
Findings of the Association for Computational Linguistics: ACL 2025, pages 21488–21503
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

PEToolLLM: Towards Personalized Tool Learning in
Large Language Models

Qiancheng Xu1, Yongqi Li1†, Heming Xia1, Fan Liu2, Min Yang3, Wenjie Li1
1 The Hong Kong Polytechnic University 2 National University of Singapore
3 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

{qiancheng.xu, he-ming.xia}@connect.polyu.hk
liyongqi0@gmail.com cswjli@comp.polyu.edu.hk

Abstract

Tool learning has emerged as a promising di-
rection by extending Large Language Models’
(LLMs) capabilities with external tools. Ex-
isting tool learning studies primarily focus on
the general-purpose tool-use capability, which
addresses explicit requirements in user instruc-
tions. However, they overlook the importance
of personalized tool-use capability, leading to
an inability to meet personalized user needs.
To address the limitation, we first formulate
the task of personalized tool learning, which
integrates user’s interaction history towards
personalized tool usage. To fill the gap of
missing benchmarks, we construct PETool-
Bench, featuring diverse user preferences re-
flected in interaction history under three dis-
tinct personalized settings, and encompassing a
wide range of tool-use scenarios. Moreover,
we propose a framework PEToolLLaMA to
adapt LLMs to the personalized tool learning
task, which is trained through supervised fine-
tuning and direct preference optimization. Ex-
tensive experiments on PEToolBench demon-
strate the superiority of PEToolLLaMA over
existing LLMs. We release our code and data
at https://github.com/travis-xu/PEToolBench.

1 Introduction

Large Language Models (LLMs) possess extensive
knowledge and powerful instruction following abil-
ities, making them effective AI assistants for tasks
such as text rewriting, question answering, and
code writing (Zhao et al., 2023). However, they
often struggle to address user needs in scenarios
such as checking weather and booking flights. To
address this, tool learning (Qin et al., 2024a; Qu
et al., 2025b) has emerged as a promising solution
by allowing LLMs to use external tools, such as
real-time weather APIs and booking systems. In
this way, tool learning has extended LLMs’ capabil-

†Corresponding author.

ities to tackle more complex tasks, enabling them
to fulfill a wide range of user needs.

Current tool learning procedure typically begins
with a user instruction, and then LLMs are re-
quired to use tools with appropriate functionalities
for satisfying users’ needs. Existing tool learning
methods can be categorized into in-context learn-
ing (Patil et al., 2024; Qu et al., 2025a) and fine-
tuning approaches (Schick et al., 2023; Wang et al.,
2025b). The former approach allows LLMs to use
tools by directly providing tool documentation in
input but the performance is constrained by the
input length. The latter approach trains LLMs to
internalize tool knowledge but struggles with tool
generalization.

Despite the advancement, existing tool learning
methods primarily focus on the general-purpose
tool-use capability but overlook the critical role of
personalization. In tool learning, more personal-
ized user needs are expected to be derived from
the user’s previous tool usage history as a supple-
ment to user instructions, which can help LLMs
provide more customized tool-usage assistance to
enhance the user experience. As illustrated in Fig-
ure 1, personalized tool learning is non-trivial due
to the following aspects. 1) Implicit user prefer-
ences. User preferences for tool usage are often im-
plicitly conveyed through the user’s history rather
than explicitly stated in user instructions, making
them difficult to understand. For instance, when a
user requests a search for articles, their preference
for academic-related content needs to be inferred
from previous interactions with academic tools
like Google Scholar. 2) Non-functional tool at-
tributes. Since many tools have the same function-
alities, user preferences cannot be effectively distin-
guished based solely on tool functionalities. This
underscores the need to consider non-functional
tool attributes, such as usability, integrability, and
accessibility, which can better reflect user prefer-
ences. As shown in Figure 1, Google Search can be

21488

https://github.com/travis-xu/PEToolBench

I want to search for articles
related to DeepSeek.

Interaction History

Find location …

Export citations…

User Instruction

The interaction history suggests that the user might prefer Google-integrated
or academic-related tools. So, I will use Google Search.

Tool Functionality Non-functional Attributes

Google Search

Baidu Search

Search

Search

Google-integrated, academic support, …

Chinese localization support, …

Google Scholar

Google Map

···

···

(b) Personalized Tool Learning

Candidate Tools
Implicit PreferenceExplicit Requirement

User Instruction

I want to search for articles
related to DeepSeek.

Multiple tools can do searching.
Which should I use?

Candidate Tools

(a) Tool Learning

Tool Functionality

Google Search

Baidu Search

Search

Search
···

Explicit Requirement

Figure 1: Comparison between (a) tool learning and (b) personalized tool learning. Personalized tool learning
facilitates implicit preference comprehension and customized tool usage for individual users.

distinguished from other search tools by its integra-
tion into Google’s ecosystem with Google Scholar,
making it more suitable for users with academic
needs. To address the above issues, we formulate
the task of personalized tool learning in LLMs,
aiming at personalized tool usage for individual
users. Formally, given user instructions along with
user’s interaction history, LLMs are required to an-
swer user instructions with tools by considering
both explicit user requirements from instructions
and implicit user preferences behind interaction
history.

Since there is no benchmark for this task cur-
rently, we fill this gap by introducing the first per-
sonalized tool learning benchmark (PEToolBench).
Specifically, the benchmark is created through three
following steps. 1) Tool Preparation. We collect
a bunch of high-quality tools from RapidAPI and
then leverage LLM to understand the functionality
and non-functional attributes of each tool. 2) Pref-
erence Construction. Among same-functionality
tools, we construct the user’s tool preferences by as-
signing tools with distinct non-functional attributes
to different users. 3) Data Creation. Based on
user’s tool preferences, we synthesize their interac-
tion history into a sequence of tool-use interactions,
each consisting of a user instruction and an LLM’s
tool call. We design three personalized tool-usage
settings by generating the interaction history in
three types, i.e., preferred-only, rating-integrated,
and chronological. And then we use tools not in-
cluded in the interaction history to synthesize user
instructions. After rigorous filtering, we obtain
12,000 user instructions with interaction histories
reflecting diverse user preferences and cover a wide

range of tool-use scenarios by encompassing 7454
tools across 46 categories.

Based on the PEToolBench dataset, we propose
the personalized tool learning framework (PETool-
LLaMA) to equip LLMs with personalized tool-
use capability. The training process consists of
two stages: 1) Supervised fine-tuning (SFT) stage,
which equips LLM with foundational tool-use ca-
pability to address user needs; 2) Direct prefer-
ence optimization (DPO) stage, which samples
the user’s preferred and non-preferred tool calls
for pair-wise optimization to better align with user
preferences. We evaluate 11 distinct open-source
and closed-source LLMs on PEToolBench. Experi-
mental results demonstrate that our PEToolLLaMA
significantly outperforms the best-performing LLM
across all settings.

In summary, our contributions are as follows.

• We are the first to formulate the task of per-
sonalized tool learning in LLMs, which incor-
porates user’s interaction history to achieve
personalized tool-usage assistance.

• We construct the first benchmark for person-
alized tool learning in LLMs, PEToolBench,
featuring user instructions integrated with in-
teraction history reflecting diverse user prefer-
ences and encompassing various tools.

• We propose a novel personalized tool learning
framework PEToolLLaMA. Extensive exper-
iments demonstrate that PEToolLLaMA sig-
nificantly surpass the best-performing LLM
by more than 50%, exibiting exceptional per-
sonalized tool-use capabilities.

21489

2 Related Work

2.1 Tool Learning in LLMs

Tool learning aims at extending the capabilities of
LLMs by equipping them with external tools to
solve tasks like weather inquiry, car navigation,
and restaurant reservation. Existing benchmarks
primarily focus on evaluating the tool learning pro-
ficiency of LLMs in addressing user instructions,
from aspects such as tool-use awareness (Huang
et al., 2024b), tool selection accuracy (Xu et al.,
2024; Wang et al., 2024b, 2025a), tool planning
ability (Wang et al., 2024a; Shen et al., 2024;
Liu et al., 2025a), and complex workflow cre-
ation (SHEN et al., 2025; Qiao et al., 2025; Fan
et al., 2025) . To improve tool-use capabilities, var-
ious strategies have been introduced, including in-
context learning which enables LLMs to use tools
via documentation (Yuan et al., 2025b; Shi et al.,
2024; Liu et al., 2025b), and fine-tuning which
trains LLMs on specialized tool-use datasets (Tang
et al., 2023; Chen et al., 2024, 2025). However,
prior studies neglect the crucial role of personalized
tool usage in LLMs. This paper addresses this gap
by introducing personalized tool learning, devel-
oping a comprehensive benchmark for evaluation,
and proposing an optimization strategy to enhance
personalized tool-use capabilities in LLMs.

2.2 Personalization in LLMs

The goal of personalization in LLMs is to lever-
age personal user data, such as historical behaviors
and background information, to generate outputs
that better align with the user preferences (Tseng
et al., 2024). Approaches such as fine-tuning (Cai
et al., 2025) and prompt engineering (Yuan et al.,
2025a) have been explored to adapt LLMs to indi-
vidual or domain-specific tasks. These approaches
have been applied across various fields, includ-
ing recommendation systems (Lyu et al., 2024),
search engines (Zhou et al., 2024), education (Liu
et al., 2024a), and dialogue generation (Wang et al.,
2023). However, previous research has not inves-
tigated LLMs’ personalization in the area of tool
learning. In this work, we bridge this gap by in-
corporating user’s interaction history to assess and
enhance the LLMs’ capability in providing person-
alized tool-usage assistance for specific users.

3 Task and Benchmark

3.1 Task Formulation
Tool Learning Given an instruction qu of the
user u, tool learning aims to generate an appro-
priate tool call, including the selected tool and
its corresponding parameters, from a set of can-
didate tools. Formally, let the candidate tool set
be T = {d(t1), d(t2), ..., d(tN)}, where d(ti) rep-
resents the documentation of tool ti and N is the
total number of candidate tools. The LLM is then
tasked with generating a tool call c = (t, p), where
t ∈ T and p denotes its parameters:

(t, p) = LLM(qu, T). (1)

Personalized Tool Learning In personalized
tool learning, we incorporate the users’ interac-
tion history alongside their instructions, enabling
the LLM to generate tool calls that satisfy both
the users’ explicit requirements and implicit pref-
erences. For a user u, we define the interaction
history as Hu = {h1u, h2u, ..., hMu }, where each hiu
consists of a past user instruction qiu and the corre-
sponding tool call ciu = (tiu, p

i
u), with tiu represent-

ing the selected tool and piu denoting its associated
parameters. Let cu = (tu, pu) represent the per-
sonalized tool call for user u, the personalized tool
learning task can then be formulated as:

(tu, pu) = LLM(qu, T ,Hu), (2)

3.2 Benchmark Construction
Due to the lack of real user interaction histories on
tool-usage, we adopt a tool-driven approach to sim-
ulate interactions based on pre-constructed user’s
tool preferences. The whole process for construct-
ing PEToolBench, illustrated in Figure 2, consists
of three steps: tool preparation, preference con-
struction, and data creation.

3.2.1 Tool Preparation
Tool Collection Following ToolBench (Qin et al.,
2024b), we adopt the tools from RapidAPI for our
benchmark, since it offers a large-scale and diverse
collection of real-world tools that can potentially
address a wide range of user needs. To ensure the
quality of the collected tools, we perform strict
filtering by removing: 1) outdated tools, which
are marked as deprecated in RapidAPI; 2) tools
with insufficient information, such as inadequate or
missing tool documentation; and 3) duplicate tools,
which have repeated tool names, descriptions, or
category names.

21490

Functionality

Non-functional Attributes

Tool-use Example

Documentation

Tools

Tool Preparation Preference Construction

Tool Classification

Functionality Groups

Tool Preference
Construction

Instruction
Generation

Interaction History
Generation

User's Tool Preference

...

...

Interaction History

...

Instructions

PEToolBench

Tool Collection Tool Understanding

Data Creation

Figure 2: Illustration of the process for constructing our PEToolBench.

Tool Understanding Since tool documentation
often contains redundant and irrelevant informa-
tion, directly extracting tool attributes from it can
be challenging. To address this, we first provide
the documentation of each tool to LLM and prompt
it to generate a tool-use example, including a sim-
ulated user instruction and parameters for calling
the tool. Next, based on the tool documentation
and tool-use example, the LLM is instructed to
generate descriptions of the tool’s functionality
and non-functional attributes separately. Besides,
we include demonstrations in the prompt to help
the LLM distinguish between these two attribute
types. By leveraging specific tool-use examples
and demonstrations, the LLM can develop a more
comprehensive understanding of each tool’s func-
tionality and non-functional characteristics.

3.2.2 Preference Construction
Tool Classification To identify potential tool-
usage scenarios for users, we classify tools with
the same functionalities into groups. Specifically,
we first employ the Ada Embedding model 1 to
compute embeddings for the functionality descrip-
tions of all tools. Then, we apply the DBSCAN
algorithm (Schubert et al., 2017) to cluster these
tools into multiple groups based on the similarity
of their embeddings. Within each group, the tools
share the same functionality and can be applied to a
specific tool-usage scenario. To further ensure that
tools within each group exhibit uniform function-
ality, we conduct rigorous filtering and only retain

1https://platform.openai.com/docs/guides/
embeddings/embedding-models.

groups where tools 1) have the same input-output
formats (i.e., required/optional parameters and re-
sponse schema) and 2) belong to the same category
(e.g., sports, music, finance).

Tool Preference Construction We leverage non-
functional tool attributes to construct the user’s tool
preference. First, we randomly sample a function-
ality group for a user, representing a potential tool-
usage scenario for interaction. Within this group,
we choose a tool with specific non-functional at-
tributes as the user’s preferred tool, while the others
are considered non-preferred. Using the preferred
tool as a reference, we retrieve the top-5 tools with
the most similar non-functional attributes. Simi-
larity is computed based on the embeddings of the
tools’ non-functional descriptions, which are gen-
erated in the Tool Understanding phase. Through
multiple iterations of sampling and retrieving, we
obtain a diverse set of preferred and non-preferred
tools that represent user preferences. After each it-
eration, we check for functionality overlap between
newly retrieved tools and previously selected ones.
If an overlap is detected, the tools are discarded,
and the sampling process is restarted. This ensures
that each tool-usage scenario is associated with
only one preferred tool per user. By following this
approach, we construct diverse tool sets that align
with different user preferences.

3.2.3 Data Creation
Interaction History Generation Based on tool
preference, we leverage the LLM to construct the
user’s interaction history. Specifically, for each
user, we provide LLM with the user’s preferred

21491

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models

and non-preferred tools, including tool attributes
and tool-use examples generated in the Tool Under-
standing phase. The LLM will generate a sequence
of simulated user-LLM interactions, each consist-
ing of a user instruction and an LLM’s tool call, as
the user’s interaction history.

We design three personalized tool-use settings
by generating the interaction history in three types
(illustrated in Figure 7): 1) preferred-only history,
where the tools involved in the interactions are
all preferred by the user; 2) rating-integrated his-
tory, including both the user’s preferred and non-
preferred tools, with a user’s binary rating for each
tool-usage interaction representing the user prefer-
ence, i.e., “liked” if the tool aligns with the user
preferences, and “disliked” otherwise. 3) chrono-
logical history, which organizes interactions in time
order to reflect changes in user preferences over
time, i.e., the more recent tool-usage interactions
are more preferred by the user, while earlier interac-
tions are less preferred. In this way, we can present
different forms of user preferences.

Instruction Generation Next, we use LLM to
generate user instructions based on the user’s pre-
ferred tools that are not included in the user’s in-
teraction history. We instruct the LLM to avoid
directly generating the name of the tool in the in-
struction, ensuring that the user preference for the
tool can only be inferred from the user’s interaction
history. Each user instruction is combined with the
user’s interaction history into a data instance.

Finally, we obtain 12,000 data instances encom-
passing 7,454 tools across 46 categories. We split
all data into two parts: a training set comprising
9,000 instances for three personalized settings and
a test set containing the rest instances.

3.3 Benchmark Analysis

We present the statistical information of our
PEToolBench in Table 3, including the statistics
of data instances in three settings and under vary-
ing interaction history lengths. We also present
the distribution of tool categories in Figure 4. Sta-
tistical information demonstrates the diversity and
complexity of our dataset.

3.4 Evaluation Metrics

Given the user’s instruction and interaction his-
tory, LLM is expected to select the appropriate tool
from a candidate tool set that can not only fulfill
the user’s request but also align with the user’s

Train Test
0

1000

2000

3000

Da

ta
 In

st
an

ce
s

preferred-only
rating-integrated
chronological

1-20 21-40 41-60 61-80 81-100
0

1000

2000

3000

Da

ta
 In

st
an

ce
s

Figure 3: Statistics of data instances in three person-
alized settings (in the left figure) and distributions of
interaction history length (in the right figure).

13.7%

11.7%

8.5%

7.5%

4.8%
3.7%3.1%3.0%

2.9%
2.9%

2.9%

2.5%

2.4%

2.3%

2.2%
1.8%
1.8%
1.8%
1.6%
1.6%

1.6%

Data
Finance
Sports
Social
Entertainment
Tools
Business
News Media
Other
Location
Gaming
Music
Travel
eCommerce
Weather
Food
Business Software
Financial
Education
Database
Communication
Media
Movies

Video Images
Transportation
Mapping
Commerce
Science
Advertising
Artificial Intelligence
Search
SMS
Health and Fitness
Devices
Text Analysis
Medical
Logistics
Email
Events
Monitoring
Cryptography
Translation
Visual Recognition
Energy
Payments
Jobs

Figure 4: Distributions of tool categories.

preferences, and then call the selected tool with
corresponding parameters. Therefore, we define
two metrics as follows.

• Tool Accuracy (Tool Acc): The metric as-
sesses the ability of LLM to select the ap-
propriate tool to call. If the tool is correctly
selected, the score is 1; otherwise, the score is
0.

• Parameter Accuracy (Param Acc): The metric
assesses the ability of LLM to generate cor-
rect parameters for the tool call. If the input
parameters are correctly generated, the score
is 1; otherwise, the score is 0.

4 Method: PEToolLLaMA

To equip LLM with personalized tool-use capabil-
ity, we conduct a two-stage training process: 1)
personalized SFT, where LLM is fine-tuned on
PEToolBench to acquire fundamental proficiency
in personalized tool usage, and 2) personalized
DPO, where LLM is optimized on a preference
dataset for better alignment with user preferences.

Personalized SFT. The first stage in our ap-
proach is Supervised Fine-Tuning (SFT), where
we directly fine-tune LLM on the training set of
PEToolBench. Given the user’s instruction qu, in-
teraction history Hu, and the candidate tool set T

21492

Methods PREFERRED-ONLY RATING-INTEGRATED CHRONOLOGICAL ALL

Tool Acc Param Acc Tool Acc Param Acc Tool Acc Param Acc Tool Acc Param Acc

Vicuna-7B 25.50 44.80 10.80 57.40 12.70 56.00 16.33 52.73
Mistral-7B 30.30 55.70 15.40 63.20 14.10 64.90 19.93 61.27
xLAM-7B-r 31.80 63.40 15.50 76.10 16.40 75.20 21.23 71.57
Hammer2.1-7B 30.20 61.60 28.30 65.20 19.80 69.70 26.10 65.60
Qwen2.5-7B 40.40 63.80 24.80 66.50 24.80 70.20 30.00 66.83
LLaMA3-8B 48.10 71.10 26.90 77.70 26.60 78.10 33.87 75.63
Qwen2.5-Max 44.50 73.40 37.30 81.50 28.20 85.20 36.67 80.03
GPT-4-turbo 45.10 73.40 41.80 77.00 28.50 81.50 38.47 77.30
Deepseek-R1 48.20 78.80 46.40 82.50 26.40 86.10 40.33 82.47
GPT-4o-mini 51.80 72.90 38.40 77.70 31.20 80.50 40.47 77.03
GPT-4o 53.70 77.60 45.70 79.60 33.60 81.80 44.33 79.67

PEToolLLaMA 74.30 87.90 78.40 89.70 80.80 91.30 77.83 89.63
% improve 38.36% 13.27% 71.55% 12.69% 140.5% 11.61% 75.57% 12.50%
w/o DPO 71.50 82.10 74.20 86.90 77.30 90.40 74.33 86.47
w/o SFT 53.20 61.80 55.30 62.40 51.40 61.10 53.30 61.77

Table 1: Evaluation results of different LLMs on PEToolBench in terms of tool and parmater accuracy under settings
including preferred-only, rating-integrated, chronological, and the whole data (All). Bold highlights the best score
among all LLMs and % improve represents the relative improvement achieved by our method over the previously
best-performing LLM.

as inputs, LLM is trained to generate the ground
truth tool call c. Hu uniformly covers all three
types of user interactions to capture diverse user
preferences. In this way, LLM can obtain basic per-
sonalized tool-usage experiences by understanding
both the user needs and preferences.

Personalized DPO. In the second stage, we fur-
ther enhance the LLM’s performance through di-
rect preference optimization (DPO) (Rafailov et al.,
2023). Our goal is to guide the LLM to call the
user’s preferred tools instead of non-preferred ones.
Specifically, for each user instruction qu, we col-
lect multiple tool calls generated by LLM after the
SFT stage. Then we select the user’s preferred
and non-preferred tool calls cw and cl based on the
user’s tool preference constructed in PEToolBench.
cw and cl will be used to construct the preference
dataset DDPO = {(x, cw, cl)}, where x denotes the
input, including the user instruction qu, interaction
history Hu, and the candidate tool set T . We then
apply DPO to optimize the LLM by guiding it to
generate the desired tool call cw while avoid gener-
ating cl. The loss function can be defined as:

L = −E
[
log σ

(
β log

πθ(cw | x)
πref(cw | x) − β log

πθ(cl | x)
πref(cl | x)

)]
,

(3)

where σ is the logistic function and β is a weighting
parameter that controls the deviation of the policy
model πθ (i.e., the LLM to be optimized) from the
reference model πref (i.e., the LLM after SFT stage).

In this way, LLM can focus on generating tool calls
that are more aligned with user preferences.

5 Experiments

5.1 Setup
Baselines. We adopt multiple LLMs from both
closed-source and open-source models to ensure
a comprehensive evaluation. For closed-source
LLMs, we select 5 representative models: GPT-4o,
GPT-4o-mini, GPT-4-turbo (Achiam et al., 2023),
Qwen-2.5-max (Yang et al., 2024) and Deepseek-
R1 (Guo et al., 2025). For open-source LLMs, we
include a wide spectrum of models, i.e., LLaMA-
3.1-8B (Dubey et al., 2024), QWen-2.5-7B(Yang
et al., 2024), Vicuna-7B-v1.5 (Chiang et al., 2023)
and Mistral-7B-v0.3 (Jiang et al., 2023). We also
include 2 tool-specific LLMs Hammer-2.1-7B (Lin
et al., 2025) and xLAM-7B-r (Zhang et al., 2025).

Implementation details. In PEToolBench con-
struction, we employ gpt-4o-mini for tool under-
standing and generation of user instructions and
interaction history. The candidate tool set con-
sists of three parts: the ground-truth tool along
with all other tools sharing the same functionality,
five tools retrieved using ToolRetriever (Qin et al.,
2024b), and the remaining tools randomly sam-
pled. We train PEToolLLaMA based on LLaMA-
Factory (Zheng et al., 2024). More details on train-
ing and evaluation are illustrated in Appendix B.

21493

5.2 Main Results

The detailed experimental results are shown in Ta-
ble 1. From the results, we can obtain the following
key findings. 1) It can be observed that the perfor-
mance of LLMs is generally unsatisfactory, par-
ticularly in tool accuracy with the majority failing
to exceed 50%. This indicates that current LLMs
are severely limited in personalized tool-use ca-
pabilities. Additionally, the lower tool accuracy
compared to parameter accuracy further suggests
that personalized tool selection is more challeng-
ing than parameter configuration. This is because
LLMs must account for both implicit user pref-
erences and explicit user requirements when de-
termining which tool to use. 2) Most LLMs per-
form worse in the rating-integrated and chronologi-
cal settings. This is likely due to the inclusion of
non-preferred interactions in the interaction history,
which confuses LLMs and hinders their ability to
accurately recognize user preferences. Notably, the
chronological setting yields the lowest scores, sug-
gesting that capturing evolving user preferences
over time is even more challenging than interpret-
ing explicit user ratings. 3) Our proposed PETool-
Bench significantly outperforms all closed-source
and open-source LLMs, demonstrating both effec-
tiveness and robustness. It maintains strong perfor-
mance, even in the two more challenging settings,
by enabling the LLM to better understand diverse
manifestations of user preferences and facilitate
personalized tool usage.

5.3 Ablation Study

We conduct ablation studies to investigate the ef-
ficacy of the two-stage training process in our
PEToolLLaMA. First, we remove the second train-
ing stage (i.e., personalized DPO) to assess its con-
tribution. Then, we examine the impact of the SFT
stage by directly conducting DPO training on the
initial LLaMA3-8B model. Table 1 reports the
performance on the test set of PEToolBench in all
three settings. The results indicate that the SFT
stage is crucial for personalized tool learning per-
formance, as it endows the model with fundamental
tool usage and personalization capabilities. Remov-
ing the DPO stage results in a slight performance
drop, suggesting that it can further refine the tool
usage alignment with user preferences.

PEToolLLaMA GPT-4o LLaMA3-8B
Models

0

10

20

30

40

50

60

70

80

To
ol

 A
cc

ur
ac

y
(%

)

w/ preferred-only history
w/ rating-integrated history
w/ chronological history
w/o history

Figure 5: Performance comparison in tool accuracy on
the test data when provided with and without interaction
history in three settings.

1-20 21-40 41-60 61-80 81-100
Interaction History Length

0

10

20

30

40

50

60

70

80

To
ol

 A
cc

ur
ac

y
(%

)

PEToolLLaMA
GPT-4o
GPT-4o-mini
Llama3-8B
Qwen2.5-7B
Mistral-7B
Vicuna-7B

Figure 6: Performance comparison in tool accuracy on
interaction history length in the preferred-only setting.

5.4 In-depth Analysis

Analysis on the impact of interaction history.
To investigate the impact of interaction history on
LLM performance, we remove the interaction his-
tory from the inputs and provide only the user in-
structions with candidate tools set to conduct our
experiments. The results are presented in Figure 5.
From the results, we can observe that both closed-
source and open-source LLMs experience varying
degrees of performance degradation without inter-
action history, compared to when provided with
preferred-only history. This suggests that interac-
tion history only containing the user’s preferred
tools can help the LLM effectively infer user pref-
erences. On the other hand, we find that LLMs
perform worse with chronological history. This
indicates that including both preferred and non-
preferred tools can interfere with the LLM’s un-
derstanding of user preferences, thus hindering its
personalization capabilities.

In contrast, our PEToolLLaMA consistently im-
proves performance across all three types of inter-
action history compared to the no-history setting.

21494

Models PREFERRED-ONLY CHRONOLOGICAL

IF TH TFM TPM PNM PVM IF TH TFM TPM PNM PVM

Qwen2.5-7B 10.9 3.6 19.6 25.5 10.4 14.9 11.2 2.3 7.1 54.6 5.4 13.2
LLaMA3-8B 2.5 5.3 19.3 24.8 11.4 15.0 2.5 3.7 2.8 64.4 6.8 12.6
GPT-4o-mini 0.1 3.5 20.1 24.4 10.6 16.4 0.0 1.5 6.9 60.2 6.2 13.3
GPT-4o 0.5 1.5 20.0 30.3 7.9 14.0 1.3 1.1 6.6 57.3 4.7 12.2
PEToolLLaMA 0.6 3.4 9.3 12.0 7.6 3.9 0.5 1.8 6.5 10.4 5.1 3.1

Table 2: The percentage (%) of different error types in LLMs on the test set of PEToolBench under preferred-only
and chronological settings. IF, TH, TFM, TPM, PNM, PVM stand for Invalid Format, Tool Hallucination, Tool
Functionality Mismatch, Tool Preference Mismatch, Parameter Name Mismatch and Parameter Value Mismatch
errors, respectively.

This demonstrates that our method enables LLM
to effectively recognize different forms of user
preferences from the interaction history. Specif-
ically, the greater performance gains in the rating-
integrated and chronological settings compared to
the preferred-only setting. This stems from the in-
clusion of non-preferred tool interactions, which
helps PEToolLLaMA differentiate between user’s
preferred and non-preferred tool and thereby more
effectively capture user preferences. Besides, fur-
ther improvement is seen in the chronological set-
ting over the rating-integrated one. This may be
related to the well-known “lost in the middle” (Liu
et al., 2024b) phenomenon in LLMs, where perfor-
mance degrades when relevant information is lo-
cated in the middle of long contexts. In the chrono-
logical setting, non-preferred tool interactions al-
ways appear at the beginning of the history rather
than in the middle, potentially making it easier for
the model to capture useful information from them.

Analysis on interaction history length. To eval-
uate the performance of LLMs under varying in-
teraction history lengths, we break down the tool
accuracy scores of LLMs based on the number of
interactions in the history under the preferred-only
setting. As shown in Figure 6, the performance of
both closed-source and open-source LLMs deterio-
rates as interaction history length increases. This is
because a longer interaction history makes it more
challenging for the LLM to identify the historical
preferences relevant to identify relevant historical
preferences in relation to the user’s current con-
text. In contrast, our PEToolLLaMA significantly
outperforms all LLMs and maintains strong, consis-
tent performance even as interaction history grows.
This demonstrates that our method enables LLMs
to effectively extract and utilize user preferences
from complex historical data.

5.5 Error Analysis

We further conduct an error analysis to investigate
the issues leading to incorrect tool calls in two per-
sonalized settings. We categorize the errors into six
types: 1) Invalid Format. The tool call generated
by the LLMs does not follow the expected JSON
format. 2) Tool Hallucination. The LLM selects
a tool that does not exist in the given candidate
tool set, which is a common hallucination issue in
LLMs (Huang et al., 2024a). 3) Tool Functionality
Mismatch. The selected tool lacks the necessary
functionality to fulfill the user’s requirements. 4)
Tool Preference Mismatch. The selected tool has
the correct functionality but is not preferred by the
user. 5) Parameter Name Mismatch. The tool call
contains missing or incorrect parameter names. 6)
Parameter Value Mismatch. The parameter names
are correctly generated, but the parameter values
do not match the ground truth.

From the results in Table 2, we observe that most
LLMs perform worst in Tool Preference Mismatch,
particularly in the chronological setting, where the
error rate exceeds 50%. This suggests that identi-
fying user preferences from the interaction history
is highly challenging, especially when preferences
change over time, leading to significant model mis-
interpretation. In contrast, our PEToolLLaMA sig-
nificantly reduces the error rate in Tool Preference
Mismatch, demonstrating its effectiveness in cap-
turing implicit user preferences. Additionally, the
reduction in Tool Functionality Mismatch and Pa-
rameter Value Mismatch errors suggests that our
method enhances LLMs’ fundamental tool-usage
ability, improving their handling of explicit user re-
quirements. Furthermore, PEToolLLaMA achieves
low error rates in Invalid Format and Tool Halluci-
nation, comparable to closed-source LLMs, show-
ing its strong instruction-following capabilities.

21495

6 Conclusion and Future Work

In this paper, we advanced general-purpose tool-
use LLMs into personalized tool-use LLMs, aim-
ing to provide users with customized tool-usage
assistance. We formulate the task of personalized
tool learning and identify the goal of leveraging
user’s interaction history to achieve implicit prefer-
ence understanding and personalized tool calling.
For training and evaluation, we construct the first
PEToolBench benchmark, featuring diverse users’
interaction history in three types. We also propose
a novel personalized framework PEToolLLaMA
conducted under a two-stage training process to en-
dow LLMs with personalized tool-use capabilities.
Extensive experiments on PEToolBench demon-
strate that PEToolLLaMA consistently surpasses
existing baselines, effectively meeting user require-
ments and preferences. We believe that the task,
benchmark, and framework for personalized tool
learning will broaden the research scope, introduce
new challenges and inspire novel methods.

In the future, we aim to enhance this work from
the following dimensions. 1) We plan to explore
more heterogeneous personal user data beyond in-
teraction history, such as user profiles or personas.
This will allow us to reflect user preferences from
multiple dimensions, providing a more comprehen-
sive evaluation on the personalized tool-use capa-
bilities of LLMs. 2) Currently, our work is limited
to tool-usage scenarios involving a single tool. In
the future, we intend to expand to more complex
personalized tool-usage, such as multi-tool scenar-
ios. These scenarios will require LLMs to perform
personalized tool planning and engage in multi-
round tool calling to address user needs effectively.

Limitations

1) Due to the lack of real user interaction histories
on tool usage, we utilize LLM to synthesize such
data. However, this approach may compromise the
authenticity and reliability of the data, which is a
common challenge in data synthesis methods. To
mitigate this issue, we incorporate pre-constructed
user preference information into the data genera-
tion process. This strategy helps guide LLM in
generating contextually relevant outputs, thereby
improving the quality and consistency of the syn-
thesized data. 2) In real-world scenarios, tools have
multiple dimensions of attributes. However, due to
the limited information contained in current tool
documentation, it is difficult to fully identify and

exploit all possible tool attributes. Fortunately, the
attributes we have obtained are sufficient to differ-
entiate between tools, enabling us to effectively
construct user preferences.

Ethics Statement

The dataset used in our work is derived from pub-
licly available sources and generated through inter-
actions with LLMs in English. Since the user inter-
action histories in our study are entirely simulated,
user privacy is fully protected, and no real personal
information is included in the dataset. Further-
more, all scientific artifacts used in this research
are publicly accessible for academic purposes un-
der permissive licenses, and their use in this paper
complies with their intended purposes. Given these
considerations, we believe our research adheres to
the ethical standards of the conference.

Acknowledgments

The work described in this paper was supported by
Research Grants Council of Hong Kong 15207821,
15207122, 15209724), and PolyU internal grants
(ZVQ0).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Hongru Cai, Yongqi Li, Wenjie Wang, Fengbin ZHU,
Xiaoyu Shen, Wenjie Li, and Tat-Seng Chua. 2025.
Large language models empowered personalized web
agents. In THE WEB CONFERENCE 2025.

Guoxin Chen, Zhong Zhang, Xin Cong, Fangda Guo,
Yesai Wu, Yankai Lin, Wenzheng Feng, and Yasheng
Wang. 2025. Learning evolving tools for large lan-
guage models. In The Thirteenth International Con-
ference on Learning Representations.

Sijia Chen, Yibo Wang, Yi-Feng Wu, Qing-Guo Chen,
Zhao Xu, Weihua Luo, Kaifu Zhang, and Lijun
Zhang. 2024. Advancing tool-augmented large lan-
guage models: Integrating insights from errors in
inference trees. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023), 2(3):6.

21496

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Shengda Fan, Xin Cong, Yuepeng Fu, Zhong Zhang,
Shuyan Zhang, Yuanwei Liu, Yesai Wu, Yankai
Lin, Zhiyuan Liu, and Maosong Sun. 2025. Work-
flowLLM: Enhancing workflow orchestration capa-
bility of large language models. In The Thirteenth
International Conference on Learning Representa-
tions.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al.
2024a. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open
questions. ACM Transactions on Information Sys-
tems.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, and Lichao Sun. 2024b. Meta-
tool benchmark for large language models: Deciding
whether to use tools and which to use. In The Twelfth
International Conference on Learning Representa-
tions.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu
Nie, Junwei Liao, Xiaoyun Mo, Jiamu Zhou, Cheng
Cheng, Yin Zhao, Jun Wang, et al. 2025. Robust
function-calling for on-device language model via
function masking. In The Thirteenth International
Conference on Learning Representations.

Jiayu Liu, Zhenya Huang, Tong Xiao, Jing Sha, Jinze
Wu, Qi Liu, Shijin Wang, and Enhong Chen. 2024a.
SocraticLM: Exploring socratic personalized teach-
ing with large language models. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024b. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Weiwen Liu, Xingshan Zeng, Xu Huang, xinlong hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, Zezhong WANG, Yux-
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan

Wu, Wang Xinzhi, Yong Liu, Yasheng Wang, Duyu
Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruiming
Tang, Defu Lian, Qun Liu, and Enhong Chen. 2025a.
ToolACE: Enhancing function calling with accuracy,
complexity, and diversity. In The Thirteenth Interna-
tional Conference on Learning Representations.

Yanming Liu, Xinyue Peng, Jiannan Cao, Shi Bo, Yuwei
Zhang, Xuhong Zhang, Sheng Cheng, Xun Wang,
Jianwei Yin, and Tianyu Du. 2025b. Tool-planner:
Task planning with clusters across multiple tools. In
The Thirteenth International Conference on Learning
Representations.

Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia,
Qifan Wang, Si Zhang, Ren Chen, Chris Leung, Jiajie
Tang, and Jiebo Luo. 2024. LLM-rec: Personalized
recommendation via prompting large language mod-
els. In Findings of the Association for Computational
Linguistics: NAACL 2024, pages 583–612. Associa-
tion for Computational Linguistics.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. 2024. Gorilla: Large language model
connected with massive apis. In Advances in Neural
Information Processing Systems, volume 37, pages
126544–126565. Curran Associates, Inc.

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin
Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie, Fei
Huang, and Huajun Chen. 2025. Benchmarking agen-
tic workflow generation. In The Thirteenth Interna-
tional Conference on Learning Representations.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou,
Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung,
Yusheng Su, Huadong Wang, Cheng Qian, Runchu
Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen,
Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei
Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan,
Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang,
Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang,
Cheng Yang, Tongshuang Wu, Heng Ji, Guoliang Li,
Zhiyuan Liu, and Maosong Sun. 2024a. Tool learn-
ing with foundation models. ACM Comput. Surv.,
57(4).

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024b. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2025a. From exploration to mastery: Enabling
LLMs to master tools via self-driven interactions. In
The Thirteenth International Conference on Learning
Representations.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong

21497

Wen. 2025b. Tool learning with large language
models: A survey. Frontiers of Computer Science,
19(8):198343.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. In Advances
in Neural Information Processing Systems, pages
53728–53741. Curran Associates, Inc.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Advances in Neural Information
Processing Systems, volume 36, pages 68539–68551.
Curran Associates, Inc.

Erich Schubert, Jörg Sander, Martin Ester, Hans Peter
Kriegel, and Xiaowei Xu. 2017. Dbscan revisited,
revisited: why and how you should (still) use dbscan.
ACM Transactions on Database Systems (TODS),
42(3):1–21.

Haiyang SHEN, Yue Li, Desong Meng, Dongqi Cai,
Sheng Qi, Li Zhang, Mengwei Xu, and Yun Ma. 2025.
Shortcutsbench: A large-scale real-world benchmark
for API-based agents. In The Thirteenth Interna-
tional Conference on Learning Representations.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2024. Taskbench: Benchmark-
ing large language models for task automation. In
Advances in Neural Information Processing Systems,
volume 37, pages 4540–4574. Curran Associates,
Inc.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,
Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren,
Suzan Verberne, and Zhaochun Ren. 2024. Learning
to use tools via cooperative and interactive agents.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 10642–10657. As-
sociation for Computational Linguistics.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301.

Yu-Min Tseng, Yu-Chao Huang, Teng-Yun Hsiao, Wei-
Lin Chen, Chao-Wei Huang, Yu Meng, and Yun-
Nung Chen. 2024. Two tales of persona in LLMs: A
survey of role-playing and personalization. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2024, pages 16612–16631. Association for
Computational Linguistics.

Hongru Wang, Rui Wang, Boyang Xue, Heming Xia,
Jingtao Cao, Zeming Liu, Jeff Z. Pan, and Kam-
Fai Wong. 2024a. AppBench: Planning of multiple
APIs from various APPs for complex user instruction.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages

15322–15336. Association for Computational Lin-
guistics.

Jian Wang, Yi Cheng, Dongding Lin, Chak Leong, and
Wenjie Li. 2023. Target-oriented proactive dialogue
systems with personalization: Problem formulation
and dataset curation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1132–1143. Association for
Computational Linguistics.

Jize Wang, Ma Zerun, Yining Li, Songyang Zhang,
Cailian Chen, Kai Chen, and Xinyi Le. 2024b. Gta:
A benchmark for general tool agents. In Advances in
Neural Information Processing Systems, volume 37,
pages 75749–75790. Curran Associates, Inc.

Pei Wang, Yanan Wu, Noah Wang, Jiaheng Liu, Xi-
aoshuai Song, Z.Y. Peng, Ken Deng, Chenchen
Zhang, JiakaiWang, Junran Peng, Ge Zhang, Hangyu
Guo, Zhaoxiang Zhang, Wenbo Su, and Bo Zheng.
2025a. MTU-bench: A multi-granularity tool-use
benchmark for large language models. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Renxi Wang, Xudong Han, Lei Ji, Shu Wang, Timothy
Baldwin, and Haonan Li. 2025b. Toolgen: Unified
tool retrieval and calling via generation. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Qiancheng Xu, Yongqi Li, Heming Xia, and Wenjie Li.
2024. Enhancing tool retrieval with iterative feed-
back from large language models. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 9609–9619. Association for Computa-
tional Linguistics.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Ruifeng Yuan, Shichao Sun, Yongqi Li, Zili Wang,
Ziqiang Cao, and Wenjie Li. 2025a. Personalized
large language model assistant with evolving con-
ditional memory. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 3764–3777. Association for Computational
Linguistics.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Kan Ren, Dongsheng Li, and De-
qing Yang. 2025b. EASYTOOL: Enhancing LLM-
based agents with concise tool instruction. In Pro-
ceedings of the 2025 Conference of the Nations of
the Americas Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 951–972. Associa-
tion for Computational Linguistics.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu,
Thai Quoc Hoang, Shirley Kokane, Weiran Yao, Jun-
tao Tan, Akshara Prabhakar, Haolin Chen, Zhiwei
Liu, Yihao Feng, Tulika Manoj Awalgaonkar, Rithesh

21498

R N, Zeyuan Chen, Ran Xu, Juan Carlos Niebles,
Shelby Heinecke, Huan Wang, Silvio Savarese, and
Caiming Xiong. 2025. xLAM: A family of large
action models to empower AI agent systems. In Pro-
ceedings of the 2025 Conference of the Nations of
the Americas Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 11583–11597. Asso-
ciation for Computational Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, and Zheyan Luo. 2024. LlamaFactory: Unified
efficient fine-tuning of 100+ language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 3:
System Demonstrations), pages 400–410. Associa-
tion for Computational Linguistics.

Yujia Zhou, Qiannan Zhu, Jiajie Jin, and Zhicheng Dou.
2024. Cognitive personalized search integrating large
language models with an efficient memory mecha-
nism. In Proceedings of the ACM Web Conference
2024, page 1464–1473. Association for Computing
Machinery.

A Details of Benchmark Construction

We provide the illustration of three types of the
user’s interaction history in Figure 7.

(a) Preferred-only

Preferred tool interaction

(c) Chronological(b) Rating-integrated

Non-preferred tool interaction

Earlier

Later

·········

Figure 7: Illustration of three types of the user’s interac-
tion history.

B More Implementation Details

To train PEToolLLaMA, we fine-tune the LLaMA-
3.1-8B model using LoRA with a warm-up ratio
of 0.1 in the SFT stage. The learning rate is set
to 1e−4 with a batch size of 16 per GPU. In the
DPO stage, the learning rate is set to 1e−6 and the
balancing factor β is set to 0.1 with a batch size
of 32. We have trained the model several times to

ensure the improvement is not randomly achieved
and present the mid one. For evaluation, we set
the number of candidate tools N to 10 and the
temperature to 0.1 to reduce randomness. Since
the maximum context length varies in different
LLMs, we constrain the context window to 4000
tokens. The experiments on closed-source LLMs
are fulfilled by APIs of OpenAI and those on open-
source LLMs are conducted on NVIDIA A6000
GPUs with 48 GB of memory.

C Prompt Details

The prompt templates in for tool-use example gen-
eration and tool attributes understanding are shown
in Figure 8 and Figure 9. The prompt templates
for interaction history generation across three types
are shown in Figure 10, Figure 11, and Figure 12.
The prompt template for instruction generation is
shown in Figure 13.

21499

Prompt for Tool-use Example Generation

Prompt:
Given a tool documentation as input, your task is to output an example for using this tool, including
a simulated user instruction and parameters for calling the tool. The output example should be in
JSON format: {“instruction”: xx, “parameters”: xx}

Here is a demonstration:
Input:
{

"tool_name ": "<Text_Analysis >.<Spellout >.<Languages >",
"tool_desciption ": "List ISO 639 languages",
"required_parameters ": [],
"optional_parameters ": [

{
"name": "nameFilter",
"type": "STRING",
"description ": "Filter as \" contains \" by language name",
"default ": ""

}
]

}

Output:
{

"instruction ": "I want to filter the list of languages by English",
"parameters ": {

"nameFilter ": "English"
}

}

Now you will be given the tool documentation, please generate the tool-use example.
Begin!

Figure 8: The prompt for tool-use example generation.

21500

Prompt for Tool Attributes Understanding

Prompt:
Given a tool documentation and the corresponding tool-use example as input, your task is to
understand the tool attributes thoroughly. Then generate two descriptions about the functionality
and non-functional attributes of the tool respectively.

Here is a demonstration:
Input:
Tool documentation:
{

"tool_name ": "<Commerce >.<Face Compare >.<GET Call >",
"tool_desciption ": "Used to fetch results using the request id received in responses .",
"required_parameters ": [

{
"name": "request_id",
"type": "STRING",
"description ": "",
"default ": "76d1c748 -51ed -435b-bcd8 -3 d9c9d3eb68a"

}
],

Tool -use example:
{

"instruction ": "I want to use the request id '76d1c748 -51ed -435b-bcd8 -3 d9c9d3eb68a ' to fetch
the face comparison result",
"parameters ": {

"request_id ": "76d1c748 -51ed -435b-bcd8 -3 d9c9d3eb68a"
}

}

Output:
Functionality: Fetches API results based on the request ID received in previous responses.
Non -functional attributes: Designed for commerce applications , used in face comparison scenarios.

Now you will be given the tool documentation and the tool-use example, generate two short phrases
to describe the two types of attributes.
Begin!

Figure 9: The prompt for tool attributes understanding.

Prompt for Interaction History (Preferred-only) Generation

Prompt:
Given a list of tools preferred by a user as input, your task is to simulate the user’s interaction
history based on these tools. You should output a sequence of tool-usage interactions, each
consisting of a simulated user instruction and a tool call to fulfill that instruction. The interaction
sequence should be a list in JSON format:
[

{
"instruction ": xx ,
"tool_call ": {

"tool_name ": xx,
"parameters ": xx

}
}, ...

]

Now you will be given the tools, please generate the interaction sequence.
Begin!

Figure 10: The prompt for interaction history (preferred-only) generation.

21501

Prompt for Interaction History (Rating-integrated) Generation

Prompt:
Given a list of tools preferred by a user and a list of tools not preferred as input, your task is to
simulate the user’s interaction history based on these two lists. You should output a sequence of
tool-usage interactions, each consisting of a simulated user instruction, a tool call to fulfill that
instruction, and a binary rating reflecting the user’s satisfaction with the tool call. The interaction
sequence should be a list in JSON format:
[

{
"instruction ": xx ,
"tool_call ": {

"tool_name ": xx,
"parameters ": xx

},
"rating ": 1 or 0,

}, ...
]

Now you will be given the two lists of tools, please generate the interaction sequence.
Begin!

Figure 11: The prompt for interaction history (rating-integrated) generation.

Prompt for Interaction History (Chronological) Generation

Prompt:
Given a list of tools preferred by a user and a list of tools not preferred as input, your task is to
simulate the user’s interaction history based on these two lists. You should output a sequence
of tool-usage interactions, each consisting of a simulated user instruction, a tool call to fulfill
that instruction. The interactions should be organized in time order to reflect changes in user
preferences over time, i.e., the more recent tool-usage interactions are more preferred by the user,
while earlier interactions are less preferred. The interaction sequence should be a list in JSON
format:
[

{
"instruction ": xx ,
"tool_call ": {

"tool_name ": xx,
"parameters ": xx

}
}, ...

]

Now you will be given the two lists of tools, please generate the interaction sequence.
Begin!

Figure 12: The prompt for interaction history (chronological) generation.

21502

Prompt for Instruction Generation

Prompt:
Given a user’s interaction history and a tool documentation as input, your task is to generate a
simulated user instruction which can be fulfilled by calling the tool with parameters. The generated
output should be in JSON format:
{

"instruction ": xx,
"parameters ": xx

}

Remember, tool name is strictly prohibited from appearing in the generated instruction. Now you
will be given the user’s interaction history and tool documentation, please generate the output.
Begin!

Figure 13: The prompt for instruction generation.

21503

