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Abstract

Scientific Natural Language Inference (NLI)
is the task of predicting the semantic relation
between a pair of sentences extracted from re-
search articles. Existing datasets for this task
are derived from various computer science (CS)
domains, whereas non-CS domains are com-
pletely ignored. In this paper, we introduce
a novel evaluation benchmark for scientific
NLI, called MISMATCHED. The new MIS-
MATCHED benchmark covers three non-CS
domains–PSYCHOLOGY, ENGINEERING, and
PUBLIC HEALTH, and contains 2, 700 human
annotated sentence pairs. We establish strong
baselines on MISMATCHED using both Pre-
trained Small Language Models (SLMs) and
Large Language Models (LLMs). Our best per-
forming baseline shows a Macro F1 of only
78.17% illustrating the substantial headroom
for future improvements. In addition to in-
troducing the MISMATCHED benchmark, we
show that incorporating sentence pairs having
an implicit scientific NLI relation between them
in model training improves their performance
on scientific NLI. We make our dataset and
code publicly available on GitHub.1

1 Introduction

The task of Natural Language Inference (NLI)
has received significant attention, initially through
several PASCAL Recognising Textual Entailment
(RTE) Challenges (Dagan et al., 2006; Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009) which focused on recognizing if two given
sentences exhibit an entailment relationship. Subse-
quently, several NLI datasets (Bowman et al., 2015;
Williams et al., 2018; Nie et al., 2020) have been
introduced to facilitate progress on the NLI task.
More recently, there has been an increasing interest
in domain specific NLI tasks, including scientific
NLI (Sadat and Caragea, 2022). The scientific NLI
task classifies the semantic relation between a pair

1https://github.com/fshaik8/MisMatched

of sentences extracted from research articles into
one of four classes—ENTAILMENT, REASONING,
CONTRASTING, and NEUTRAL. This task is chal-
lenging for both Pre-trained Small Language Mod-
els (SLMs) and Large Language Models (LLMs)
(Sadat and Caragea, 2024), making it suitable to
serve as a challenging benchmark for evaluating
the natural language understanding of state-of-the-
art models. In addition, Sadat and Caragea (2024)
have shown that scientific NLI can aid in improving
the performance of other downstream tasks such as
topic classification and citation intent classification.

To date, two datasets have been made available
to facilitate research on scientific NLI—SCINLI
(Sadat and Caragea, 2022), and MSCINLI (Sa-
dat and Caragea, 2024). SCINLI is derived from
papers published in the ACL anthology, related
to Natural Language Processing (NLP) and com-
putational linguistics. To introduce diversity in
scientific NLI, MSCINLI is constructed using sen-
tence pairs extracted from five different scientific
domains—HARDWARE, NETWORKS, SOFTWARE

& ITS ENGINEERING, SECURITY & PRIVACY,
and the NEURIPS conference which is related
to machine learning. The training sets of these
datasets are constructed using a distant supervision
method that harnesses explicit signals conveyed by
various linking phrases. For example, if the sec-
ond sentence in an adjacent sentence pair starts
with “However” or “In contrast,” the sentence pair
is labeled as CONTRASTING. The test and devel-
opment sets of both SCINLI and MSCINLI are
human annotated to ensure a realistic evaluation.

Despite the diversity introduced in MSCINLI,
the domains covered by the existing scientific NLI
datasets are still related to only computer science
(CS), while non-CS domains are completely ig-
nored. Thus, in this paper, we propose a new eval-
uation benchmark for scientific NLI called MIS-
MATCHED, which contains sentence pairs collected
from 3 non-CS domains: PSYCHOLOGY, ENGI-
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NEERING, and PUBLIC HEALTH. We constructed
MISMATCHED as an out-of-domain (OOD) test-
bed for scientific NLI models. That is, MIS-
MATCHED contains only development and test
sets that are human annotated (of sizes 300 and
2400, respectively), without any training data. MIS-
MATCHED is designed as an out-of-domain (OOD)
benchmark for evaluating the robustness of scien-
tific NLI models, similar to the MISMATCHED (MM)
portion of MNLI (Williams et al., 2018). Like
MNLI’s MISMATCHED set, which uses unseen gen-
res to test model generalization, MISMATCHED is
aimed at evaluating OOD robustness when models
are trained on existing scientific NLI training sets.

We establish strong baselines on MISMATCHED

by fine-tuning four SLMs—BERT (Devlin
et al., 2019), SCIBERT (Beltagy et al., 2019),
ROBERTA (Liu et al., 2019) and XLNET (Yang
et al., 2019); and by prompting four LLMs—
LLAMA-2 (Touvron et al., 2023), LLAMA-3
(Grattafiori et al., 2024), MISTRAL (Jiang et al.,
2023) and PHI-3 (Abdin et al., 2024) using the
training sets from existing scientific NLI datasets.
We find that our best performing SLM baseline
with SCIBERT and best performing LLM base-
line with PHI-3 show Macro F1 of only 78.17%
and 57.16%, respectively, illustrating the highly
challenging nature of the MISMATCHED set, and
a significant amount of headroom for future im-
provements. In addition, given that all sentence
pairs in the training sets of existing scientific NLI
datasets are constructed using distant supervision
that harnesses explicit relations conveyed by var-
ious linking phrases, we analyze the impact on
models’ performance of sentence pairs which have
an implicit relation between them (i.e., sentence
pairs which are adjacent in text and have a scien-
tific NLI relation but the second sentence in the pair
does not start with a linking phrase). We find that
incorporating implicit relations can indeed improve
the performance of scientific NLI models. Our key
contributions can be summarized as follows:

• We introduce a novel MISMATCHED bench-
mark which is more distant from computer
science domains to further enhance the diver-
sity of scientific NLI.

• We establish strong baselines on MIS-
MATCHED using both SLMs and LLMs and
show that it presents a challenging new bench-
mark for out-of-domain NLI evaluation.

• We incorporate implicit relations in the scien-
tific NLI model training, and show that they
can improve the performance of scientific NLI
models trained using only explicit relations.

2 Related Work

Since the introduction of the NLI task (Dagan
et al., 2006), numerous datasets have been intro-
duced that include sentence pairs from the gen-
eral domain. RTE (Dagan et al., 2006) is an
early dataset, which went through several itera-
tions (Haim et al., 2006; Giampiccolo et al., 2007;
Bentivogli et al., 2009). The RTE dataset contains
premise-hypothesis pairs, which are labeled as en-
tailment or non-entailment. More recent datasets
such as SICK (Marelli et al., 2014), SNLI (Bow-
man et al., 2015) and MNLI (Williams et al., 2018)
contain sentence pairs that are classified as entail-
ment, contradiction, or neutral. The SICK dataset
(Marelli et al., 2014) contains sentence pairs au-
tomatically extracted from paired image captions
and video descriptions. SNLI (Bowman et al.,
2015) contains premise-hypothesis pairs, where
the premises are extracted from image captions,
and the hypotheses are manually written by human
annotators. MNLI (Williams et al., 2018) con-
tains premise-hypothesis pairs where premises are
extracted from a variety of sources such as travel
guides and face-to-face conversation, while the hy-
potheses are manually written by human annota-
tors, as in SNLI. ANLI (Nie et al., 2020), another
NLI dataset, was constructed in an adversarial fash-
ion with human annotators in the loop who were
instructed to write sentence pairs for which the
models make mistakes in their predictions.

Several domain-specific NLI datasets have also
been introduced. For example, MEDNLI (Ro-
manov and Shivade, 2018) was derived from medi-
cal records of patients with the premise-hypothesis
pairs being annotated by experts (in the medical
domain) as entailment, contradiction, or neutral.
The NLI4CT dataset (Jullien et al., 2023) contains
premise-hypothesis pairs, in the form of clinical
trial reports (CTR) and statements, labeled as en-
tailment or contradiction by human annotators.
NLI4CT-P (Perturbed) (Jullien et al., 2024) is an
extension of the original NLI4CT dataset (Jullien
et al., 2023) and was obtained by adding a con-
trast set derived from perturbations to the original
statements, to facilitate causal analyses.
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Domain First Sentence Second Sentence Class
ENGINEERING In previous studies, GBRS has acted as a

guideline to improve energy use and indoor
air quality.

However, the effectiveness of GBRS as ap-
plied to construction waste management
has not been explored.

CONTRASTING

PUBLIC
HEALTH

For example, sewage-associated marker
genes such as Bacteroides HF183 and
HPyV, and enteric viruses such as human
NoV are predominantly associated with hu-
man feces or sewage.

Therefore, these marker genes can be used
as a proxy to determine the risk associated
with NoV and other enteric pathogens spe-
cific to sewage.

REASONING

PSYCHOLOGY The presence of BED in one or both par-
ents was associated with the emotional and
behavioural development in offspring.

Particularly, the diagnosis of BED in both
parents had a direct effect on infants’ affec-
tive problems.

ENTAILMENT

ENGINEERING This baffle geometry was tested for a well
known seismic excitation (El Centro) and
it was observed to effectively suppress free
surface fluctuations and the slosh forces.

storage tank designers should ensure safe
design margins and develop methodologies
to overcome a wide range of possible sce-
narios.

NEUTRAL

Table 1: Examples of sentence pairs from MISMATCHED, extracted from different domains. The linking phrases at the
beginning of the second sentence (strikethrough text in the table) are deleted after extracting the pairs and assigning the labels.

Most relevant to our work, SCINLI (Sadat and
Caragea, 2022) is a scientific NLI dataset con-
structed from research articles published in the
ACL Anthology, where sentence pairs were ex-
tracted automatically from articles based on link-
ing phrases, and classified into one of the follow-
ing four classes: entailment, reasoning, contrast-
ing, and neutral (with manual annotations only
for the test and dev sets). MSCINLI (Sadat and
Caragea, 2024) is an extension of SCINLI, which
was constructed from a larger variety of computer
science research articles, e.g., HARDWARE, NET-
WORKS, etc. and contains sentence pairs labeled
also with the above four classes. To further di-
versify the datasets and study the transferability
and robustness of the models for scientific NLI in
out-of-distribution settings, in this paper, we in-
troduce test/dev sets that cover articles from three
non-computer science domains, specifically PSY-
CHOLOGY, ENGINEERING, and PUBLIC HEALTH.

A comparison of all the datasets reviewed here
is shown in Appendix A.

3 The MISMATCHED Benchmark
In this section, we describe our proposed MIS-
MATCHED benchmark for scientific NLI. Specifi-
cally, we outline the data sources for deriving MIS-
MATCHED, the construction process and the key
statistics. Table 1 shows examples of sentence pairs
from different domains and classes in our dataset.

3.1 Data Sources

Our MISMATCHED benchmark is composed of
three domains—PSYCHOLOGY, ENGINEERING,
and PUBLIC HEALTH. We selected these domains
to extend scientific NLI beyond existing computer

science focused datasets. While SCINLI (Sadat
and Caragea, 2022) covers computational linguis-
tics and MSCINLI (Sadat and Caragea, 2024)
encompasses CS domains (Hardware, Networks,
Software & Engineering, Security & Privacy, and
NeurIPS), our new domains represent diverse non-
CS scientific areas with broad real-world applica-
tions. The data sources for each of these domains
are described below.

PSYCHOLOGY. Kowsari et al. (2017) con-
structed a dataset for topic classification of scien-
tific papers. The dataset contains abstracts from
Web of Science (WoS) papers, which belong to 7
scientific domains, including the Psychology and
Engineering domains. WoS is a database that in-
dexes global scholarly literature across sciences
from various journals and academic events. We ex-
tract sentence pairs from papers in the PSYCHOL-
OGY domain for our MISMATCHED set.

ENGINEERING. For the ENGINEERING domain,
we also utilize a subset of WoS papers from the
topic classification dataset introduced by Kowsari
et al. (2017). Specifically, we extract sentence pairs
from “Civil Engineering”, “Electrical Engineering”
& “Mechanical Engineering” papers.

PUBLIC HEALTH. Three sources are used to
extract sentence pairs for the PUBLIC HEALTH

domain. Using twenty-five keywords related to ma-
rine water characteristics and the health risks of
divers and swimmers (such as coastal water pollu-
tion and beach water contamination), we crawled
about 100k abstracts from WoS. Next, the National
Library of Medicine (NLM) was used to collect 200
additional abstracts for articles specific to water
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#Examples #Words ‘S’ parser Word

Dataset Train Dev Test Prem. Hyp. Prem. Hyp. Overlap #Domains Agrmt.

SCINLI (ACL) 101,412 2,000 4,000 27.38 25.93 96.8% 96.7% 30.06% 1 85.8%
MSCINLI 127,320 1,000 4,000 26.84 25.85 94.4% 94.3% 30.29% 5 88.0%
MISMATCHED - 300 2400 26.65 25.75 96.8% 98.2% 31.27% 3 85.7%
♢ xPUBLIC HEALTH - 100 800 27.42 27.22 98.4% 97.8% 31.19% 1 84.3%
♢ xPSYCHOLOGY - 100 800 25.95 25.59 94.1% 97.7% 31.01% 1 88.3%
♢ xENGINEERING - 100 800 26.59 24.45 97.8% 98.8% 31.59% 1 85.6%

Table 2: Comparison of the key statistics of the MISMATCHED set with MSCINLI and SCINLI.

diving. Finally, 153 full-text scholarly articles and
reports related to the Centers for Disease Control
and Prevention (CDC) and the U.S. Environmen-
tal Protection Agency (EPA) were collected using
a manual PubMed search of biomedical literature
from MEDLINE, life science journals, and online
books. During the initial pre-processing of the col-
lected papers, non-English and duplicate texts were
removed. Only the open-source abstracts and full
texts were used to construct our dataset.

3.2 Dataset Construction

To construct our MISMATCHED set, we follow
a procedure similar to that employed for creat-
ing the test and development sets of SCINLI and
MSCINLI. In phase 1, we automatically extract
and annotate sentence pairs using the distant su-
pervision method proposed by Sadat and Caragea
(2022). In phase 2, we employ human annotators
to curate the final test and development sets.

Phase 1: Automatic Data Extraction and Anno-
tation. For the ENTAILMENT, CONTRASTING

and REASONING classes, we automatically extract
adjacent sentence pairs where the second sentence
starts with a linking phrase indicative of these rela-
tions. We then remove the linking phrase from the
second sentence, and assign the label based on the
semantic relation indicated by the linking phrase
(as shown in Table 1). For example, if the second
sentence starts with “Therefore” or “As a result,”
we extract and annotate the sentence pair with the
REASONING label. The mapping of linking phrases
to labels can be seen in Appendix B.1.

For the NEUTRAL class, we randomly pair two
non-adjacent sentences from the same paper using
3 strategies: a) BOTHRAND: two random sentences
which do not contain any linking phrases are paired;
b) FIRSTRAND: a random sentence is paired with
a second sentence from the other three classes; c)
SECONDRAND: a random sentence is paired with
a first sentence from the other three classes.

Phase 2: Human Annotation. To construct the
final test and development sets, we hire annotators
via a crowd-sourcing platform called COGITO.2

Note that separate annotators are hired for the three
domains to ensure that the annotators have the back-
ground knowledge and expertise necessary to un-
derstand domain-specific sentences. More details
on annotators (e.g., pilot batch completion, pay,
etc.) are available in Appendix B.2.

We perform the human annotations in an iter-
ative fashion. In all iterations (except last), we
randomly sample a balanced (over classes) subset
of sentence pairs and ask three expert annotators
to assign the label based only on the context avail-
able in the two sentences in each pair. Based on
the consensus of the annotators, we assign a gold
label to each example. The examples for which the
gold label matches with the automatically assigned
label based on distant supervision are included in
the MISMATCHED set, and the rest are discarded.
For each domain, we continue the iterations until
we have at least 225 examples from each of the
non-NEUTRAL classes. For the NEUTRAL class,
we notice a lower agreement rate between the gold
label and the automatically assigned label in all
domains. Thus, for each domain, we perform a last
iteration with all sentence pairs sampled from the
NEUTRAL class to obtain (at least) 225 examples
where the automatically assigned NEUTRAL label
matches with the human annotated gold label. The
distribution of the automatically assigned labels is
not made available to the annotators for any batch.

In total, we annotate 3, 253 sentence pairs,
among which 2, 791 have an agreement between
the gold label and the automatically assigned label.
The annotators showed a Fleiss-κ score of 0.72
among them (see Appendix B.2 for domain-wise
breakdown). The domain-wise agreement rates
between the gold label and the automatically as-
signed label can be seen in Table 2. We report the
class-wise agreement rates in Appendix B.3.

2https://www.cogitotech.com/
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<human>: Consider the following two sentences:
Sentence1: <sentence1>
Sentence2: <sentence2>
Based only on the information available in these two sentences, which of the following options is true?
a. Sentence1 generalizes, specifies or has an equivalent meaning with Sentence2.
b. Sentence1 presents the reason, cause, or condition for the result or conclusion made Sentence2.
c. Sentence2 mentions a comparison, criticism, juxtaposition, or a limitation of something said in Sentence1.
d. Sentence1 and Sentence2 are independent.
<bot>:

Table 3: Prompt template used for LLMs. Here, <X> indicates a placeholder X, which is replaced in the actual prompt.

Data Balancing. To ensure an equal representa-
tion of the classes and the domains, we randomly
downsample all classes across domains to 225 (our
domain-wise target size for each class). That is, the
resulting MISMATCHED set contains 2, 700 exam-
ples in total, uniformly distributed over the three
domains (900 in each domain).

Data Split. We split the MISMATCHED set into
test and dev sets at the paper level to prevent data
leakage. Specifically, we randomly split the papers
in each domain ensuring that there are at least 800
and 100 examples in the test and dev sets, respec-
tively, with both sets being balanced over classes.

3.3 Data Statistics

We report the key statistics of our MISMATCHED

set in Table 2. As we can see, the per-domain
test size of MISMATCHED is the same as that of
MSCINLI (both 800). While the per-domain dev
size of MISMATCHED is smaller compared with
MSCINLI, it still contains a satisfactory number
of examples to be able to perform validation and
hyper-parameter tuning. We can also see that the
average number of words in the sentences in MIS-
MATCHED is similar to that of the existing datasets.
In addition, for both sentences, the percentage of
sentences that have an “S” root according to the
Stanford PCFG Parser (3.5.2) (Klein and Manning,
2003) is over 96%. This indicates that the vast ma-
jority of sentences in our dataset are syntactically
complete. We can also see that the percentage of
words that overlap between the two sentences is
low, similar to the existing scientific NLI datasets.

4 Baselines

Since MISMATCHED only consists of dev and test,
we use the training sets of SCINLI and MSCINLI,
containing 101K and 127K sentence pairs, respec-
tively, to establish the SLM and LLM baselines.
Our implementation details are in Appendix C.

4.1 Models

SLM Baselines. We fine-tune the base variants
of BERT (Devlin et al., 2019), SCIBERT (Beltagy
et al., 2019), ROBERTA (Liu et al., 2019) and
XLNET (Yang et al., 2019) as our SLM baselines,
using the training sets of SCINLI, MSCINLI, and
their combination denoted as MSCINLI+.

LLM Baselines. Our selection of LLMs focused
on popular, instruction-tuned models representing
recent advancements suitable for prompt-based
NLI and reproducible research. We experiment
with several open-source LLMs, including the
Llama-2-13b-chat-hf variant of LLAMA-2 (Tou-
vron et al., 2023), Llama-3.1-8B-Instruct variant
of LLAMA-3 (Grattafiori et al., 2024), Mistral-
7B-Instruct-v0.3 variant of MISTRAL (Jiang et al.,
2023) and Phi-3-medium-128k-instruct (contain-
ing 14B parameters) variant of PHI-3 (Abdin et al.,
2024). Furthermore, to benchmark against leading
proprietary models, we include GPT-4O (OpenAI
et al., 2024) and GEMINI-1.5-PRO (Georgiev et al.,
2024). All LLMs are evaluated in both zero-shot
and few-shot settings. We use the best performing
prompt constructed by (Sadat and Caragea (2024))
for MSCINLI, shown in Table 3. In the zero-shot
setting, no exemplars are provided to the model. In
the few-shot setting, we prepend four exemplars
in the prompt (one per class) to harness the LLMs’
in-context learning ability.

4.2 Results & Discussion

We report the domain-wise and overall Macro F1 of
the LLMs in the zero-shot setting from a single run,
since we use greedy decoding and therefore, there
is no randomness involved. For all other experi-
ments (with both SLMs and LLMs), we report the
average and the standard deviations of the Macro
F1 scores from three separate runs. Specifically,
for the few-shot LLMs, we perform 3 runs with 3
randomly sampled sets of 4 exemplars from each
SCINLI, MSCINLI, and MSCINLI+ following
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MODEL PSYCHOLOGY ENGINEERING PUBLIC HEALTH OVERALL

BERTSciNLI 68.59± 2.8 69.26± 2.3 66.57± 2.6 68.16± 2.5
BERTMSciNLI 68.00± 1.4 69.23± 2.1 66.34± 1.2 67.89± 1.2
BERTMSciNLI+ 71.16± 0.9 73.52± 0.1 69.47± 1.3 71.41± 0.6
SCIBERTSciNLI 76.24± 1.5 74.36± 1.4 78.14± 2.0 76.27± 1.6
SCIBERTMSciNLI 76.98± 1.2 76.56± 0.8 77.97± 0.8 77.66± 0.8
SCIBERTMSciNLI+ 79.18± 0.4 76.50± 0.8 78.79± 0.3 78.17± 0.2
ROBERTASciNLI 75.76± 0.1 75.12± 0.7 75.34± 1.5 75.43± 0.5
ROBERTAMSciNLI 75.05± 1.2 76.07± 0.8 74.89± 1.1 75.38± 1.0
ROBERTAMSciNLI+ 77.91± 0.3 77.63± 0.3 78.79± 1.0 78.11± 0.3
XLNETSciNLI 73.61± 0.8 72.61± 0.7 73.23± 2.0 73.19± 1.0
XLNETMSciNLI 73.24± 2.2 74.31± 1.0 73.19± 0.4 73.60± 1.2
XLNETMSciNLI+ 76.40± 1.0 75.44± 2.1 75.54± 0.9 76.49± 1.3

PHI-3zs 55.38± 0.00 53.15± 0.00 49.31± 0.00 52.95± 0.00
PHI-3fs−SciNLI 57.98± 1.31 55.46± 1.02 53.53± 0.77 55.84± 0.98
PHI-3fs−MSciNLI 58.64± 1.11 56.76± 0.57 55.68± 0.25 57.16± 0.59
PHI-3fs−MSciNLI+ 59.02± 0.34 55.53± 0.80 55.54± 0.93 56.87± 0.25
LLAMA-2zs 26.37± 0.00 32.71± 0.00 27.25± 0.00 28.98± 0.00
LLAMA-2fs−SciNLI 43.92± 0.93 49.11± 1.54 45.09± 2.84 46.24± 1.71
LLAMA-2fs−MSciNLI 44.83± 2.75 50.26± 1.63 45.45± 1.33 47.09± 1.88
LLAMA-2fs−MSciNLI+ 43.54± 2.00 49.05± 1.56 44.03± 2.04 45.79± 1.84
LLAMA-3zs 33.67± 0.00 37.00± 0.00 30.87± 0.00 33.95± 0.00
LLAMA-3fs−SciNLI 51.18± 1.11 46.88± 0.48 45.68± 2.26 48.19± 1.03
LLAMA-3fs−MSciNLI 52.66± 1.15 47.54± 0.39 45.85± 0.72 48.94± 0.10
LLAMA-3fs−MSciNLI+ 53.92± 1.01 50.18± 1.10 48.13± 0.62 51.02± 0.51
MISTRALzs 31.14± 0.00 34.70± 0.00 25.85± 0.00 30.63± 0.00
MISTRALfs−SciNLI 44.26± 2.69 44.58± 2.59 39.79± 3.87 43.02± 3.03
MISTRALfs−MSciNLI 47.04± 1.82 47.12± 2.82 43.68± 2.68 46.09± 2.40
MISTRALfs−MSciNLI+ 44.73± 0.37 45.46± 0.71 41.75± 2.14 44.09± 0.87

GPT-4Ozs 52.42± 0.00 50.12± 0.00 47.26± 0.00 50.26± 0.00
GPT-4Ofs−SciNLI 63.33± 1.52 61.34± 0.46 61.62± 0.50 62.29± 0.51
GPT-4Ofs−MSciNLI 62.65± 2.31 57.94± 1.84 58.61± 0.72 59.96± 1.62
GPT-4Ofs−MSciNLI+ 63.62± 1.57 61.06± 0.83 62.96± 1.22 62.73± 0.98
GEMINI-1.5-PROzs 54.28± 0.00 58.49± 0.00 51.59± 0.00 55.55± 0.00
GEMINI-1.5-PROfs−SciNLI 63.50± 1.92 61.94± 1.41 62.69± 1.03 62.78± 1.41
GEMINI-1.5-PROfs−MSciNLI 63.09± 0.86 61.74± 0.91 62.53± 0.59 62.51± 0.54
GEMINI-1.5-PROfs−MSciNLI+ 63.68± 1.70 62.57± 2.00 62.51± 1.20 62.95± 1.50

Table 4: Macro F1 scores (%) of the SLM and LLM baselines on different domains. Here, the subscript with the SLMs
denotes the dataset used for fine-tuning the model. A subscript of zs with LLMs indicates zero-shot setting, and fs − X
indicates few-shot setting with four exemplars (one per class) from dataset X . Best scores within SLM, Open-Source LLM, and
Proprietary LLM baselines per domain and overall are shown in bold.

the procedure detailed in Appendix D. For SLM,
we perform 3 runs with 3 different random seeds.

The results can be seen in Table 4. Our findings
are described below.

Fine-tuning SLMs on combined training sets
yields better MISMATCHED performance As
we can see from the results, the SLMs fine-
tuned on SCINLI and MSCINLI generally show
a similar performances on the MISMATCHED set.
The performance shows consistent improvements
across domains when the SLMs are fine-tuned on
MSCINLI+, which is the combination of the train-
ing sets of SCINLI and MSCINLI. Therefore, fine-
tuning the models using a training set with larger
size and higher diversity enhances its robustness
in an OOD setting. However, given that the best
performing model with SCIBERT shows a Macro
F1 of only 78.17%, there is a substantial headroom
for future improvements.

Domain-specific pre-training is more useful for
MISMATCHED than ‘better’ pre-training meth-
ods The results show that SCIBERT, ROBERTA

and XLNET outperform BERT by a substantial
margin in all domains. Note that the only difference
between BERT and SCIBERT is that BERT was
pre-trained using generic text from Wikipedia and
BookCorpus, whereas SCIBERT was pre-trained
using scientific text. Thus, the domain-specific pre-
training of SCIBERT aids in achieving a better
performance than BERT on MISMATCHED. Both
ROBERTA and XLNET were pre-trained using
general domain text similar to BERT. However,
stronger (better) pre-training methods were em-
ployed in pre-training these two models and we
observe their performance improvements for MIS-
MATCHED over BERT. We can also see that XL-
NET shows a substantially lower Macro F1 than
SCIBERT and ROBERTA. While the best perfor-
mance results shown by ROBERTA and SCIBERT
(both when fine-tuned on MSCINLI+), are almost
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identical, SCIBERT outperforms ROBERTA in
several cases (e.g., when they are fine-tuned on
SCINLI or MSCINLI separately). Thus, domain-
specific pre-training (on scientific documents) re-
sults in a better performance for MISMATCHED

than ‘better’ (more robust) pre-training methods.

Fine-tuned Small Language Models outperform
Prompt-based Large Language Models We
can observe from Table 4 that the SLMs per-
form much better than even the leading prompt-
based LLMs (such as GEMINI-1.5-PRO and
GPT-4O) on all three domains. The average per-
formance gap is approximately 15% between the
highest performing SLM (SCIBERT) and the top-
performing LLM. GEMINI-1.5-PRO and GPT-
4O outperform open-source models in all few-shot
settings, with GEMINI-1.5-PRO achieving the
strongest overall performance in zero-shot settings,
surpassing both GPT-4O and all open-source mod-
els. Among open-source LLMs (Table 4), PHI-3
demonstrates the best performance, outperforming
LLAMA-2, LLAMA-3, and MISTRAL in both zero-
shot and few-shot settings, indicating strong com-
plex reasoning capabilities. Notably, PHI-3 few-
shot with MSCINLI exemplars shows the best per-
formance among open-source models. While GPT-
4O’s zero-shot capability was below PHI-3, it still
outperformed other open-source baselines. The
superiority of proprietary models is particularly
evident in few-shot settings, where both GEMINI-
1.5-PRO and GPT-4O show similar high perfor-
mance and significantly outperform all open-source
models, suggesting superior in-context learning
ability for scientific NLI tasks. We show results
with fine-tuned Llama-2 in Appendix E.

4.3 Analysis

In-Domain vs. Out-of-Domain Given that we
establish our baselines using the training sets of
SCINLI and MSCINLI, i.e., sentence pairs from
CS domains, the baseline performance results re-
ported on MISMATCHED in Table 4 are in the out-
of-domain (OOD) setting. We now compare the
OOD performances with the in-domain (ID) per-
formance of the respective models. The ID perfor-
mance is calculated by evaluating the model on the
test set of the dataset it is trained on. We choose
both SCIBERT and ROBERTA because of their
strong performance on MISMATCHED. The results
can be seen in Table 5.

First, we can observe that RoBERTa which is

Model ID OOD (MISMATCHED)
SCIBERTSciNLI 77.11 76.27
SCIBERTMSciNLI 76.66 77.66
SCIBERTMSciNLI+ 77.38 78.17
ROBERTASciNLI 78.24 75.43
ROBERTAMSciNLI 77.02 75.38
ROBERTAMSciNLI+ 78.77 78.11

Table 5: Macro F1 (%) shown by SCIBERT and ROBERTA
in ID and OOD (MISMATCHED) settings.

#Shot PSY ENGG PH OVERALL

4-SHOT 58.64 56.76 55.68 57.16
8-SHOT 58.80 57.15 56.82 57.71

12-SHOT 59.63 58.29 56.69 58.32
16-SHOT 59.56 57.97 56.50 58.14

Table 6: 4-shot, 8-shot, 12-shot and 16-shot Macro F1 (%)
by PHI-3. Here, PSY: PSYCHOLOGY, ENGG: ENGINEERING,
and PH: PUBLIC HEALTH.

trained in a robust way shows a consistent drop
in performance from ID to OOD especially when
the model is fine-tuned individually on SciNLI
or MSciNLI showing about 2-3% performance
drop. These results demonstrate that the OOD is
more challenging for RoBERTa. Second, train-
ing RoBERTa on increased diversity data (i.e.,
MSciNLI+) lowers the gap in performance between
ID and OOD. These results show the impact of
data diversity on model training and generalization
to OOD data. Third, we can observe that while
the SciBERT model (which is trained on scien-
tific documents) performs worse than RoBERTa
on ID data, its scientific knowledge that is learned
from large training sets of research papers during
its pre-training is beneficial for the scientific OOD
data and in fact, it helps the SciBERT model to
achieve similar performance with that of RoBERTa.
These results show that scientific knowledge that
is learned during the pre-training of SciBERT is
retained and leveraged in the OOD setting and is
more beneficial in OOD than training the model in
a more robust way but on general (not specifically
scientific) data. Similar to RoBERTa, we observe
that the results with SciBERT in OOD when trained
with increased diversity data (i.e., MSciNLI+) show
that this diversity is beneficial on the OOD data.

Few-shot Scaling Experiments While propri-
etary models (GEMINI-1.5-PRO and GPT-4O)
demonstrated superior performance, we selected
PHI-3 for few-shot scaling experiments as the best
performing open-source model. This choice en-
ables comprehensive analysis of in-context learning
mechanisms with full reproducibility and extensive
experimentation without API constraints. We used
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Model
Dataset SENTENCE INPUT PSYCHOLOGY ENGINEERING PUBLIC HEALTH MACRO AVE.

ROBERTAMSciNLI+ BOTH SENTENCES 77.91 77.63 78.79 78.11
ROBERTAMSciNLI+ ONLY 2ND SENTENCE 53.17 58.59 52.05 54.64
SCIBERTMSciNLI+ BOTH SENTENCES 79.18 76.50 78.79 78.17
SCIBERTMSciNLI+ ONLY 2ND SENTENCE 56.68 58.12 54.54 56.50

Table 7: Comparison of Macro F1 scores (%) for RoBERTa and SciBERT on MISMATCHED domains when using both premise
and hypothesis sentences versus only the hypothesis sentence as input.

MODEL CONTRASTING REASONING ENTAILMENT NEUTRAL MACRO AVE.

SciBERT
xPSYCHOLOGY 81.60± 0.9 74.15± 1.1 79.97± 1.5 80.99± 0.2 79.18± 0.4
xENGINEERING 80.98± 0.4 76.50± 1.1 75.09± 1.4 73.43± 1.0 76.50± 0.8
xPUBLIC HEALTH 80.25± 0.4 74.55± 0.3 80.09± 1.0 80.31± 0.9 78.79± 0.3
xMISMATCHED 80.94± 0.5 75.09± 0.6 78.44± 0.3 78.22± 0.6 78.17± 0.2
Phi-3
xPSYCHOLOGY 70.28± 1.37 40.60± 2.95 62.44± 0.62 61.27± 0.94 58.65± 1.10
xENGINEERING 71.35± 1.30 47.10± 2.90 51.20± 2.07 57.42± 0.31 56.77± 0.57
xPUBLIC HEALTH 67.53± 0.73 44.08± 4.09 52.51± 2.27 58.62± 2.11 55.68± 0.25
xMISMATCHED 69.67± 0.40 44.07± 3.27 55.92± 0.89 59.00± 0.97 57.16± 0.59

Table 8: Class-wise F1 (%) and their macro averages (%) of our best performing SLM and LLM baselines on each domain in
MISMATCHED and their combination.

exemplars from MSCINLI given its superior per-
formance on MISMATCHED among all settings (as
discussed in 4.2). Our experiments investigate the
impact of increasing few-shots from 4 to 8, 12, and
16 on PHI-3’S performance, with results shown in
Table 6. Results show that 12-shots achieve slightly
better performance than 4-shots and 8-shots, while
performance drops at 16-shots.

Hypothesis-only Baseline Experiment To ver-
ify whether our dataset contains spurious corre-
lations or not, i.e., any stylistic artifacts that are
present only in the hypotheses and are indicative
of the label (without the need for the premise),
we compare hypothesis-only models against full
premise-hypothesis models using ROBERTA and
SCIBERT fine-tuned on MSCINLI+ in Table
7. We chose MSCINLI+ as the training set be-
cause fine-tuned models (ROBERTA and SCIB-
ERT) achieved their highest performance on MIS-
MATCHEDwhen trained on MSCINLI+ compared
to SCINLI or MSCINLI alone (Table 4). Re-
sults show significant performance degradation
when using only the hypothesis compared to the
full premise-hypothesis input, demonstrating that
premise-hypothesis understanding is critical for
model performance. Thus, our dataset does not
exhibit hypothesis-only artifacts.

Class-wise Performance We report the per-class
F1 scores of our best performing SLM baseline,
SCIBERT (fine-tuned using MSCINLI+) and best
performing LLM baseline, PHI-3 (in the few-shot
setting with MSCINLI exemplars) in Table 8. We

can see that generally, both types of models show
lower F1 scores for the REASONING class com-
pared with the other classes. Therefore, recogniz-
ing a REASONING relation between sentences is
more challenging than recognizing other scientific
NLI relations. We provide an in-depth analysis of
the “reasoning” relation in Appendix F.

5 Harnessing Implicit Relations

Existing training sets for scientific NLI datasets
(i.e., SCINLI and MSCINLI) only include sen-
tence pairs where the relation between them is
made explicit with linking phrases. We posit that, if
two sentences are adjacent, there can potentially be
a scientific NLI relation between them despite the
second sentence not starting with a linking phrase.
We define the relation between these sentence pairs
as an implicit relation. Here, we propose to incor-
porate adjacent sentences with implicit relations in
model training and analyze their impact on mod-
els’ performance. We detail below the data sources
from which we extract implicit sentence pairs, how
we annotate them, and how we use them in model
training.

Data The implicit sentence pairs are sourced
from the research papers from SCINLI, MSCINLI
and MISMATCHED separately. For each dataset,
we extract the adjacent sentence pairs in which
none of the sentences contain any linking phrases
as the examples potentially containing an implicit
ENTAILMENT/CONTRASTING/REASONING rela-
tion. For the NEUTRAL class, we randomly pair
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Model
Dataset SCINLI MISMATCHED

SCIBERTMS+ 79.04 78.17
SCIBERTMS+ + Impl 79.44 79.66
PHI-3fs−Expl{SciNLI} 59.67± 1.92 55.84± 0.98
PHI-3fs−Impl{SciNLI} 61.41± 1.11 56.56± 1.47
PHI-3fs−Expl{MSciNLI} 59.88± 1.15 57.16± 0.59
PHI-3fs−Impl{MSciNLI} 60.58± 0.43 57.50± 0.06
PHI-3fs−Expl{MisMatched} 58.57± 1.29 56.96± 0.68
PHI-3fs−Impl{MisMatched} 61.03± 0.40 58.26± 0.25

Table 9: Performance comparison between models utilizing
implicit relations with models only using explicit examples.
Here, MS+: MSCINLI+, Expl: explicit and Impl: implicit.

two non-adjacent sentences selected from the other
three classes. For SCINLI and MSCINLI, we ex-
tracted the implicit pairs from papers that are part
of the training set, whereas for MISMATCHED,
we extracted the implicit pairs from papers that
are not utilized to construct its test and develop-
ment sets. We extracted ≈ 210K and ≈ 120K
implicit sentence pairs for SCINLI/MSCINLI and
MISMATCHED respectively, with the number of
implicit relations being about twice as large as ex-
plicit relations. We provide examples of implicit
sentence pairs extracted from different domains in
our MISMATCHED dataset in Appendix G.

Implicit Relation Annotation Next, we iden-
tify the implicit scientific NLI relation among the
extracted sentence pairs in three steps: a) assign
pseudo-labels to the extracted sentence pairs based
on the predictions made by the SCIBERT model
fine-tuned on MSCINLI+; b) filter the examples
based on a confidence (i.e., the probability for the
predicted pseudo-label by the model) threshold of
0.6; and c) filter the examples where a CONTRAST-
ING/ENTAILMENT/REASONING label is predicted
for a non-adjacent sentence pair or a NEUTRAL

label for an adjacent sentence pair.

Incorporating Implicit Relations We incorpo-
rate implicit relations in model training by experi-
menting with SCIBERT and PHI-3 and evaluating
their performance on the test sets of SCINLI and
MISMATCHED. For SCIBERT, we first fine-tune
an out-of-the-box model using the selected implicit
examples from the same domain as the test set (i.e.,
when the test set is MISMATCHED, the implicit
examples are from papers from the MISMATCHED

domains). We then continue fine-tuning the model
using the explicit examples from MSCINLI+. For
PHI-3, we randomly sample four examples (one
from each class) from the selected implicit set, and
use them as the exemplars in the few-shot setting.

Results Table 9 shows a comparison between the
models that use only explicit examples with their
counterparts that incorporate implicit examples. As
we can see, the Macro F1 of SCIBERT improves by
1.5% for MISMATCHED when IMPLICIT relations
are incorporated into model training. In addition,
the performance of PHI-3 also shows improvement
in Macro F1 when implicit examples are used as
the few-shot exemplars compared to explicit ex-
amples from SCINLI, MSCINLI, MISMATCHED

used as exemplars. Given that all sentence pairs
from SCINLI, MSCINLI and MSCINLI+ are
out-of-domain for MISMATCHED, incorporating
in-domain implicit relations into models’ train-
ing helps improve its performance. Interestingly,
when PHI-3 with few-shot exemplars from MIS-
MATCHED is evaluated on SCINLI, we can see an
improvement of 2.46 (from 58.57 to 61.03) which
demonstrates the benefits of using implicit relations
that make the model more robust and capable to
generalize better. Thus, given the improvements for
both datasets, we can conclude that sentence pairs
with implicit relations can be a valuable resource
for exposing scientific NLI models to more diverse
data that can further improve the performance.

6 Conclusion & Future Directions

In this paper, we introduce a MISMATCHED test-
bed for scientific NLI, derived from non-CS do-
mains unlike the existing datasets. We establish
strong baselines on the MISMATCHED set with
both SLMs and LLMs using the training sets from
SCINLI and MSCINLI. Our results show that the
best performing baseline achieves a Macro F1 of
only 78.17%, illustrating the substantial room for
future improvements. Furthermore, we show that
sentence pairs containing an implicit scientific NLI
relation can aid in improving the performance of
two scientific NLI benchmarks. In our future work,
we will develop domain adaptation methods for
scientific NLI to improve the performance on the
MISMATCHED set.
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Limitations

Our MISMATCHED benchmark indeed enhances
the diversity in scientific NLI to non-CS domains.
However, there are numerous scientific domains
and disciplines (e.g., Physics, Chemistry, etc.) that
are not covered by our dataset. Therefore, a future
research direction is to study scientific NLI to other
non-CS domains that can serve as a more robust
and generalized benchmark.
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A Datasets for NLI

Table 10 shows a comparison of relevant datasets
in terms of sources from which data was collected,
domains covered, classes, in-domain (ID) and out-
of-domain (OOD) training, real or synthetic (gen-
erated) hypothesis and dataset size (as number of
sentence pairs).

B Details on Data Annotation

B.1 Linking Phrases Used in Distant
Supervision

The linking phrases and their classes used in the dis-
tant supervision method for automatically extract-
ing and annotating sentence pairs in MISMATCHED

can be seen in Table 11.

B.2 Details about Annotators and
Inter-Annotator Agreement

We hire separate annotators for each of the three do-
mains in our dataset via a cloud-sourcing platform
called COGITO3. For each domain, we complete
3 pilot batches containing 52 sentence pairs (bal-
anced over classes). After each pilot batch, we
provide feedback to the annotators on their work
and ask them for their acknowledgement of our
feedback before starting the next batch. The anno-
tators are paid at a rate of $0.6/sample.

The inter-annotator agreement varied across do-
mains, as shown in Table 12. PSYCHOLOGY

showed the highest agreement (FLEISS-K = 0.78),
followed by ENGINEERING (0.70) and PUBLIC

HEALTH (0.65). The variation in agreement rates
likely reflects the differing complexity and ambi-
guity levels inherent to scientific texts across these
domains.

B.3 Class-wise Agreement Rates

The total number of sentence pairs annotated for
each class and the agreement rate between the gold
label and automatically assigned label are shown
in Table 13. As we can see, for the CONTRASTING,
REASONING and ENTAILMENT classes, there is a
very high agreement between the human annotated
gold label and the automatically annotated label
based on distant supervision. This indicates that
the annotators possesses a solid understanding of
the scientific NLI task. In contrast, the agreement
rate for the NEUTRAL class is low (only 68.3%)
compared to the > 93% agreement rates for the

3https://www.cogitotech.com/

other classes. This is because, unlike SCINLI and
MSCINLI (where sentence pairs are extracted from
full text of the papers), most sentence pairs in MIS-
MATCHED are extracted from abstracts of the pa-
pers. Given the small number of sentences in paper
abstracts, even non-adjacent sentences remain re-
lated in many cases resulting in a low agreement
for the NEUTRAL class.

C Implementation Details

SLM Baselines We utilize the huggingface4 im-
plementations for our SLM baselines in the ex-
periments. For these models, we concatenate the
sentence in each pair with a [SEP] token between
them and append a [CLS]. We then project the
representation for the [CLS] token with a weight
matrix W ∈ Rd×4. This projection is then sent as
the input to a softmax activation to get the predicted
probability distribution over the four classes.

Each model is fine-tuned for five epochs
on different training sets (SCINLI, MSCINLI,
MSCINLI+). Early stopping with a patience of
2 epochs is employed while fine-tuning the SLMs.
We use the Macro F1 score on the development
set of MISMATCHED as the early stopping criteria.
For all SLM baselines, we use a learning rate of
2e − 5 and a mini-batch size of 64. We fine-tune
the models using the Adam (Kingma and Ba, 2014)
optimizer, and the cross-entropy loss.

LLM Baselines For open-source LLMs
(LLAMA-2, LLAMA-3, MISTRAL and PHI-3),
we utilize the Hugging Face library, employing a
greedy decoding strategy with no random sampling
and a maximum generated token limit of 40.
Proprietary models GPT-4O and GEMINI-1.5-
PRO were evaluated via their respective official
APIs, specifying the model identifiers as "gpt-4o"
and "models/gemini-1.5-pro" respectively. For
GPT-4O, deterministic output was ensured by
setting temperature=0.0. For GEMINI-1.5-PRO,
default API generation settings were used without
specifying temperature or other generation param-
eters. Our evaluation scripts for both proprietary
models incorporated retry logic (up to 3 attempts
upon API failure).

Fine-Tuned LLM Baseline For the fine-tuned
LLAMA-2 experiments (results presented in Ap-
pendix E), we employed Parameter-Efficient
Fine-Tuning (PEFT) using Low-Rank Adaptation

4https://huggingface.co/
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Dataset Source/Domains Classes ID OOD Hypothesis ≈ Size

RTE (Wang et al., 2018) Wikipedia and news sources 2 | entailment,
non-entailment

! ✗ Synthetic 2,500

SICK (Marelli et al., 2014) Image captions and video descriptions 3 |
entailment,
contradiction
neutral

! ✗ Synthetic 10,000

SNLI (Bowman et al., 2015) Image captions 3 |
entailment,
contradiction
neutral

! ✗ Synthetic 570,000

MULTINLI (Williams et al., 2018)
Nine sources from second OANC release
(Face-to-face, government, letter, etc.)
& Fiction (mystery, humor, western, etc.)

3 |
entailment,
contradiction
neutral

! ! Synthetic 433,000

ANLI (Nie et al., 2020) Wikipedia, news, fiction, spoken text, etc. 3 |
entailment,
contradiction
neutral

! ✗ Synthetic 170,000

MEDNLI (Romanov and Shivade, 2018)
MIMIC-III, clinical notes
(Past Medical History)

3 |
entailment
contradiction
neutral

! ✗ Real 14,000

NLI4CT dataset (Jullien et al., 2023)
Breast cancer clinical trial reports
(U.S. National Library of Medicine)

2 | entailment
contradiction

! ✗ Synthetic 2,400

NLI4CT-P (Jullien et al., 2024)
Breast cancer clinical trial reports
(U.S. National Library of Medicine)

2 | entailment
contradiction

! ✗ Synthetic 8,600

SCINLI (Sadat and Caragea, 2022) Research articles from ACL Anthology 4 |
entailment
reasoning
contrasting
neutral

! ✗ Real 101,000

MSCINLI (Sadat and Caragea, 2024)
Computer science research articles,
HARDWARE, NETWORKS,
SOFTWARE & ITS ENGINEERING, etc.

4 |
entailment
reasoning
contrasting
neutral

! ✗ Real 127,000

MISMATCHED (ours) Research articles from PUBLIC HEALTH

PSYCHOLOGY and ENGINEERING
4 |

entailment
reasoning
contrasting
neutral

✗ ! Real 2,700

Table 10: Comparison of relevant NLI datasets. The Source/Domains column indicates the sources of data collection
and/or the domains covered by the dataset. The Classes column indicates the number of classes, followed by specific
classes in the dataset. The ID and OOD columns indicate if the dataset is in-domain (i.e., contains both training and
test data for some domains) and/or out-of-domain (i.e., contains only test data for some domains. Hypothesis refers
to the fact that the hypothesis is Real (extracted directly from existing text) or Synthetic (written or re-written by
human annotators). Finally, the last column, ≈ Size refers to the approximate numbers of pairs in the dataset (note
that some datasets may have a smaller number of premises).

21536



Class Linking Phrases

CONTRASTING ‘However’, ‘On the other hand’, ‘In
contrast’, ‘On the contrary’

REASONING ‘Therefore’, ‘Thus’, ‘Consequently’,
‘As a result’, ‘As a consequence’,
‘From here, we can infer’

ENTAILMENT ‘Specifically’, ‘Precisely’, ‘In particu-
lar’, ‘Particularly’, ‘That is’, ‘In other
words’

Table 11: Linking phrases used to extract sentence pairs
and their corresponding classes.

Domain PSY ENG PH
FLEISS-K 0.78 0.70 0.65

Table 12: Inter-annotator agreement (FLEISS-K) by do-
main. Here, PSY: PSYCHOLOGY, ENGG: ENGINEER-
ING, and PH: PUBLIC HEALTH.

(LoRA). The model was fine-tuned specifically on
the SCINLI training dataset. Key hyperparameters
were configured as follows: LORA rank (r) was set
to 16 with alpha of 32, and LORA dropout was set
to 0.05. The model underwent training for 3 epochs
with a learning rate of 2e−3. We used a per-device
batch size of 32 with 4 gradient accumulation steps,
resulting in an effective batch size of 128. Training
employed the adamw_bnb_8bit (Dettmers et al.,
2021) optimizer with mixed precision (fp16) train-
ing. The fine-tuned model was then evaluated on
both SCINLI and MISMATCHED test sets to assess
cross-domain performance, with detailed results
provided in Table 15 of Appendix E.

Computational Cost. We fine-tune each SLM
baseline using a single NVIDIA RTX A5000 GPU.
It takes ≈ 2 hours to fine-tune each SLM on
SCINLI and MSCINLI, and ≈ 4 hours to fine-
tune them on MSCINLI+. For our LLM baselines
(LLAMA-2, LLAMA-3, MISTRAL and PHI-3), we
utilize one NVIDIA A100-SXM4-80GB GPU. The
inference time for all LLMs for MISMATCHED is
≈ 0.25 hours in the zero-shot setting, and ≈ 3.5
hours in the few-shot (4-shot) setting. The few-
shot experiments for SCINLI require ≈ 4 hours to
complete.

D Few-shot Exemplar Selection

To ensure robust and reliable few-shot performance
evaluation, we employed a systematic approach for
exemplar selection and ordering across all experi-
ments.

Class #Annotated Agreement

CONTRASTING 744 93.5%
REASONING 744 93.4%
ENTAILMENT 744 96.2%
NEUTRAL 1021 68.3%
Overall 3253 85.7%

Table 13: Number of sentence pairs annotated manually for
each class and their agreement rate between the gold labels
and automatically assigned labels.

EXEMPLAR SELECTION AND ORDERING: For
each k-shot experiment, we conducted 3 indepen-
dent runs to obtain reliable results. In each run,
we randomly selected k exemplars (one from each
class for balanced representation). The same set of
k exemplars was used consistently throughout that
entire run for all test examples. The order of exem-
plars in the prompt was kept identical across all test
instances within each run. Final results reported
in our tables represent the mean performance and
standard deviation computed across these 3 inde-
pendent runs.

MSCINLI+ EXEMPLAR HANDLING: Given
that MSCINLI+ combines SCINLI and MSCINLI
datasets, we implemented specific procedures to
ensure exemplars truly represent this combined na-
ture. For each independent run on MSCINLI+,
we: (1) randomly selected initial candidate ex-
emplars separately from SCINLI and MSCINLI
datasets, (2) formed 4-shot prompt combinations
from these candidates with the strict requirement
that each combination must include at least one
exemplar from both original datasets (SCINLI and
MSCINLI), and (3) selected three such combina-
tions for our three independent runs. This approach
guaranteed that MSCINLI+ exemplars always re-
flected the diverse nature of the combined dataset
rather than being dominated by examples from a
single source dataset.

E Results with Fine-Tuned Llama-2

We show results of fine-tuned Llama-2 on SciNLI
using LoRA. The Macro F1 of this fine-tuned LLM
can be seen in Table 15.

As we can see, while the performance improves
substantially over the prompt based version of the
model, there are still differences across the datasets.
The in-domain Macro F1 of this model on SciNLI
is 83.83%, which drops to 82.87% for MisMatched.
These results further illustrate the unique linguistic
characteristics of the two datasets.
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Domain First Sentence Second Sentence Class
ENGINEERING Tools to predict its vibratory and acoustic

performance at the design stage need to be
developed.

an improved finite element model has
been developed to analyse the vibration
behaviour of a Permanent Magnet Syn-
chronous Machine of a lift installation us-
ing the finite element software ABAQUS.

REASONING

PSYCHOLOGY This literature review provides informa-
tion for identifying children who have been
abused and neglected but exposes the need
for a comprehensive screening instrument
or protocol that will capture all forms of
child abuse and neglect.

screening needs to be succinct, user-
friendly, and amenable for use with chil-
dren at every point of care in the healthcare
system.

CONTRASTING

Table 14: Examples of implicit sentence pairs from MISMATCHED, extracted from different domains. Unlike explicit relations
marked by linking phrases (as shown in Table 1), these pairs contain implicit discourse relations without explicit connective
markers.

SciNLI MisMatched
83.83% 82.87%

Table 15: Results of Llama-2 fine-tuned on SciNLI.

F Analysis of the “Reasoning” Relation

We provide here an in-depth analysis of the “rea-
soning” relation which is more challenging than
the other relations in our MISMATCHED dataset.
Specifically, we show a confusion matrix between
the true labels and the predicted labels by SciB-
ERT (our best performing baseline) on the MIS-
MATCHED test set in Table 16.

True
Predicted C R E N

C 532 23 30 15
R 60 428 79 33
E 55 32 485 28
N 71 62 39 428

Table 16: Confusion matrix of SciBERT on MisMatched. C:
Contrasting; R: Reasoning; E: Entailment; N: Neutral.

As we can see, the “reasoning” relation is often
mistaken with “entailment” by the model. In addi-
tion, a fair number of “reasoning” relations are also
mistaken as “contrasting” by the model. This re-
sults in a lower Macro F1 for the “reasoning” class
compared to the other classes.

G Implicit Relations

Novelty of Implicit Relations. The “implicit” re-
lations as defined here can help open new directions
of research, e.g., to improve discourse coherence
analysis by suggesting linking phrases between
contiguous sentences for better reading comprehen-
sion and natural language understanding.

Examples of Implicit sentence pairs from MIS-
MATCHED Table 14 illustrates representative ex-

amples from ENGINEERING and PSYCHOLOGY

domains, where REASONING and CONTRASTING

relations must be inferred without explicit connec-
tive markers (i.e., without explicit linking phrases
between the two sentences).

Further Details on Experimental Setup for Im-
plicit Relations In our experiments with implicit
relations in Section 5, for MISMATCHED, SCINLI
and MSCINLI, we utilize the SCIBERT model
fine-tuned as our baseline to predict the labels of
the extracted sentence pairs which potentially con-
tain implicit relations. However, for predicting the
label for the sentence pairs extracted for SCINLI,
we fine-tune a separate SCIBERT model using
MSCINLI+ for training and the development set
from SCINLI for early stopping. All other imple-
mentation details (e.g., learning rate, batch size)
are the same as for the SLM baselines.

After selecting the implicit relations based on the
models’ (fine-tuned on MSCINLI+) predictions,
we fine-tune an out-of-the-box SCIBERT model
on these selected examples using the same hyper-
parameters as for the SLM baselines.

The last checkpoint of the model fine-tuned on
sentence pairs with implicit relations is further fine-
tuned on MSCINLI+. Specifically, we initialize
the language model layers of SCIBERT from the
model fine-tuned in the previous step. However,
the weight matrix W ∈ Rd×4 (which projects the
[CLS] representation to get the probability distri-
bution over the classes) is reinitialized randomly.
Furthermore, we use a lower learning rate of 2e−6
for fine-tuning the models in this step.
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