the appropriate continuation. This process
can be viewed analogously to computing the pos-
terior predictive distribution over the latent con-
cepts p(ylz, prompt) = [ p(y|z, 0)p(6|prompt)de.
More recently, Dalal and Misra (2024) provides
a broader Bayesian framework for understanding
general LLM behavior by interpreting the LLM as
performing Bayesian inference over multinomial
distributions of next tokens, with prior distributions
approximated as mixtures of Dirichlet distributions.
Specially, they conceptualize the entirety of possi-
ble text as a massive multinomial transition prob-
ability matrix, considering the pre-trained model
as encapsulating prior knowledge about language
in the form of token probability distributions, and
the prompt as new evidence that updates this prior.
In contrast to their work, we conceptualize gener-
ation at a more abstract level where we infer the
latent topic variables at each step of the genera-
tion. Finally, most similar to our work, Wang et al.
(2023) extended the prior work of Xie et al. (2022)
under the in-context learning framework by simpli-
fying the assumption so that generated tokens are
assumed to be conditionally independent of previ-
ous tokens such that p(y|z) = [ p(y|0)p(0]z)do,
where the latent topic variables 0 are learned as
a set of new token embeddings using prompt tun-
ing. However, in contrast with all these previous
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studies that rely on implicitly learned or partially
structured Bayesian mechanisms, our approach ex-
plicitly infers a latent variable distribution during
the LLM generative process.

2.2 Topic Modeling

Topic modeling is a suite of algorithms used for
discovering the latent themes in a large collection
of documents. The topics, often conceptualized
as a multidimensional distribution over the vo-
cabulary, provide an interpretable representation
of the documents useful for downstream applica-
tions including text generation (Tang et al., 2019;
Yang et al., 2021; Zhang et al., 2022) and content
recommendation (Jin et al., 2018; Esmaeili et al.,
2019). While conventional approaches have ei-
ther embraced probabilistic graphical models (Blei
et al., 2003) or non-negative matrix factorization
(Steyvers and Griffiths, 2007), neural topic models
(NTMs) (Miao et al., 2016, 2017; Srivastava and
Sutton, 2017) have become the dominant approach
by leveraging deep learning architectures such as
the Variational Autoencoder (VAE) (Kingma and
Welling, 2014) to more efficiently infer parameters
through backpropagation to model the latent topics.

Due to their flexibility and efficiency, various
methods have been developed to enhance NTMs
including the incorporation of external embeddings
(Dieng et al., 2020; Bianchi et al., 2021a,b), knowl-
edge distillation (Hoyle et al., 2020), and modifica-
tions to the loss function (Ding et al., 2018; Li et al.,
2023). More recent works have directly leveraged
the strengths of large language models (LLMs) to
uncover latent topics, such as using the rich repre-
sentations of LLM embeddings (Xu et al., 2023),
or using the LLM to directly generate the topics
(Pham et al., 2024; Mu et al., 2024). However,
these works do not incorporate the rich token-level
information available at each generation step. In
contrast, our approach integrates the topic infer-
ence process directly into each generative step of
the LLM, resulting in a tighter coupling between
language modeling and topic modeling to capture
subtle shifts in semantic context as the text unfolds.

2.3 In-Context Learning

In-context learning (ICL) was discovered as an
emergent ability of the LLM to improve task per-
formance by adding demonstration examples to the
input prompt (Wei et al., 2022). Since model per-
formance can vary widely depending on the choice
of in-context examples (Liu et al., 2022), a key chal-

lenge is determining an effective strategy to select
demonstration examples for any given task. While
early studies often investigated how to find the op-
timal set of examples for a given task (Wei et al.,
2022; Lu et al., 2022; Min et al., 2022), a more
effective strategy is to dynamically retrieve demon-
stration examples based on the current task input
(Luo et al., 2024). Popular methods include us-
ing off-the-shelf encoders (Reimers and Gurevych,
2019; Izacard et al., 2022), or fine-tuning the re-
trieval model based on the model performance (Shi
et al., 2024). More recently, studies have demon-
strated the effectiveness of using LLMs’ own hid-
den states for retrieving similar examples (Wang
et al., 2024; Li et al., 2025). This is comparable
to our approach, where we use the inferred topic
distribution of the LLM as an interpretable repre-
sentation for retrieving similar examples.

3 Our Explicit Bayesian Approach

3.1 Formulation

Motivated by prior works (Xie et al., 2022; Wang
et al., 2023), our formulation is also based on the
posterior predictive distribution of the LLM genera-
tive process from a Bayesian perspective, where the
next word w; is generated by marginalizing over
latent topic variables 6 (Equation 1). Specifically,
at each generation step, the model first infers a pos-
terior over the latent topic 6 based on the previous
context wy.;—1 before predicting the next word w;
by sampling from a mixture of conditional distribu-
tions p(wy|d).

Plwiwrer) = /9 D O)p(Olwns1)dd (1)

In this formulation, the latent topic variables ¢
serve as an approximate sufficient statistic for the
information in the context. By conditioning on 6,
the model summarizes all relevant contextual sig-
nals into a single latent representation, allowing the
model to generate the next token p(w;|@) without
needing the context wy.;—1.

3.2 Explicit Bayesian Inference

Since LLMs do not explicitly learn an interpretable
latent topic distribution, we approximate the pos-
terior using a variational distribution gg4(0|w1:;—1)
through the VAE. In this setup, the encoder net-
work takes the input context wy.;—; and estimates
a distribution g4(6 | wi..—1) over the latent topics,
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Figure 1: Overview of our proposed method. At each generation step, we use the LLM hidden state representation
of the previous context as input to the neural topic model (i.e., ProdLDA) (Srivastava and Sutton, 2017), where
the model samples 6 based on the distribution parameterized by 1 and o. The decoder then reconstructs the LLM
probabilities by computing the weighted mixture of topic distribution ¢ and the topic-word matrix /3.

while the decoder reconstructs the next token prob-
abilities of the LLLM conditioned on the sampled 6.
This can be interpreted as a form of approximated
Explicit Bayesian Inference over the latent topics
0, where the VAE infers the parameters of the pos-
terior distribution over the topic variable 6 from
the observed context and marginalizes out # when
predicting the next token (Equation 1).

p(ws | wia1) ~ / po(wy | 0)as(6 | win1)db
0

(2)

The log-likelihood of the observed data

log py,(w1:¢) can be optimized using the Evidence
Lower BOund (ELBO) (Equation 3).

log py (w1:t) > By, (gfuwr..) [l0g Py (wie | 0)]
— Dxifqp(8 | wixe) || p(8)) (3)

3.3 Our Method

In this work, we adopt the ProdLDA neural topic
model (Srivastava and Sutton, 2017), which re-
places the standard Gaussian prior of the VAE
(Kingma and Welling, 2014) with a Laplace ap-
proximation of the Dirichlet prior. Under this ar-
chitecture, the encoder network outputs a mean u
and standard deviation ¢, which parameterize a

Gaussian distribution in the latent space. A sam-
ple from the distribution is mapped through a soft-
max function to obtain the topic distribution 6. Fi-
nally, the learned word-topic distribution matrix
[, which defines the distribution over the vocabu-
lary for each topic, is used to construct the LLM
probabilities weighted by 8. The overview of our
proposed method is illustrated in Figure 1.

To represent the previous context, we use the
hidden state embedding of the LLM as input to
the encoder. In addition, rather than reconstruct-
ing the bag-of-words (BoW) representation of the
document, we define the decoder’s reconstruction
loss to be the negative log-likelihood (NLL) of the
next token predictions to match the output from
the LLM. This leads to the final loss presented in
Equation 4.

L=— Eypppin(wilwiii) 108 y(we | 0)]
A D060 | wie) [p®) @

This procedure yields an approximate Bayesian
topic model that learns to reconstruct the exact
output of an LLM, providing interpretable latent
representations ¢ while maintaining faithfulness to
the LLM predictions for the given training corpus.

In practice, due to the large difference in repre-
sentation capacity between the LLM and our model,
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we limit the vocabulary of the topic model to be a
much smaller size than the vocabulary of the LLM
to ensure stability during training. Since most mod-
ern language models adopt the Byte-Pair Encod-
ing (BPE) tokenizer (Sennrich et al., 2016), words
are sometimes tokenized into multiple sub-word
tokens. To combine the probability of sub-word
tokens, we compute the whole-word probability by
accumulating the probabilities of all sub-word to-
kens that form each word through products. This is
done by using beam search to keep track of partial
word candidates, and maintaining the cumulative
probability for each partial sequence.

4 Intrinsic Evaluation on Topic Modeling

Since our method infers the underlying topics dur-
ing LLM generations, these latent topics can cap-
ture the underlying semantic patterns providing
some transparency regarding the themes leveraged
by the model at each generation step. When trained
on a collection of documents, these topics can be
interpreted as LLM-enriched thematic structures of
the corpus analogous to those found in traditional
topic models. In this section, we assess the intrin-
sic quality of the inferred topics by comparing our
method with existing topic modeling techniques.

4.1 Experiment Settings

In our experiments, we use Llama3.2-1B (Dubey
et al., 2024) as the base LLM for inferring latent
topics. We train and evaluate our models on three
publicly available datasets of different domain and
number of documents, namely, AG News (Zhang
et al., 2015), DBPedia, and GovReports (Huang
et al., 2021). For all three datasets, we use a
fixed vocabulary size of the top 2000 most fre-
quent words, which is roughly equivalent to the
dimension of the LLM hidden states (2048). The
statistics of the datasets are presented in Table 1'.

"Hyperparameter settings are described in Appendix Ap-
pendix A

Dataset Domain  Words Size
AG News News 31 7,600
DBPedia Wiki 46 76,000
GovReports Reports 571 973

Table 1: Statistics of the three datasets used in our ex-
periments.

In our experiments, we use automatic topic eval-
uation metrics to efficiently assess two important
facets of the topics, namely, coherence and diver-
sity, which are strongly correlated with the intrinsic
interpretability of the topics (Dieng et al., 2020).
Topic coherence measures the extent to which the
words within a topic are related to each other in a
meaningful way. To assess the coherence of the
topics, we use the Word Embedding (WE) metric
(Fang et al., 2016), which measures the pairwise
embedding similarity between words within a topic,
and the recently proposed LLM score (Stammbach
et al., 2023) which utilizes an LLLM to rate word
relatedness on a 1-3 scale and has demonstrated
the highest correlation with human judgment. In
our experiments, we use Word2Vec embeddings’
(Mikolov et al., 2013) to measure word embed-
ding similarity, and gpt-40-2024-08-06 model to
rate the topics. To measure the diversity between
topics, we used Inversed Rank-Biased Overlap (I-
RBO) (Terragni et al., 2021b; Bianchi et al., 2021a)
measuring the rank-aware difference between all
combinations of topic pairs.

4.2 Baselines

We compare our proposed method with both tradi-
tional and recent topic modeling techniques, includ-
ing: (1) LDA (Blei et al., 2003), (2) ProdLDA (Sri-
vastava and Sutton, 2017), (3) ETM (Dieng et al.,
2020), (4) CombinedTM (Bianchi et al., 2021a),
and (5) ZeroshotTM (Bianchi et al., 2021b).

4.3 Results

From the results displayed in Table 2, our approach
consistently outperforms all baselines across all
three datasets. In particular, we find that our
method simultaneously improves upon the coher-
ence scores while maintaining or even surpassing
the best baselines in terms of topic diversity. Ar-
guably, our proposed method may be benefitting
from two possible advantages. The first advan-
tage is the increased number of training examples.
While traditional topic models reconstructs the bag-
of-words (BoW) representation of the document,
our approach allows the model to learn from each
generation step of the LLLM, which significantly
increase the number of training examples that our
model can learn from. The second advantage is
that since our model learns from the LLM pre-
dicted next-token probabilities, it benefits from the

2We use word2vec-google-news-300 from the Gensim
library (Rehtifek and Sojka, 2010).
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AGNews DBPedia GovReport
Metrics LLM WE I-RBO | LLM WE I-RBO | LLM WE I-RBO
K =50
LDA 1.86 .108 983 | 2.10 .123 952 |2.62 .150 .762
ProdLDA 230 147 984 | 246 .171 991 | 232 .141 .986
ETM 238 193 940 | 2776 252 944 | 2770 227 .96l
CombineTM 240 189 972 | 272 243 979 | 254 .144 988
ZeroshotTM 244 162 903 | 2.66 204 916 |2.62 .151 967
GenerativeTM (Ours) | 2.74 269 991 | 2.78 .297 989 | 2.80 .254 .993
=100
LDA 1.86 .105 987 | 199 .120 959 | 240 .148 .807
ProdLDA 224 136 982 | 249 .170 989 | 229 .135 988
ETM 236 194 945 | 265 253 945 | 2.61 232 966
CombineTM 206 .134 896 |2.75 236 971 | 258 .140 981
ZeroshotTM 242 172 917 | 278 270 897 | 2.60 .148 .984
GenerativeTM (Ours) | 2.69 .254 989 | 2.76 .301 .990 | 2.77 .250 .989

Table 2: Topic modeling results for number of topics K € {50,100} on AGNews, DBPedia, and GovReport. Each

result is computed by averaging over 5 random seeds.

rich semantic information embedded in the LLM’s
learned distributions. In other words, because the
LLM tends to assign higher probabilities to terms
that are contextually and semantically related, our
method naturally clusters these related words to-
gether, leading to more coherent and thematically
consistent topics. To verify the role played by
these two advantages, we perform additional exper-
iments.

4.4 Follow-up Experiments

Input Representation For the results presented
in Table 2, we used the final hidden layer (i.e.,
layer 16) representations of the last context token
as the input embedding to our model since they are
directly used for predicting the probabilities of the
next token. To study the effects of using different
input representations on the quality of the topics,
we tested the performance of our method when we
use different layers of the model as well as other
types of embeddings (i.e., SBERT) for representing
the context.

From the results shown in Table 3, we see that
while using the final hidden layer of the LLM
achieve the best topic quality, there is a gradual
decrease in performance using the earlier layers
of the model. This is expected since the last hid-
den layer is directly used by the LLLM to output

Input LLM WE  I-RBO
SBERT 245 .232 984
Layer2 2.64 252 991
Layer4 2.66 .255 .990
Layer6 2.70 .262 .992
Layer8 2.64 258 .992
Layer 10 2.66 .254 991
Layer 12 2.66 .270 .990
Layer 14 2.78 270 .989
Layer 16 2.74 269 .991

Table 3: Topic modeling performance on AG News
(K = 50) using the SBERT embeddings and the hidden
states from different layers of the LLM as input.

the next-token distribution. In addition, we find
that although using the SBERT embeddings cannot
match the performance achieved by our approach,
it still performs better than all the baselines, demon-
strating the advantage of leverage the rich semantic
information from the LLM predictions.

Number of Training Examples We also perform
experiments to measure the effects of the number
of training examples on the quality of the inferred
topic. In particular, we perform experiments to eval-
uate how varying the training set size affects the
performance of our model. From Table 5, we see
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Label ProdLDA | ZeroshotTM | GenerativeTM
Company operator, base, network, com- | business, firm, investment, | retailer, brand, company, dis-
pany, operations, distribution, | bank, countries, offices, funds, | tributor, label, shop, manufac-
internet, content, subsidiary, | banks, companies, businesses | turer, firm, supplier, clothing
computer
Film comedy, role, director, action, | life, play, drama, film, screen- | crime, drama, thriller, ro-

films, movie, roles, cinema,
film, feature

play, woman, man, adaptation,
plot, title

mance, comedy, suspense, hor-
ror, noir, mystery, fantasy

Mean of Transportation

model, car, brand, genera-
tion, manufacturer, line, lux-
ury, store, production, acces-
sories

car, model, railway, unit, type,
operator, bus, train, rail, units

sedan, chassis, car, prototype,
cars, engine, cockpit, kit, vehi-
cle, model

Natural Place

point, level, island, range,
mountain, views, elevation,
border, peak, hill

point, range, mountain, peak,
border, views, end, pass, level,
trail

forests, forest, habitat, habi-
tats, woodland, scrub, destruc-
tion, vegetation, soils, grass

Written Work

volume, issue, authors, maga-
zine, science, anthology, trade,
edition, aspects, review

field, aspects, research, jour-
nal, editor, behalf, chief, ac-
cess, review, peer

book, novel, novels, chapter,
books, tale, trilogy, memoir,
poem, manga

Table 4: Top-10 words for each topic generated by ZeroshotTM, ProdLDA, and our GenerativeTM model.

that our model performs on-par with the baseline
(zeroshotTM) even with a fraction of the training
documents (1000). This advantage can be seen
from the number of LLM prediction steps that
our model learns from. Since topic models often
struggle with sparse targets often present in shorter
texts (Qiang et al., 2022), our approach can yield a
significant advantage by increasing the number of
training instances and leveraging the rich semantic
information of LLMs.

Documents  Steps LLM  WE I-RBO
1000 6,466 244 225 982
2000 12,026 2.58 .244 988
3000 17,704 2.58 244 984
4000 23,340 2.64 .256 .990
5000 28,769 2.72 266  .986
6000 34,310 2.68 .255 .990
7600 43,117 274 269 991

Table 5: Topic modeling performance on AG News
(K = 50) using the different number of training docu-
ments.

4.5 Qualitative Comparison

For a qualitative comparison, we choose three neu-
ral topic models: ProdLDA, ZeroshotTM, and
our GenerativeTM, all sharing the same architec-
ture and training configurations as the standard
ProdLDA. In order to compare between topics, we
choose the DBPedia dataset with ground-truth la-
bel and use OpenAl’s GPT-40 to assign each topic

to one of the 14 ground truth classes using the fol-
lowing prompt.

You will be given a topic
represented as a plain list of
words.

Choose exactly one class from
the DBpedia-14 ontology that best
matches the topic.

Allowed classes: <DBPedia classes>

Topic: <List of Topic Words>

To select the topics for visualization, we dis-
play the top-10 words by selecting 5 classes and
taking the most coherent topic according to LLM
and WE score. In Table 4, we see that the topics
from GenerativeTM consists of semantic similar
words that can often be used interchangeably. This
is expected behavior since our method uses the
next-token distribution as the reconstruction target,
where words that are likely to occur under similar
context. On the other hand, the topics from the
standard ProdLDA and ZeroshotTM are learned
from reconstructing BoW document representation,
which captures surface-level patterns and can be
misled by corpus-level noises. For example, for
the topic inferred by ZeroshotTM, “aspect” and
“behalf” might be commonly co-occurring with
other topical words in documents from the “Writ-
ten Work”™ class (last row), they are poor semantic
descriptors of the topic, making the topic less in-
terpretable overall. We leave more sophisticated
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strategies for learning topics from the deeper mean-
ings of text as an exciting venue for future work.

5 Extrinsic Evaluation on In-Context
Learning

While the experiments in section 4 provided an in-
trinsic evaluation of the topic quality, we now per-
form an extrinsic evaluation by assessing the use-
fulness of the topics for in-context learning (ICL).
In particular, during inference on the test set, we
use the topic distribution of the input documents to
dynamically retrieve the examples with the most
similar topic distribution in the training set.

5.1 Experiment Setting

We perform experiments on two popular NLP tasks,
classification and summarization. For classifica-
tion, we use the DBPedia-14 dataset previously
used for topic modeling, where each document is
classified into one of the 14 non-overlapping cate-
gories, e.g., Company, Animal, Plant. For summa-
rization, we use the XSum dataset (Narayan et al.,
2018), which consists of 204K training and 11K
test examples. Each example in XSum contains
a news article paired with a single one-sentence
summary extracted from the title.

For both tasks, we use the instruction-tuned
Llama3.2-1B-Instruct, where the base model is fine-
tuned on curated datasets of instruction—response
pairs. In particular, we use the entire document as
input context and use the mean topic distribution
0 as retrieval representation of the example. Since
our neural topic model is trained to reconstruct the
probabilities of the next word in our vocab, we
use a manually designed prompt that instructs the
model to summarize the entire document in one
word (Table 6).

In our experiments, we first compute the retrieval
representation of all examples in the training and
test set using the respective prompts in Table 6.
During inference, we select the top training exam-
ples with the most similar topic distribution (mea-
sured by KL divergence) and use the input-target
pairs as few-shot demonstrations. For DBPedia-14,
we use 5-shot inference and evaluate the perfor-
mance with classification accuracy. For XSum,
we use the ROUGE metric (ROUGE-1, 2, LSum)
(Lin, 2004) for summarization evaluation, which
computes the token overlap between predicted and
reference summary, where we perform 1-shot learn-
ing with only a single demonstration example since

DBPedia-14

Retrieval Prompt: Using a single word,
output the most likely topic of the Wiki
article.

Task Prompt: Classify the document
into one of the following categories by
outputting the category name ONLY:
Company

Educationallnstitution

XSum

Retrieval Prompt: Summarize the news
article in a single word.

Task Prompt: Generate a single sen-
tence summary for the topic of the news
article.

Table 6: The Retrieval Prompt for creating the retrieval
representation of the document and the Task Prompt for
task inference.

we find that adding more examples resulted in di-
minished performance.

5.2 Baselines

For baselines, we include zero-shot inference with-
out any demonstrations, as well as the LLM hidden
state representation (input to our NTM) which has
shown to be a strong baseline for retrieving demon-
strations (Wang et al., 2024; Li et al., 2025). Lastly,
we also include the next token probabilities of the
LLM, which is also significantly more computa-
tionally intensive compared to our approach due
to the large vocab size of the LLM. We use co-
sine similarity and KL divergence as the similarity
metric for the LLM hidden states and next token
probabilities respectively.

5.3 Results

From the results in Table 7, we see that our ap-
proach significantly outperforms all baselines on
the DBPedia-14 dataset for classification. Since for
classification tasks, the demonstration examples
often bias the prediction to output the most fre-
quent class (Min et al., 2022), our method was able
to consistently retrieve examples with the same
ground-truth label. While the next-token probabil-
ity distribution of the LLM provides a more granu-
lar representation of the document topic (instructed
by the retrieval prompt), the extremely large vocab
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DBPedia-14 XSum
Accuray ROUGE-1  ROUGE-2  ROUGE-LSum
Zeroshot 52.64 16.93 3.96 14.50
Hidden State 53.14 17.47 4.01 14.73
Probabilities 66.07 17.78 4.24 15.09
Topic (K =50) 73.21 17.69 4.08 14.90
Topic (K = 100) 74.00 18.00 4.12 14.85

Table 7: In-context learning results using different demonstration retrieval methods on the DBPedia-14 (classifica-
tion) and XSum (summarization) dataset. The results using our approach (Topic) are averaged over 5 random seeds.

size can cause the distribution to be dominated by
other unimportant tokens. These unimportant and
rarely used tokens still contribute to the computa-
tion in noisy or unhelpful ways, not to mention to
the added computational overhead of computing
similarity between large matrices. In contrast, the
topic distribution can be interpreted as a coarse
summary of the next-token distribution by semanti-
cally partitioning the vocab space into more mean-
ingful concepts. This allows our approach to re-
trieve examples focusing on the high-level themes
of the document while mitigating noise from low-
frequency tokens. For the results on the XSum
summarization dataset, we see that using the next-
token probabilities performs similarly to our topic
distribution approach. In contrast to the classifi-
cation task, where the categories can be often be
encoded in a few salient token, summarization re-
quires the model to generate a broader and contex-
tually consistent text. Therefore, infrequent tokens
have less sway in determining the overall meaning
of the generated summary and have a less impact
on the retrieval representation for ICL. Summaries
are generated based on the broader context rather
than any individual token, so occasional rare tokens
introduce far less noise in identifying and retrieving
relevant examples for the summarization task.

6 Conclusion

In this work, we propose a novel approach for in-
ferring the latent topics of Large Language Models
under explicit Bayesian framwork. By training a
variational autoencoder (VAE) to reconstruct the
LLM’s predicted next-token distribution, we obtain
interpretable topic variables that capture high-level
thematic patterns at each generation step. Our ex-
periments demonstrate that this topic-based repre-
sentation provides both intrinsic benefits—yielding
more coherent and diverse topics than standard
topic models—and extrinsic advantages by improv-

ing retrieval-based in-context learning (ICL), par-
ticularly in classification tasks where rare-token
noise can be detrimental. For abstractive summa-
rization, the coarse topic distribution performs com-
parably to the next-token distribution approach but
at a fraction of the computational cost.

These results suggest that modeling generation
with a learned topic distribution can serve as a
powerful lens for understanding LLM behavior,
bridging probabilistic generative models and large-
scale neural networks. In future work, we plan to
extend our approach by designing more capable
probabilistic models that capture a large propor-
tion of the LLM output space, and investigate ways
to additional methods to utilize the latent topics
in downstream applications (e.g., hallucination de-
tection, uncertainty quantification, etc.). We hope
this work inspires further research on incorporat-
ing explicitly modeled latent structures into large
language models for enhanced transparency, and
task performance.

Limitations

While our method provides an interpretable latent
topic space and demonstrates advantages for down-
stream tasks, it also faces several limitations. First,
our approach restricts the vocabulary size in the
neural topic model to a much smaller subset than
the LLM’s full vocabulary. This constraint helps
maintain stable training and manage computational
requirements but may overlook nuances encoded
in less frequent or domain-specific terms. Sec-
ond, our experiments focus mainly on English text.
Given that multilingual LLMs handle linguistic
features such as morphology, syntax, and vocabu-
lary differently across languages, directly extend-
ing our approach to non-English contexts may re-
quire language-specific adaptations, especially for
languages that exhibit significant subword overlap
or complex morphological structures.
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A Hyperparameters

For all our experiments, we keep the hyperpa-
rameter values constant without performing any
searches. We use a two layer 200 dimensional
MLP as the encoder with a batch size of 64 and a
learning rate of 2e-3. For all baselines, we use the
implementation from the OCTIS library (Terragni
et al., 2021a), where we train all baselines for a
total of 50 epochs, while training our model for
20 epochs due to the increased number of training
examples.

All experiments are performed on single A100
GPU with 40GB VRAM. All topic models take
less than 10 minutes to train.
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