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Abstract

Key Information Extraction (KIE) from visu-
ally rich documents is commonly approached
as either fine-grained token classification or
coarse-grained entity extraction. While token-
level models capture spatial and visual cues,
entity-level models better represent logical de-
pendencies and align with real-world use cases.
We introduce PM3-KIE, a probabilistic multi-
task meta-model that incorporates both fine-
grained and coarse-grained models. It serves as
a lightweight reasoning layer that jointly pre-
dicts entities and all appearances in a document.
PM3-KIE incorporates domain-specific schema
constraints to enforce logical consistency and
integrates large language models for semantic
validation, thereby reducing extraction errors.
Experiments on two public datasets, DeepForm
and FARA, show that PM3-KIE outperforms
three state-of-the-art models and a stacked en-
semble, achieving a statistically significant 2%
improvement in F1 score.

1 Introduction

Key Information Extraction (KIE) focuses on iden-
tifying structured key-value pairs from visually rich
documents (VRDs) (Huang et al., 2019) based on
a predefined schema that specifies the target in-
formation types. This capability is essential for
automating business document processing across
industries such as finance and law. Automating
information extraction significantly reduces oper-
ational costs: processing a single invoice, for ex-
ample, can cost $13.11 and takes up to eight days
(Girsch-Bock, Mary, 2024; Cohen and York, 2020).
Despite recent advances, extracting structured data
remains challenging for state-of-the-art models,
particularly for documents with complex schemas
or semi-structured layouts (Wang et al., 2023b).
KIE can generally be approached through two
distinct paradigms, as illustrated in Figure 1:

Coarse Grained Extraction

__30.01.22

Contract 4228 Flight From: 01.01 22

Flight To: 30.01.22 a

Contract
Flight from

Flight to
Pin Point Media LLC
4501 Ford Ave
Alexandria

Fine Grained Extraction

Official Billing Invoice 4228
> 4228..From: 01.01 22 ..Invoice 4228

U-CN O B-Dt L-Dt O 'U-CN

Figure 1: Fine-Grained Token Classification vs. Coarse-
Grained Entity Extraction Task for KIE

Fine-Grained Token Classification The fine-
grained task operates at the token level (illustrated
at the bottom of Figure 1), where a label is assigned
to each token. Fine-grained models typically lever-
age multi-modal transformer encoders that inte-
grate textual, spatial, and visual features, such as
LayoutLMv3 (Huang et al., 2022) and LiLT (Wang
et al., 2022). While effective in capturing token-
level spatial and visual relationships, these models
require large annotated datasets for training.

Coarse-Grained Entity Extraction In contrast,
coarse-grained entity extraction targets high-level
entities within a document (illustrated at the top
of Figure 1). Coarse-grained models may struc-
ture outputs as key-value pairs in formats such
as JSON (Cesista et al., 2024), retrieve entity val-
ues (Cao et al., 2023), or classify entities among
predefined candidates (Majumder et al., 2020).
These models excel at capturing logical depen-
dencies and generating coherent outputs and align
more closely with business document processing
needs like the extraction of invoice elements.

Both approaches offer distinct advantages, high-
lighting the need for models that effectively in-
tegrate them. Ding et al. (2024) address this by
proposing a knowledge distillation framework that
combines knowledge from both model types. How-
ever, their method relies on model classification
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logits, restricting it to specific architectures and
making it incompatible with coarse-grained mod-
els that generate structured output, such as recent
Large Language Model (LLM)-based approaches

Moreover, existing methods often fail to en-
force structural constraints defined by the extrac-
tion schema. Certain elements, such as document
identification numbers, are mandatory, while oth-
ers are optional. Current models frequently omit
required information, leading to schema violations.
While heuristic post-processing can mitigate some
of these errors, it does not ensure full consistency.

Additionally, state-of-the-art approaches strug-
gle with syntactic errors, such as incomplete ad-
dress information (Wang et al., 2023b) and seman-
tic errors, such as implausible entity values (see
Appendix F).

To address these limitations, we introduce PM3-
KIE, a probabilistic multi-task meta-model. PM3-
KIE integrates fine-grained and coarse-grained ap-
proaches using a lightweight probabilistic reason-
ing layer based on Probabilistic Soft Logic (PSL)
(Bach et al., 2017), ensuring robust inference while
maintaining computational efficiency. PM3-KIE
incorporates four key innovations:

* Black-Box Model Integration — PM3-KIE
flexibly integrates both fine-grained and
coarse-grained KIE models, including genera-
tive approaches for structured output, without
architectural constraints.

* Joint Prediction — The model jointly predicts
coarse-grained entities and their correspond-
ing fine-grained mentions, ensuring a consis-
tent overall extraction.

* Schema Consistency — Logical constraints
enforce adherence to extraction schemas, guar-
anteeing the presence of required information
while minimizing structural errors.

e LLM-as-a-Judge-based Validation — Pre-
trained LLMs validate extractions based on
syntactic and semantic plausibility, reducing
errors such as incorrect formatting or implau-
sible entity values.

We evaluate PM3-KIE on two public datasets,
DeepForm and FARA (Wang et al., 2023b), demon-
strating significant improvements over state-of-the-
art models and a stacked ensemble. Our experi-
ments cover out-of-distribution and low-resource
settings, highlighting PM3-KIE’s robustness across

diverse real-world challenges such as small training
sizes and unknown document formats during appli-
cation time. Our contributions can be summarized
as following:

* We introduce a probabilistic multi-task meta-
model that integrates fine- and coarse-grained
KIE models with domain-specific schema con-
straints and LLM-based validation.

* PM3-KIE achieves state-of-the-art perfor-
mance on two public datasets, outperforming
all other models by a statistically significant
margin.

The remainder of this paper is structured as follows:
Section 2 reviews related work, followed by an out-
line of the KIE problem in Section 3. Next, Sec-
tion 4 describes the PM3-KIE architecture, while
Section 5 presents experimental results. Finally,
Section 6 concludes with a discussion.

2 Related Work

KIE involves identifying key-value pairs from doc-
uments (Huang et al., 2019) and can be performed
as fine-grained token sequence classification or
coarse-grained entity extraction at the document
level, detailed in the following subsections.

2.1 Fine-Grained Token Classification Models

Traditional Models Neural networks redefined
KIE as a token sequence classification task, ini-
tially using Recurrent Neural Networks (RNNs)
(Palm et al., 2017) and later incorporating spatial
features for improved layout representation (Sage
et al., 2019). Convolutional architectures followed,
leveraging non-sequential spatial context (Zhao
et al., 2019; Katti et al., 2018; Denk and Reisswig,
2019; Zhang et al., 2020). Graph-based models fur-
ther advanced KIE by modeling textual and spatial
relationships with Graph Convolutional Networks
(Yao et al., 2024; Shi et al., 2023; Lee et al., 2022,
2021; Wei et al., 2020; Yu et al., 2020; Hwang et al.,
2020).

Multimodal Transformer Approaches
Transformer-based models now dominate
multimodal token classification in KIE, leveraging
various enhancements to better integrate textual
and visual features in business documents. Doc-
Former (Appalaraju et al., 2021), LAMBERT
(Garncarek et al., 2021), FormNet (Lee et al.,
2022), and ERNIE-Layout (Peng et al., 2022)
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focus on capturing spatial relationships through
attention mechanisms. LayoutLMv3 (Huang et al.,
2022), LAMBERT, Docformer, Structext (Li et al.,
2021), and UDOP (Tang et al., 2023) incorporate
layout-aware embeddings to better represent docu-
ment structures, a technique employed in models.
Furthermore, LayoutMask (Tu et al., 2023),
StructextV2 (Yu et al., 2023), Structext, UDOP,
DocFormer, ERNIE-Layout and Wokung-Reader
(Bai et al., 2023) have introduced pre-training tasks
designed to leverage multimodal information. In
LiLT, Wang et al. (2022) adapted the transformer
concepts to work in a language-independent way.

2.2 Coarse-Grained Entity Extraction

Traditional and Encoder-Decoder Architectures
Other works frame KIE as an entity extraction task.
This can involve detecting candidates and classify-
ing them, as proposed in RELIE (Majumder et al.,
2020), or directly generating structured outputs us-
ing encoder-decoder models such as TILT (Powal-
ski et al., 2021) and Donut (Kim et al., 2022), with
TILT being one of the first to utilize a decoder to
generate sequences that contain all entities.

Generative LLMs Recent works leverage LLMs
with natural language prompts for KIE using two
primary strategies: Per-Key Prompting, where in-
dividual prompts query values for each key (e.g.,
DocLLM (Wang et al., 2023a), LayoutLLM (Luo
et al., 2024)); and Unified Prompting, where a sin-
gle prompt queries all keys simultaneously, pro-
ducing either plain text outputs with all values
(e.g., GenKIE (Cao et al., 2023)) or structured out-
puts such as key-value pairs or JSON (e.g., RASG
(Cesista et al., 2024), ICL-D3IE (He et al., 2023),
LMDX (Perot et al., 2024)).

Prompting Strategies Approaches like RASG,
ICL-D3IE, and LMDX, enhance LLMs for KIE
by leveraging in-context learning, document lay-
out encoding, and advanced prompting techniques.
RASG employs retrieval-augmented structured
generation, framing structured output prediction as
a tool-use approach. ICL-D3IE utilizes in-context
learning with demonstrations to emphasize posi-
tional relationships. LMDX integrates document
layout into prompts and introduces a decoding
mechanism for structured entity extraction.

Joint Token Classification and Entity Extrac-
tion Models Ding et al. (2024) address the joint
task of token classification and entity extraction

using a student-teacher framework for knowledge
distillation. However, their approach is limited
to architectures that produce classification logits,
making it incompatible with decoder-based LLMs
that generate structured outputs.

In contrast, we propose a more flexible multi-
task meta-learning approach that integrates fine-
grained and coarse-grained black-box models. By
jointly predicting entities and their mentions and
leveraging domain-specific schemas, our method
enforces extraction consistency and overcomes the
limitations of existing systems.

3 KIE Problem Statement

In this section, we first review traditional KIE tasks:
fine-grained token classification and coarse-grained
entity extraction. We then present a unified prob-
lem formulation that combines these tasks into a
joint extraction framework, enabling the simulta-
neous extraction of entities and their mentions in
a document. Finally, we extend this to a meta-
modeling task for joint prediction conditioned on
fine-grained and coarse-grained models.

3.1 Fine-grained Token Classification

Let W = {ws}l,si'1 denote the token sequence in a
document d, with | S| as the sequence length. T' =

{ti}gl represents the set of possible label types
and |TI the number of labels. The objective is to
assign a label I; € T to each token ws.

3.2 Coarse-grained Entity Extraction

The objective is to identify a set of key-value pairs
K = {(ky, vn)}‘rf\ﬁl, where each pair (ky,, v,,) con-
sists of a field type k,, € T and an associated field
value v,. The number of extracted pairs is |N|.
Each value v, is typically a subsequence of tokens

from the document, v,, C W = {ws}LS:‘I.

3.3 Unified Prediction

We introduce a unified problem formulation in-
tegrating both tasks into a joint framework that
enables a more holistic representation of the doc-
ument content. In this formulation, we define an
extraction schema 7' = {ti}gl, which specifies
the types of information ¢; to be extracted, such as
document IDs. The entities that fill these schema
slots are referred to as fields, extracted through
coarse-grained entity extraction. Within the doc-
ument, spans of text referring to these fields are
termed field mentions. They are extracted through
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fine-grained token classification. Multiple field
mentions can correspond to the same field. The
task is to identify both fields and their associated
field mentions, populating the schema.

We further extend this to a meta-modelling task
with the objective to jointly predict field men-
tions and fields conditioned on black-box fine-
and coarse-grained models. Specifically, we de-
fine a set of |Q| fine-grained prediction models,
0 = {Oq}lgl, each producing a predicted label

sequence L9 = {lg}ﬁl. and a set of |R| coarse-

R
7!1, each

producing key-value pairs K" = {(k], v;)}lnjil
For a document d and token sequence W, we
define two sets of candidates for final fields and

field mentions, derived from the model outputs:

grained prediction models, U = {U"}

* Field Mention Candidates (/?): For a given
field type ¢;, the set of mention candidates is
defined as a subset of tokens in w predicted to
belong to label ¢; by at least one model in O:

M= {w;|je{1,....|S]}3 "

ged{l,...,1Ql}, 1l =t:}.

* Field Candidates (F*): For a given field type

t;, the field candidate set is defined as a subset

of all field values v,, predicted to belong to
the type ¢; by at least one model in U:

F'={v.|ce{l,...,|N[},3 2
re{l,...,|RI}, K = t:}.

The objective is to predict field mentions, fields
and their association links, represented by random
variables x, y and a:

1 ifw; € M"is of type t;,
0 otherwise.

Field Mentions = ;; = {

1 ifw. € F"is field instance of type ¢,
0 otherwise.

Fields y.; = {

1 if wj is linked to v,
0 otherwise.

Field Linking: a;. = {

4 Methodology

4.1 P3M-KIE Model Architecture

We introduce PM3-KIE, a probabilistic reasoning
model that jointly predicts fields and their respec-
tive mentions in the document, conditioned on fine-
grained and coarse- grained models. This meta-
model features a logical decision layer based on

PSL (Bach et al., 2017), as detailed in Subsection
4.2. Subsequent sections elaborate on PM3-KIE’s
architecture, that is depicted in Figure 2. Subsec-
tion 4.3 presents the integration of fine- and coarse-
grained models for joint prediction. Subsection
4.4 introduces the modeling of field cardinalities,
while Subsection 4.5 describes the incorporation of
LLMs as semantic and syntactic validators. Finally,
Subsection 4.6 outlines the learning and inference
mechanisms within the proposed framework.

4.2 Probabilistic Framework

Probabilistic Graphical Model PSL represents
a probability distribution over a set of random vari-
ables using a Hinge-Loss Markov Random Field
(HL-MRF). The probability density function for
unobserved variables Y = (Y1,...,Y,), condi-

tioned on observed variables X = (X1,..., X)),
is expressed as:
1 m
P(Y|X) = Z(, x) &P [—;%’%(X? ), @

where ¢; are potential functions, w; are their asso-
ciated weights, and Z(w, X)) is the normalization
factor. This formulation allows joint reasoning over
interdependent variables.

Declarative Logic Rules PSL employs a declar-
ative language to formulate logical rules that define
the underlying HL-MRF. Rules represent templates
for potential functions. For example:

w : Prediction(mention, 'type) - Rule 1)

IsType(mention, type).

Each rule consists of predicates (Prediction,
IsType) representing observed or unobserved vari-
ables and variables (mention, type) serving as
placeholders for constants. w indicates the rule’s
importance. The probability distribution described
by the model is derived by grounding these rules -
which means replacing all variables ( e.g. mention,
type) with constants.

Learning and Inference PSL learns optimal rule
weights w by maximizing a likelihood function. In-
ference determines the most probable assignments
for unobserved variables, framed as a convex op-
timization problem (see Bach et al. (2017) for a
detailed description).

4.3 Multi-Task Meta-Model Design

Integration of Fine-Grained Models We intro-
duce an unobserved predicate Me'(d, m) for each
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Figure 2: Shows the incoporation of fine- and coarse-grained black-box models (O and U), as well as schema
constraints into the PM3-KIE meta-model. From left to right: A document d is processed. Coarse- (O) and
fine-grained (/) models generate predctions o;4 and u;, for each field type ¢; and prediction module O, Uy, that
define the candidate sets for fields and field mentions. An LLM evaluates each candidate for fact and format
correctness. The probabilistic meta-model jointly reasons based on schema constraints, model outputs, LLM scores
and candidates. It jointly predicts field values and their respective mentions in the document.

field type t; € T', where d represents a document,
and m is a mention candidate in M*. This predi-
cate encodes the true field mention prediction for
each candidate ;.

Let O?'i denote the output of a prediction model
01 for a specific label ¢; and a mention candidate
wj in M ¢, For models that predict a label for each
word, we define of, = 1 (lg = ti) , where 1(-) is
an indicator function returning 1 if the label as-
signed to w; by O7 is t;, and O otherwise.

For models outputting a probability distribution
over labels t; € T, o?-i is defined as the probability
assigned by O? to word w; and label #;: O;Z'i =
P(ti ’ wy, Oq)’

We define an observed predicate OM%*(d, m)
for each model OY, representing the output ng' for
field type t;. Here, d corresponds to the document
and m to the mention candidate in M. This predi-
cate encapsulates the model’s predictions for each
mention in a document.

Rule 2 and Rule 3 establish the relationship be-
tween the outputs of models O and the unobserved
field mention predictions Me?(d, m) for each field
type t; and model O:

wi® : OM®"(d,m) = Me'(d, m), (Rule 2)

wl’ : =OM**(d,m) = ~Me'(d, m). (Rule 3)

These rules adjust the likelihood of assigning a field
type ¢; to a mention candidate m based on model
outputs. The probability of Me’(d, m) increases

as more models predict ¢;, while the probability
decreases when models predict alternative labels.

Integration of Coarse-Grained Models We in-
troduce an unobserved predicate F'i(d, f) for each
field type t; in T', where d is a constant represent-
ing a document and f a field candidate in F. This
predicate indicates the true field mention prediction
for each candidate y ;.

Let u]; denote the output of a prediction model
U™ for a specific label ¢; and a field candidate v, in

For models producing a predicted label for each
word, we define v/, = 1 (k] = ¢;). 1(-) is an indi-
cator function that outputs 1 if the label assigned
by the model to value v, is ¢;, and O otherwise.

In the case of models outputting a probability
distribution over all labels ¢; € T', we define wu;,
as the probability assigned by U? to value v, and
label t;: ul, = P(t; | v., U?).

We introduce an observed predicate U F'%(d, f)
for each model in U, representing the output u%* for
field type ¢;, with a constant d for every document
and f for every field candidate in F*.

Rule 4 and Rule 5 correlate the outputs of the
models U with the unobserved field prediction

Fi'(d, f) for each field type ¢; and model U":
wh' : UF™(d,f) = Fi'(d,f) (Rule 4)
wy' NUF™(d, f) = Fi'(d, f) (Rule 5)

These rules increase the likelihood of assigning
a field type ¢; to a field candidate as more mod-
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els predict this label, and conversely, decrease the
probability if models predict a different field type.

Linking Fine- and Coarse-Grained Models
The task involves predicting a field link aj. for
each pair of field mention and field candidate in
F; and M;. We define a linking function, rang-
ing from O to 1, to indicate the likelihood that a
field mention candidate belongs to a field candi-
date. This function utilizes string or embedding
similarity, normalized to [0, 1], with the Jaccard
distance used for string comparison (see Appendix
A). To capture the interdependence between field
mentions and fields, we introduce rules Rule 6 and
Rule 7. This ensures that field candidates and their
mentions share the same field type ¢; and enables
bidirectional propagation of predicted field types:

wi : Me'(d, m) A Lnk(d, m, f) = Fi'(d,f) (Rule6)
wg : Fi'(d, f) A Lnk(d, m,f) = Me'(d,m) (Rule7)

4.4 Cardinality Constraints

In many domains, field types are subject to cardinal-
ity constraints. For instance, business documents
often contain a unique identification number and
multiple entries for fields such as addresses. We
extend the information schema by associating each
field type ¢; with a cardinality cardinality, and spec-
ifying whether the field is mandatory or optional.
For mandatory fields, Rule 8 enforces that exactly
cardinality, fields of type ¢; are extracted per docu-
ment. For optional fields, Rule 9 ensures that the
number of instances does not exceed cardinality,.

w} : F'(d, +f) = cardinality, (Rule 8)

wg : F'(d, +f) < cardinality, (Rule 9)

Here, F(d, +f) denotes the summation over all
extracted fields of type ¢; in document d.

4.5 LLM-as-a-Judge

Common model errors in information extraction
include format inconsistencies (e.g., missing years
in dates) and factual inaccuracies (e.g., misidenti-
fying a postbox as a headquarters). To systemat-
ically verify field candidates I/, we propose us-
ing a in-context-tuned LLM that assigns a score
llme; € [0, 1] to each field candidate v, € F*, rep-
resenting its validity based on format and factual
accuracy. This mechanism is integrated using the
following rules:

wh : LLM'(d,f) = F*(d,f) (Rule 10)

wiy : ~LLM'(d,f) = —~F'(d,f) (Rule 11)

The LLM predicate LLM?*(d,f) indicates docu-
ment d supports field assignment f. These rules
increase confidence in F* when the score is high
and decrease it otherwise. This mechanism can be
extended to include human annotations, regular ex-
pressions, and database lookups, further enhancing
the model’s robustness.

4.6 Learning and Inference

As shown in Figure 2, PM3-KIE defines a probabil-
ity distribution over unobserved random variables
(field mentions x and fields ¥), conditioned on ob-
served variables: fine-grained model outputs (o),
coarse-grained model outputs (u), candidate links
(a), and LLM scores (Ilm). The potential functions
governing these distribution are defined by logical
rules in Formula 3. The weights w are learned by
maximizing the likelihood of observed data. Dur-
ing inference, the most probable field mention and
assignment are identified by maximizing the joint
probability distribution in Formula 3.

S Experiments

5.1 Experimental Setup

We evaluate PM3-KIE on two public datasets,
DeepForm and FARA, comparing it against
three state-of-the-art models: LayoutLMv3, LILT,
and a fine-tuned GPT-3.5 Turbo (Radford and
Narasimhan, 2018; OpenAl, 2024), as well as a
stacked ensemble (Wolpert, 1992). Additionally,
we conduct an ablation study to assess the impact
of individual PM3-KIE components on overall per-
formance. Appendix G provides a list of software
components used, along with their licenses.

Data DeepForm consists of complex political ad
invoices, annotated with nine fields: advertiser,
contract_num,  gross_amount,  property,
tv_address, flight_from, flight_to,
product, and agency. FARA contains for-
eign agent registration forms, annotated with six
fields: registration_num, principal_name,
registrant_name, signer_name, file_date,
and signer_title.

Both datasets include predefined train, develop,
and test splits, covering both in-distribution (ID)
and out-of-distribution (OOD) test sets. To eval-
uate performance under varying data availability,
we experiment with different training sizes (10,
50, 100, and 200 samples), using one ID and one
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OOD fold per size, with three splits per (train size,
distribution)-combination, totaling 24 models.
Evaluating on OOD test documents and limited
training data provides insight into model robust-
ness under low-resource conditions and distribu-
tion shifts—challenges frequently encountered in
real-world applications. Details on the datasets and
preprocessing steps are provided in Appendix H.

Evaluation Metrics We apply field-specific
matching functions (Wang et al., 2023b) to nor-
malize values and introduce functions to address
mismatches (see Appendix H.2). Since document-
level metrics provide a more practical measure of
workload for correcting document extractions than
field-level F1 scores (Nourbakhsh et al., 2024), we
report multiple field- and document level metrics,
listed in Table 1. Statistical significance is evalu-
ated using paired differences and 95% confidence
intervals, calculated with paired standard errors
(Miller, 2024). Both are computed for each split
and (train size-distribution)-combination.

Metric Description

F1 per Field Mean F1 across fields.

F1 per Doc  Mean F1 across documents.

Hit per Doc  Mean hit rate, "hit" = correct field extraction.
Doc-Level perc. of documents with correct extraction
Accuracy

Table 1: Performance Metrics for KIE

Baselines We compare PM3-KIE against three
fine-tuned models—LayoutL.Mv3, Lilt, and GPT-
3.5 Turbo—which serve as baselines and input pre-
dictors for PM3-KIE (see Section 4). All models
are fine-tuned on the training fold with hyperpa-
rameters tuned on the validation fold. We also in-
clude a logistic regression ensemble over the three
baselines, trained on the validation data. Model
architectures, prompt templates, training details,
and hyperparameters are provided in Appendix B.

PM3-KIE Model The final PM3-KIE model in-
tegrates all components from Section 4, combining
baseline models—Lilt, LayoutLMv3, and GPT-3.5
Turbo—with cardinality constraints. These spec-
ify required fields (DeepForm: contract number,
gross amount, advertiser, property; FARA: registra-
tion_num, registrant_name and file_date) and op-
tional fields (remaining fields) limited to one value
per document. Two LLM-based judges handle fact
and format checking using automatically generated
prompts without prompt engineering, representing

a quality lower bound (see Appendix I). Training is
performed on the development fold (Appendix C).

5.2 Results and Analysis

Baseline Comparison Table 2 summarizes the
F1 scores with standard errors for PM3-KIE and
baseline models. The "best model" is selected
per split as the model achieving the highest F1
score. Results are averaged over three splits and
four training sizes for each distribution type. The
"paired difference" shows the performance differ-
ence between PM3-KIE and the best baseline with
95% confidence intervals. Results demonstrate that
PM3-KIE outperforms all baselines across all data
chunks with statistical significance (95%), high-
lighting its robustness in a variety of settings.

Document-Level Metrics To assess practical
utility, we analyze document level performance
and provide insights into error rates per document.
Table 3 shows that PM3-KIE achieves significant
improvements in document-level accuracy for both
FARA and DeepForm, reducing the practical man-
ual correction workload. This indicates the model’s
capability to fully automate invoice processing for
over 58% of the documents and additional 5% com-
pared to the best performing baseline model.

Model Runtime Analysis Appendix D provides
model runtimes and system specifications. PM3-
KIE introduces minimal computational overhead,
with training completing in minutes without GPU
acceleration, demonstrating its practicality across
diverse hardware environments.

Impact of Train Size and Test Distribution
Labeling document extraction corpora is time-
consuming, leading to small training sets in
practice. Additionally, distribution shifts, e.g.
changes in document layouts, are common during
application-time. We evaluate PM3-KIE’s perfor-
mance with limited training data and OOD test sets
to replicate these challenges. Figure 3 shows per-
formance improvements based on training size and
test distribution, averaged over three splits. The
results demonstrate that PM3-KIE excels in low-
resource settings and on OOD test sets, underscor-
ing its relevance for real-world applications.

5.3 Ablation Study

We conduct an ablation study to assess the contri-
butions of individual model components. Models
are trained on three splits for each combination of
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Table 2: Performance metrics for FARA and DeepForm (DF) calculated on ID and OOD test sets. Reported
F1 scores are averaged across fields, accompanied by their corresponding standard errors in parentheses. Paired
difference between PM3-KIE and the best model is presented, along with a 95% confidence interval in parentheses.
All values are averaged across three splits and four training sizes. A detailed result table is displayed in Appendix E

Dataset Dist  #Test F1LILT F1GPT F1LMv3 F1STE F1Best F1PM3-KIE Paired Diff

(std. error) (std. error) (std. error) (std. error) (std. error) (std. error) | (conf. interval)
FARA 1D 76  84.2(1.2) 929(0.8) 695(1.4) 92.6(0.8) 93.2(0.8) 94.5 (0.7) : 1.6 (+0.8, +2.5)
FARA OOD 224 73.0(13) 93.9(0.8) 47.1(12) 93.6(0.7) 94.1(0.7) 94.7(0.7) | 0.8 (+0.1, +1.4)
DF ID 300 91.7(24) 90.1(2.6) 853(22.7) 86.6(22) 924(.0) 93.7 (1.6) | 1.8 (+1.0, +2.6)
DF OOD 300 84.7(1.1) 852(1.4) 776(1.4) 819(1.1) 88.0(l.1) 90.5(0.9) 1 3.0 (+0.7, +5.4)

Table 3: Comparison of Best Model and PM3-KIE per-
formance across FARA and DeepForm datasets. De-
tailed results per dataset are displayed in Appendix E

F1 Hit F1 Doc Lv.
Dataset Model per Field per Doc per Doc Acc.
FARA Best Model 93.63 95.45 93.28 78.97
"FARA ~ PM3-KIE ~ 9459 ~ 9650 9447 8292
_DF  BestModel 9022 8986 8.8 5355
DF PM3-KIE 92.09 91.84 91.25 58.27
F1 Difference by Size of Train Fold
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Figure 3: F1 difference (F1_PM3-KIE - F1_BestModel)
with 95% confidence interval by train size for both id
and ood test folds on DeepForm.

training size and distribution type (ID and OOD).
Table 4 summarizes the findings. The basic model
is a model learned only on the final field extraction
data with two LLM judges for fact- and format-
checking and with schema constraints.

Granular Labeling We evaluate the impact of
granular field mention labels by comparing a mul-
titask learning approach ("+Token Task") with a
single-task setup. Results show a slight decline
in performance with multitask learning, likely due
to token-level annotation noise. Given the task’s
document-level requirements, single-task learning
appears more efficient in this setting.

Cardinality Constraints We evaluate cardinal-
ity constraints by training models without them
("-Constraints"). Performance declines across all
metrics, confirming their positive effect, likely due

Table 4: Ablation study results on DeepForm. Differ-
ence in F1 for the basic PM3-KIE model compared to
the adapted model version. Results for FARA are dis-
played in table 10 in Appendix E.

Ablation F1Field HitDoc F1Doc Acc
PM3-KIE 92.09 91.84 91.25 58.27

" +Token Task 043  -020 -033 -0.03
- Constraints -1.81 -1.65 -1.72 -5.73
- Fact & Format Judges -0.31 -0.25 -0.31  -0.74
- Fact Judge -0.15 -0.09 -0.14  -0.10
- Format Judge -0.26 -0.25 -0.25  -0.55

to the constraints ensuring required fields are pre-
dicted, which would otherwise be omitted.

Effectiveness of LLM-as-a-Judge PM3-KIE in-
tegrates two LLMs for fact- and format-checking.
Removing both ("-Fact Format Judges") leads to
a notable 0.74% drop in document-level accuracy
and slightly reduces all other metrics ( 0.3%), em-
phasizing their role in precise extractions. Remov-
ing only one ("-Fact Judge" or "-Format Judge")
results in better performance than removing both
but still lags behind the base model, highlighting
the individual contribution of each judge.

6 Conclusion and Discussion

We propose PM3-KIE, a probabilistic multi-task
meta-model for KIE that integrates fine-grained to-
ken classification and coarse-grained entity extrac-
tion models. PM3-KIE flexibly combines arbitrary
models through a probabilistic reasoning layer that
enforces schema consistency, reducing errors such
as missing required elements. Additionally, it in-
corporates LLM-based validation to ensure logical
adherence and semantic plausibility. Experimen-
tal results on two public datasets, DeepForm and
FARA, demonstrate that PM3-KIE outperforms
state-of-the-art methods across in-distribution, out-
of-distribution, and low-resource scenarios, high-
lighting its effectiveness and robustness when fac-
ing challenges commonly encountered in practice.
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7 Limitations

Sensitivity to Prompt Design and Model Capa-
bility The performance of the LLM-as-a-judge
component depends on both the LLM’s capabil-
ities (e.g., model size and training data) and the
quality of the prompts. For instance, effective fact-
checking requires the LLM to be trained on data
containing the relevant facts. Inadequate model
size or poorly designed prompts may lead to unreli-
able validation scores. To establish a lower bound
for model quality, we avoid extensive prompt en-
gineering and instead use automatically generated
prompts. While the meta-model’s training adjusts
weights to minimize the impact of uninformative
LLM outputs, it will not benefit overall perfor-
mance in such cases. Future work will explore
robustness checks using noisy models to further
evaluate the impact of prompt quality.

Dependency on Base Models: The extraction
quality of the meta-model relies on the performance
of the base fine-grained and coarse-grained models.
If all base models fail to detect a true extraction as
potential candidates, they cannot be identified by
the overall system. This limitation is common for
most ensembling and meta-model approaches.

Computational Costs: While PM3-KIE itself
is lightweight with relatively few parameters, the
meta-model’s complexity arises from integrating
fine-grained and coarse-grained models along with
LLMs for validation. This integration increases
both computational overhead and deployment com-
plexity, as it requires managing multiple models in
conjunction with the meta-model. This is a com-
mon challenge in ensemble and meta-model ap-
proaches.

Additional Processing: PM3-KIE requires data
to be formatted as specified in Section 4, including
the creation of constants for predicates and truth
values for observed predicates. This necessitates
additional computational effort for postprocessing
both model outputs and input data to meet the re-
quired format.

Closed-World Assumption: PM3-KIE assumes
a closed-world setting in which all fields to be ex-
tracted are known in advance, limiting its appli-
cability in scenarios that require the detection of
novel or previously unseen field types. However,
this constraint is not a practical limitation in the
domain we target—business document process au-

tomation—where open-domain extraction is inten-
tionally avoided. In this setting, document schemas
are well-defined, and downstream systems rely on
a fixed set of fields for automated processing. As
such, adherence to a predefined extraction schema
is both expected and beneficial.

Dependency on Parsed Strings: This work as-
sumes input documents are in a machine-readable
format, typically processed through OCR. OCR
error correction and parsing accuracy are beyond
the scope of this study, with the approach presum-
ing that such errors have been corrected prior to
downstream processing.

8 [Ethical Considerations

Automation and Job Displacement: Automat-
ing key information extraction from documents,
especially in business-critical domains like finance
and legal, could reduce the demand for manual data
entry and administrative roles. While this improves
efficiency and reduces operational costs, it risks
unemployment for workers currently performing
these tasks.

Risk of Overreliance on Automated Systems:
Deploying PM3-KIE in critical sectors, such
as healthcare, legal documentation, or property
records, may lead to errors being accepted with-
out human verification. Incorrect or incomplete
extractions could have significant consequences,
including legal disputes, financial losses, or med-
ical errors. PM3-KIE should always operate in a
semi-automated manner with manual review.

Bias and Fairness Concerns: Like many Al sys-
tems, PM3-KIE’s performance depends on the qual-
ity and diversity of training data used to train the
base models integrated. Biases in the training data
could lead to unequal performance across docu-
ment types, languages, or regions, potentially dis-
advantaging users from underrepresented groups.
Care must be taken to curate balanced datasets and
evaluate the model across diverse scenarios.
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A Similarity Score Calculation

To match field mentions to fields, a similarity score,
displayed in Algorithm 1, is calculated based on
their string representations.

B Baseline Training Details

Stacked Ensemble: The stacked ensemble
model utilizes the Logistic Regression imple-
mentation from sklearn' and during training,
hyperparameters are tuned with a grid search
over the following hyperparameters: {°C’: [0.01,
0.1, 1, 10, 100, 1000], ’penalty’: [’11°, ’12°],
’solver’:[’liblinear’, ’saga’]}. For each field can-
didate, we construct an input vector comprising
features that include prediction scores for each field
type and model. Field mentions detected by Lay-
outLMv3 and LiLT are mapped to field candidates
during preprocessing using the similarity algorithm
detailed in Appendix 1. For the GPT-3 model, pre-
diction scores are binary (0,1), whereas LiLT and
LayoutLMv3 provide predicted probabilities for
each field candidate. Additionally, LLM judge
scores for factual and format correctness per field
type are incorporated as features.
"https://scikit-learn.org/1.5/

modules/generated/sklearn.linear_model.
LogisticRegression.html

Algorithm 1 Linking Function

Require: token_str, field_str
Ensure: link

1: function calculate_link(token_str, field_str)
2: if token_str.isnumeric() and token_str = field_str then
3: return 1.0

4. else if —token_str.isnumeric() then

5:  sim < jaccard_similarity(token_str, field_str)

6: if sim > 0.7 then

7. return sim

8: else

9: return 0.0
10: end if
11: end if
12

: end function

13: function jaccard_similarity(textl, text2)
14: if len(textl) = O or len(text2) = O then

15: return 0

16: end if

17: if len(text]l) < 4 and len(text2) < 4 then

18: if text] = text2 then

19: return 1.0
20: else

21: return 0.0
22: end if

23: end if

24: nl < ngrams(textl, 3)

25: n2 < ngrams(text2, 3)

26: jsim < 1 — jaccard_distance(set(nl), set(n2))

27: jsim + max(0,jsim — 0.1 x |len(textl) — len(text2)|)
28: return jsim

29: end function

Token Sequence Tagging Task LiLT and Lay-
outL.Mv3 are fine-tuned on a downstream sequence
tagging task with a classification head for token
classification, utilizing the BILOU schema. How-
ever, certain fields span multiple token sequences
within the document, making them incompati-
ble with the BILOU schema. To address this,
we introduce an additional label, LABELNAME_ADD,
for subsequent field sequences following the first.
In the DeepForm VRDU dataset, this applies to
"tv_address" and "product" fields. During train-
ing, the models predict these _ADD labels, and in
postprocessing, scattered fields are reconstructed
by linking each _ADD-labeled sequence to its corre-
sponding sequence labeled without _ADD.

LiLT: The LiLT model was trained and ap-
plied using the LayoutLMv3TokenizerFast,
AutoModelForTokenClassification, and
Trainer classes from the Transformers library
(Wolf et al.,, 2019)https://huggingface.co/
docs/transformers/index.

We utilized the pretrained tokenizer and
model SCUT-DLVCLab/lilt-roberta-en-base,
provided by the authors (Wang et al.,
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2022) on Hugging Face’. The tokenizer
was configured with the following set-
tings: truncation=True, stride=128,

padding="max_length", max_length=512,

return_overflowing_tokens=True, and
return_offsets_mapping=True.

The model was fine-tuned wusing the
AutoModelForTokenClassification class

and the Trainer, with the following hyperparame-
ters:

* Learning rate: 5 x 1076

 Batch size: 8

* Gradient accumulation steps: 4

* Maximum steps: 9000

* Metric for model selection: overall_f1
* Warmup ratio: 0.1

The experiments were conducted on a system
equipped with dual Intel Xeon Gold 6226R CPUs
(64 cores, 128 threads), 754 GB of RAM, and two
NVIDIA Tesla V100 32GB GPUs. Each experi-
ment utilized a single GPU and required approxi-
mately 20 hours to complete.

LayoutLMv3: The LayoutLMv3 model was
trained and applied using the AutoProcessor,
LayoutLMv3ForTokenClassification, and
Trainer classes from the Transformers library.

We utilized the pretrained tokenizer and model
microsoft/layoutlmv3-base, provided by the
authors (Huang et al., 2022) on Hugging Face’.
The processor was loaded and applied us-
ing the AutoProcessor class with the setting
apply_ocr=False.

The model was fine-tuned wusing the
LayoutLMv3ForTokenClassification class
and the Trainer with the following hyperparame-
ters:

* Metric for model selection: overall_f1
e Warmup ratio: 0.1
* Learning rate: 5 x 1076

e Batch size: 8

2https://huggingface.co/SCUT—DLVCLab/
lilt-roberta-en-base

3https://huggingface.co/microsoft/
layoutlmv3-base

* Gradient accumulation steps: 4
* Maximum steps: 9000

The experiments were conducted on a system
equipped with dual Intel Xeon Gold 6226R CPUs
(64 cores, 128 threads), 754 GB of RAM, and two
NVIDIA Tesla V100 32GB GPUs. Each experi-
ment utilized a single GPU and required approxi-
mately 20 hours to complete.

GPT-3.5: The GPT-3.5 Turbo model (OpenAl,
2024) is a decoder-based large language model
(LLM) fine-tuned for the entity extraction task, fol-
lowing the tool-use approach introduced by Cesista
et al. (2024). Unlike Cesista et al. (2024), we do
not employ structured prompting to transform PDF
content but instead use raw PDF text to minimize
additional processing costs.

For supervised fine-tuning, we  uti-
lize the OpenAl plattform* to fine-tune
the gpt-3.5-turbo-0125 model. The
gpt-3.5-turbo-0125 model was chosen as
it is more cost-effective than newer models while
maintaining a knowledge cutoff in 2022, ensuring
that the base model has not been exposed to the
VRDU dataset.

The fine-tuning process follows the guidelines
provided in the OpenAI Cookbook?, and the result-
ing model generates valid JSON outputs. These out-
puts are parsed to extract entities for downstream
tasks. Training costs amounted to approximately
€210 ($221), with additional application costs for
the test sets estimated at €75 ($79).

We implement retrieval-augmented generation
using OpenAl’s ChatCompletion API with Func-
tion Calling® in conjunction with the Python pack-
age llama-index(Liu, 2022). Fine-tuning was
conducted following the instructions available in
the OpenAI Cookbook’. The function definition,
detailed in Listing 1, defines the data schema for
invoice fields and is passed to the ChatCompletion
API as a tool®.

The model produces valid JSON outputs, from
which entities are extracted for further processing.

4https://platform.openai.com/finetune

Shttps://cookbook.openai.com/examples/chat_
finetuning_data_prep

6https://platform.openai.com/docs/guides/
function-calling

"https://cookbook.openai.com/examples/chat_
finetuning_data_prep

8https://platform.openai.com/docs/
api-reference/chat
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The cost of training the model was approximately
€210 ($221), and applying the model to the test
sets incurred an additional cost of approximately
€75 ($79).

The system prompt utilized for processing polit-
ical advertisement invoice documents is shown in
Listing 2. This prompt, combined with the function
dictionary (Listing 1), is supplied to the OpenAl
ChatCompletion API to facilitate fine-tuning and
inference.

To align the assistant’s responses with ground
truth extractions from the VRDU dataset, these
extractions are provided as examples during fine-
tuning. The format of these examples is presented
in Listing 3.

C PMB3-KIE Implementation, Training
and Inference Details

Model generation, training, and inference were
based on the Statistical Relational Learning frame-
work introduced by Bach et al. (2017). For our
experiments, we utilized the pslpython package
(version 2.4.0%), which wraps the Java-based PSL
implementation'?.

Meta-model weight learning was performed on
the development folds using the structured percep-
tron algorithm'!. Inference was conducted using
ADMM'? as described by Bach et al. (2017).

Default hyperparameters were employed, with
modifications to the regularization settings as fol-
lows:

e gradientdescent.negativelogregularization =
0

* gradientdescent.negativeentropyregularization
= 0.0001

All experiments were executed on a CPU system
equipped with 48 cores (Intel® Xeon® Gold 5118,
2.3 GHz base clock, 3.2 GHz max clock) and 376
GiB of RAM. Training the meta-model weights
required approximately 20 minutes per model on
average.

D Model Runtime Analysis

Table 5 presents the training and inference times
of the two encoder-based baselines, LayoutLMv3

9https ://pypi.org/project/pslpython/

10https ://github.com/lings/psl

"org.lings.psl.application.learning.weight.gradient .opti-
malvalue.StructuredPerceptron

12org. lings.psl.application.inference.mpe.
ADMMInference

and LiLT, alongside our proposed PM3-KIE model.
Inference time is reported in seconds per sample,
while training time is reported in minutes.

Compared to the baseline models, PM3-KIE in-
curs minimal computational overhead. The meta-
model requires only a few minutes to train and
does not depend on GPU acceleration, as training
was conducted entirely on a CPU. In contrast, both
LayoutLMv3 and LiLT were trained using a single
NVIDIA Tesla V100 GPU.

All experiments were conducted on a server
equipped with dual Intel Xeon Gold 6226R CPUs
(64 cores, 128 threads), 754 GB RAM, and two
NVIDIA Tesla V100 32GB GPUs.

Model Train Time (min) Infer Time (sec)
Lilt 450 1.57
LMv3 1296 4.43
PM3KIE 4 0.60

Table 5: Training and inference times for each model.

E Detailed Evaluation Results for FARA
and DeepForm datasets

Tables 6 and 7 summarize the ID and OOD results
of all baselines and PM3-KIE on the FARA and
DeepForm datasets. Tables 8 and 9 show F1 values
per field and documemt as well as hit rate per doc-
ument and the document-level accuracy for both
FARA and DeepForm.

F Case Study and Error Analysis

To analyze model performance in detail, we con-
ducted a case study using the DeepForm dataset
(train size: 200, split: 2, unk_template) and the
LayoutLMv3 baseline. We filtered instances where
the baseline model produced incorrect predictions
while PM3KIE generated the correct output.

Tables 11 and 12 categorize errors into syntactic
errors, where predictions deviate from predefined
formats, and semantic errors, where extracted
entities are factually implausible. For each er-
ror case, we report the LLM-judge score—format-
based scores for syntactic errors and factual con-
sistency scores for semantic errors—along with
the model’s justification. Notably, the LLM-judge
score consistently aligns with the severity of the
formatting or factual errors.

Syntactic errors (Table 11) predominantly oc-
cur in address fields, where key components such
as city names or postal codes are missing. Similar
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Listing 1: Function Description for OpenAl Tool Use

function_dict = {

'name': 'AdInvoice', 'description': 'Data model for invoice fields.', 'parameters':
{'title': 'AdInvoice', 'description': 'Data model for invoice fields.', 'type': 'object',
'properties': {
'‘contract_num': {

'title': 'Contract Number',

'description': 'The invoice contract number or order number.', 'type': 'string'},
'tv_address': {

'title': 'Tv Address', 'description': 'Physical address of the tv channel.',

'‘default': '', 'type': 'string'},

'property ': {
'title': 'Property', 'description': 'Property, usually equivalent to tv channel name.',
'default': '', 'type': 'string'},

‘agency ': {

'title': 'Agency', 'description': 'The advertisement agency.', 'default': '', 'type': 'string'},
‘advertiser': {'title': 'Advertiser', 'description': 'The advertiser.', 'type': 'string'},
'flight_from': {

'title': 'Flight From',

'description': 'The order flight start date.',

'default': '',

'type': 'string'},

'flight_to': {

'title': 'Flight To',

'description': 'The order flight end date.',

'default': '',

'type': 'string'},

'product ': {

'title': 'Product',

'description': 'The product that is advertised.',

'default': '',

'type': 'string'},

'gross_amount ': {

'title': 'Gross Amount',

'description': 'The total amount to be paid.',

'type': 'string'},

'line_items': {

'title': 'Line Items',

'description': 'List of line items.',

'type': 'array',

‘items': {

"$ref': '#/definitions/Lineltem' 3}}3},
'required': ['contract_num', 'advertiser',6 'line_items'],
‘definitions': {
'LineItem': {

'title': 'LineItem',

'description': 'Data model for line item fields.',

'type': 'object',

'properties': {

'channel ': {
'title': 'Channel’',
'description': 'Name of the tv channel broadcasting the advertisement.',
'default': '',
'type': 'string'},
'program_start_date ': {
'title': 'Program Start Date',
'description': 'Program start date (only date without timestamp).',
‘default': '',
'type': 'string'},
'program_end_date ': {
'title': 'Program End Date',
'description': 'Program end date (only date without timestamp).',
'default': '',
'type': 'string'},
'program_desc ': {
'title': 'Program Desc',
'description': 'Description of the TV program.',
'default': '',
'type': 'string'},
'sub_amount ': {
'title': 'Sub Amount',
'description': 'Sub amount for one program ad.',
‘default': '',
"type': 'string'}}}}}}
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You
This

The document uses tables , multi—columns, and key—value pairs to record the
Your task is to digitize these documents by extracting their information
Extract the unique header information, such as TV channel addresses and

Listing 2: Formatted System Prompt

are receiving content from a political advertisement invoice document.

invoice is signed between a TV station and a campaign group.

information .

in a structured format.
total costs,

along with the list of line items detailing specific ads, TV programs in which they will be broadcasted,

and

sub—amounts .

Extract line item fields only from the tabular line item list in the

invoice document
in the line item list, don't extract them.

and not from the invoice header: if line item fields are not present
Listing 3: Ground Truth Assistant Answer provided for Fine-Tuning
{
"role": "assistant",
"function_call": {
"name": "AdInvoice",
"arguments":

}

"{"contract_num":"668864 ",
"tv_address ":"PO Box 809229\\nChicago, IL 60680-9229\\n",
"property ":"WAXN-TV\\nWSOC Television, Inc.\\n",
"agency":"",
"advertiser ":"POL/Donald Trump/R/PRES/US-A\\n",
"flight_from":"03/05/20 ",
"flight_to ":"03/10/20\\n",
"product":"TRUMP FOR PRESIDENT\\n",
"gross_amount":"$3,920.00\\n",
"line_items ":[

{"channel ":"WAXN ","program_start_date":"03/09/20 ","program_end_date":"03/09/20

"program_desc ":"M-F 7a-8a\\n","sub_amount":" $250.00\\n"},

{"channel ":"WAXN "," program_start_date ":"03/06/20 ","program_end_date":"03/06/20

"program_desc":"M-F 7a-8a\\n","sub_amount":"$250.00\\n"},

{"channel ":"WAXN " ,"program_start_date":"03/09/20 ","program_end_date":"03/09/20

"program_desc ":"M-F 8a-9a\\n","sub_amount":" $260.00\\n"},

{"channel ":"WAXN "," program_start_date":"03/06/20 ","program_end_date":"03/06/20

"program_desc":"M-F 8a-9a\\n","sub_amount":"$260.00\\n"},

{"channel ":"WAXN " ,"program_start_date":"03/06/20 ","program_end_date":"03/06/20

"program_desc ":"M-F 8p-830p\\n","sub_amount":"$0.00\\n"},
s}
1"

Table 6: DeepForm Performance metrics for various training set sizes (Train) and distribution folds (Dist). The
reported F1 scores are F1-scores averaged across all fields and are accompanied by their corresponding standard
errors in parentheses. Additionally, the paired difference between our model and the best-performing model is
presented, along with the 95% confidence interval enclosed in parentheses.

issues are observed in date fields, where predictions
are often incomplete or improperly formatted.
Semantic errors (Table 12) are more varied.
The most common confusions arise between ad-
vertiser, property, and tv-company labels. For

Dist #Train #Test F1LILT F1GPT F1LMv3 F1STE Fl1Best F1PM3-KIE Paired Diff
(std. error) (std. error) (std. error) (std. error) + (std. error) (std. error) « (conf. interval)

id 10 6 87.36 87.92 80.97 86.84 | 90.09 93.31 | +3.24
(4.49) (5.14) (4.32) (4.80) ! (2.65) @231) ' (+3.09, +3.4)

id 50 64 91.55 87.92 82.30 85.36 : 91.55 92.19 : +1.71
(2.36) (2.25) (3.12) (2.08) (2.36) (1.82) | (+0.71,+2.7)

id 100 89 93.85 9241 87.72 88.63 | 93.85 94.36 | +1.10
(1.66) (1.59) (2.11) (1.48) ! (1.66) (1.38) | (+0.06, +2.14)

id 200 144 94.21 91.99 90.06 87.21 : 94.21 95.08 : +1.23
(1.20) (1.64) (1.19) (1.16) | (1.20) (1.01) | (+0.23, +2.23)

ood 10 294 64.89 78.00 58.11 7213 | 78.00 82.19 | +5.63
(1.50) (1.48) (1.60) (1.15) (1.48) (115) | (+1.46,+9.8)

ood 50 236 89.86 85.65 83.46 84.53 | 89.86 92.36 | +2.87
(0.97) (1.42) 1.21) (1.07) ! (0.97) (0.78) | (+0.78, +4.96)

ood 100 211 91.10 86.76 83.66 84.01 : 91.10 92.95 : +2.33
(1.07) (1.21) (1.28) (1.04) (1.07) (0.86) | (+0.67, +4.0)

ood 200 156 93.11 90.19 85.30 88.40 | 93.11 94.30 | +1.21
(0.99) (1.46) (1.41) (1.06) | (0.99) 0.94) | (-0.25,+2.68)
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instance, in Table 12, "Univision Receivables Co"
is misclassified, but the LLM-judge assigns a low
factual consistency score, correctly identifying that
this entity is not a known broadcasting company.
Similarly, product extractions frequently contain



Table 7: FARA Performance metrics for various training set sizes (Train) and distribution folds (Dist). The reported
F1 scores are F1-scores averaged across all fields and are accompanied by their corresponding standard errors in
parentheses. Additionally, the paired difference between our model and the best-performing model is presented,
along with the 95% confidence interval enclosed in parentheses.

Dist #Train #Test F1LILT F1GPT FI1LMv3 F1STE F1Best F1PM3-KIE Paired Diff

(std. error) (std. error) (std. error) (std. error) (std. error) (std. error) (conf. interval)

id 10 300 72.13 90.39 49.71 90.84 | 90.87 91.90 | +1.56
(1.45) 0.91) (1.53) (0.89) ! (0.86) 0.84) | (+0.6, +2.52)
id 50 300 85.83 93.13 70.04 91.82 | 93.13 94.58 | +1.68
(1.16) (0.85) (1.49) 0.82) | (0.85) (0.7) | (+0.8,+2.56)
id 100 300 89.02 93.55 76.84 93.07 | 93.79 95.56 | +2.03
(1.03) 0.8) (1.47) 0.8) | 0.75) 0.64) | (+1.18, +2.89)
id 200 300 89.98 94.50 81.23 94.64 | 94.86 95.86 | +1.26
0.97) (0.69) (1.28) (0.67) | (0.66) (0.6) | (+0.53, +1.98)
ood 10 300 60.18 91.34 38.66 90.87 } 91.64 92.40 } +0.96
(1.37) (0.86) (1.19) 0.87) | (0.85) (0.81) | (+0.21,+1.72)
ood 50 300 75.04 94.16 46.87 9337 | 94.16 94.74 | +0.77
(1.37) 0.81) (1.23) 0.8) 1 0.81) 0.72) | (+0.03, +1.58)
ood 100 300 78.60 94.53 4921 9449 | 9477 95.50 | +0.84
(1.22) 0.74) (1.19) 0.69) | 0.7) 0.63) | (+0.18,+1.50)
ood 200 300 78.05 95.46 53.65 9582 ,  95.82 96.19 | +0.41
(1.24) (0.62) (1.27) 0.59) | (0.59) (0.56) | (+0.1, 40.91)

Table 8: FARA dataset results: Mean F1-scores, Hit-rate
and Accuracy per Field and per Document are averaged
over 24 models

F1 Hit F1 Doc Lv.
Model per Field per Doc per Doc Acc.
LILT 78.60 83.46 77.82 42.40
LMv3 58.27 67.27 57.39 15.88
GPT3.5 93.38 96.12 93.15 81.60
Stacked 93.12 93.52 92.48 71.11

_BestModel 9363 _ 9545 9328 7897

PM3-KIE 94.59 96.50 94.47 82.92

Table 9: DeepForm dataset results: Mean F1-scores,

Hit-rate and Accuracy per Field and per Document are

averaged over 24 models

Table 10: Ablation study results on FARA. Difference

F1 Hit F1 Doc Lv. in F1 for the basic PM3-KIE model compared to the
Model per Field per Doc per Doc Acc. .
adapted model version.

LILT 88.24 87.40 86.85 48.84

16}11\341\"/33 5 g;gg ggili(l) ;232 g;‘g’g Ablation F1Field HitDoc F1 Doc Acc

Stacked 84.64  79.15  83.13  19.03 PM3KIE S 94.59 9650 9447 8292

Best Model 90.22 89.86 88.83  53.55 + Token Task 005 -007  -006 -039
*************************** - Constraints -0.14 -0.26 -0.22  -1.09

PM3-KIE 9247 92.28 o167 62.38 - fact & format judges -0.39 -0.53 -0.46  -2.35

semantic errors, where generic terms (e.g., "Esti-
mate #") or unrelated names (e.g., "BRABENDER,
LIZ") are extracted instead of valid campaign-
related products. In all cases, the LLM-judge not
only flags these issues with a low score but also
provides a plausible explanation for the misclassifi-
cation.
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Document ID Label Correct PM3KIE | Wrong LXML Pred. |Score Reason

Pred.
462499-wbz- agency MENTZER MEDIA | 1170 SOLDIERS [ 0.0 |’Appears to be an address, not an agency.’
nrcc-richard-tisei- SERVICES FIELD ROAD,
housemacd6-ord58654-
fed.pdf
463974-kovr-nrec-r- advertiser | NATIONAL REPUB-| NATIONAL ME-| 0.3 | Focuses on media research, not direct advertising.’
multi-ord33720-fed- LICAN CONGRES-| DIA RESEARCH
natl-contract.pdf SIONAL COMM. PLANNING
493496-315597-up- product OFA Sked B 10.23-11.6 | Estimate 0.0 | "Estimate " is too generic to be a campaign product.’
obama-10-30-12-
13516185156783-
—pdf.pdf
94007-103012- product Political Federal Candi-| BRABENDER, LIZ 0.2 | ’A personal name, not a campaign product.’
murphy-invoice-3- date (1067)
13516266235434-
—pdf.pdf
6a7ef626-8d94-b4bf- | property KABE Univision Receivables | 0.2 |’Appears to be a financial entity, not a media property.’
0a92-26356a8fef15.pdf CoLLC
6¢195cac-5318- agency Waterfront Strategies | Strategies 0.6 |’"Strategies" is too generic to confirm as an agency.’
£53-9699-
5da7026ba63e.pdf
a60f1b87-bc56- advertiser | MIKE BLOOMBERG | The Valley’s Choice for | 0.2 | ’More like a news outlet than an advertiser.”
a8e2-5899- 2020 INC Local News!
£33824e0618a.pdf
aa7e85a5-922d-a0fe- | product Issue 13 0.0 |’"13" lacks context to be a campaign product.’
lae7-167e6f839d5¢c.pdf
36cdd72e-8e53-2f4d- | advertiser | Knute for Congress Congress 0.2 | ’"Congress" is too vague for an advertiser.”
Taaa-e646a0a87acc.pdf

Table 11: Semantic errors: Shows errors made by the
LXML model, along with the factual LLM-judge score
for the incorrect prediction and the correct PM3KIE
prediction.
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Document ID Label Correct PM3KIE | Wrong LXML Pred. |Score Reason

Pred.
494007-103012- tv_address | P.O.Box 640132 Pitts-| P.O.Box 640132 0.3 | "Missing city, postal code, and country.’
murphy-invoice-3- burgh, PA 15264-0132
13516266235434-
—pdf.pdf
6d885030-9db6- tv_address | 1940 Zanker Road San | 1940 Zanker Road 0.5 | ’City and postal code are missing.’
64c0-1601- Jose, CA 95112
3e0ce1525b6¢.pdf
e0f80dc6-ea62- tv_address |1414 N. Memorial | 1414 N. Memorial Park-| 0.6 | ’Postal code is missing.’
babb-44b7- Parkway Huntsville, AL | way
9b71546f2618.pdf 35801
109d2451- tv_address | PO Box 1212 Augusta,| PO Box 1212 0.3 | ’Incomplete without city and postal code.’
a80d-fdab-9f98- GA 30903
e0bdf2d42895.pdf
078b984c-7349- product Candidate (WV)1C-410 0.1 |’Not clearly a campaign product.’
8b2c-eac4-
32517a7aclbe.pdf
130d63b8-d072- tv_address | 1960 Union Avenue | 1960 Union Avenue 0.5 | ’Postal code is missing.’
a734-189%a- Memphis, TN 38104
807e0500a7d0.pdf
15262983-7227- tv_address | PO Box 206270 Dallas, | PO Box 206270 0.2 | ’Missing city and postal code.’
Sabf-803b- TX 75320-6270
1089dfad4494.pdf
1£279e59-7876- tv_address | 524 West 57th Street|524 West 57th Street | 0.6 | ’Postal code is missing.’
b9e2-5a37- New York, NY 10019 | New York, NY
73c¢702d12541.pdf
23a5de85-3f4d- tv_address | 7616 Channel 16 Way | 7616 Channel 16 Way | 0.5 | ’Postal code is missing.’
€735-92c2- Jackson, MS 39209 Jackson, MS
2029e4121878.pdf
271ea37f-e7a4- tv_address 4625 S. 33rd Place | 4625 S. 33rd Place 0.5 | City and postal code are missing.’
3802-d855- Phoenix, AZ 85040
8784c3cb74d3.pdf
34e3acdc-2c6b-1d50- | tv_address | 1965 S 4th Ave Yuma,| 1965 S 4th Ave 0.4 | ’Missing city and postal code.’
ebc1-973d2ff6ca09.pdf AZ 85364
3bbc5269-ccf6-3f6b- | tv_address | PO Box 206270 Dallas, | PO Box 206270 0.2 | ’Missing city and postal code.’
6aaf-1c61a646535¢.pdf TX 75320-6270
416294-collect-files- | tv_address | 1100 Fairfield Dr West | 1100 Fairfield Dr 0.5 | ’Postal code is missing.’
52527-political-file- Palm Beach, FL 33407
2012-non.pdf
44¢e4266-07d0- tv_address |285 N. Foster St.| 285 N. Foster St. 0.5 | ’City and postal code are missing.’
0602-4c2c- Dothan, AL 36303
9077117bea05.pdf
493546-warren-for- tv_address |7 Bulfinch Place Boston, | 7 0.0 | ’Incomplete, missing essential components.’
senate-est-12911-10- MA 02114-2977
26-12-10-28-12.pdf
50e20ed6-1232- tv_address | 1090 KNUTSON AV-| 1090 KNUTSON AV-|0.7 |’Postal code is missing.’
4272-a28a- ENUE MEDFORD, OR | ENUE MEDFORD, OR
4632d68679fc.pdf 97504
6a7ef626-8d94-b4bf- | tv_address | 5801 Truxtun Avenue | 5801 Truxtun Avenue |0.5 |’City and postal code are missing.’
0a92-26356a8fef15.pdf Bakersfield, CA 93309
dbd3ea93-ad44a-4c42- |tv_address |Lockbox 742923 At-|30374-2923 0.2 | ’Appears to be a postal code, not an address.’
df97-c4cfb6e33453.pdf lanta, GA 30374-2923
8dfa0ca9-2457- flight_to /09/20 109/ 0.0 | ’Incomplete date format.”
2309-3clc-
8301cab6a6d14.pdf

Table 12: Semantic errors: Shows errors made by the
LXML model, along with the factual LLM-judge score
for the incorrect prediction and the correct PM3KIE

prediction.
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G Additional Software and Licenses

Table 13 lists all first-level import python packages
used to perform the experiments described in this
work.

Table 13: Software Packages and Their Licenses

Name Version License
python 3.10.14  PSF License
editdistance 3.10.14  MIT License
datasets 2.19.0  Apache Software License
pandas 2.2.3 BSD License
scikit-learn 1.5.1 BSD License
tqdm 4.66.4 MIT License; MPL 2.0
pydantic 2.8.2 MIT License
pydantic_core 2.20.1  MIT License
transformers 4.40.1 Apache Software License
numpy 1.26.4 BSD License
torch 2.3.0 BSD License
pillow 10.3.0 HPND
llama-index 0.10.52  MIT License
tiktoken 0.7.0  MIT License
nltk 3.8.1 Apache Software License
pdf2image 1.17.0  MIT License
dataclasses-json 0.6.7 MIT License
mlflow 2.12.2  Apache Software License
plotly 5.22.0 MIT License
matplotlib 3.9.0 Python SF License
scipy 1.13.0 BSD License

H Dataset

H.1 VRDU Dataset and Evaluation

We utilized the VRDU dataset with the two corpora
FARA and DeepForm and an evaluation frame-

work implementation provided by Wang et al.
(2023b)."3.

H.2 Annotation and Evaluation Corrections

To reduce spurious matching errors during eval-
uation, we employed the field-specific matching
functions available for the dataset'* to normalize
values, such as standardizing date formats. In addi-
tion to the existing functions, we introduced three
additional matching strategies to address inconsis-
tencies in the dataset:

* GeneralCaselnsensitiveStringMatch:
Strings are considered equivalent if their
lowercase representations match.

 IgnorePropertySuffixStringMatch:  Ac-
counts for inconsistent annotations of prop-
erties (e.g., with or without the suffix "remit
to"). Strings are matched after removing the
phrase "remit to" and redundant whitespace.

Bhittps://github.com/google-research-datasets/vrdu
14https ://github.com/google-research/
google-research/tree/master/vrdu

* IgnoreLeadingTrailingNumbersStringMatch:
Handles inconsistent annotations for products
and agencies where numeric prefixes or
suffixes (including those in brackets) may
or may not be present. Strings are matched
after removing leading or trailing numeric
sequences and redundant whitespace.

Several annotations in the VRDU dataset were
incorrect, incomplete, or missing, particularly for
dates and address elements. For instance, dates
were often missing complete year information, and
address components were inconsistently annotated.
Table 14 lists the corrections we introduced. Both
the corrected annotations and the original dataset
annotations were considered valid during evalua-
tion.

I LLM as a Judge

We use the gpt4o mini model (OpenAl, 2023),
chosen for its cost-effectiveness and reliable perfor-
mance. For both LLMs, we designed one prompt
per field type. These prompts were automatically
generated for each field type using the following
prompt templates for format checking (see Listing
4) and for fact checking (see Listing 5), requiring
only minor adjustments afterward.
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Listing 4: Meta-Prompt for Generating Format Correctness Prompts

I have a corpus of invoices for political advertisement from tv channels, where information should be extracted.
The following set of information should be extracted:

advertiser

agency

channel

contract_num

flight_from

flight_to

gross_amount

product

program_desc

program_end_date

program_start_date

property

sub_amount

tv_address

I want to verify the format of each of these information using a prompt.

Please generate a prompt for every information in the style of this prompt for the tv-adress and
add it to this json-file:

format_correctness_prompts = {
"tv_address": "You receive addresses that require validation. For each address:

Verify Address Completeness:

Ensure the address includes all essential components: street, city, postal code, and country.
Check for Consistency: Identify any inconsistencies , errors,

or missing elements within the address components.

Confidence Score:
Based on your evaluation, provide a confidence score from 0 to I,
reflecting how likely it is that the address is in a correct and complete format.

Output Format (CSV):

score; justification

<numerical score (0 to 1)>; '<Short explanation of the score, highlighting
specific aspects of the address that support or detract from its
completeness and correctness.'>"}
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Table 14: List of Documents with the field types and corrected values, that are added to the VRDU ground truth for
evaluation

Document Field Type Field Value
b0ae0954-274a-270-797c-76224b78b8ee.pdf  agency Del Ray Media
89b8c007-4189-bfa6-e0a5-fe1d173edf92.pdf flight_from 05/27/20
89b8c007-4189-bfa6-e0a5-feld173edf92.pdf flight_to 05/31/20

42adf390-6e50-6fbc-tbbe-65117alftfcb2.pdf gross_amount  $500.00
143af697-c6f9-a36e-d43f-1a92e800ffeb.pdf flight_from 07/01/20

143af697-c6f9-a36e-d43f-1a92e800ffeb.pdf flight_to 07/07/20
14632210-11d9-a184-e3db-b1b219f52ca8.pdf  flight_from 06/02/20
14632210-11d9-a184-e3db-b1b219f52ca8.pdf  flight_to 06/08/20
48845b9d-9e1b-a9¢8-d560-58d35d2b31b2.pdf  flight_from 01/01/20
48845b9d-9e1b-a9e8-d560-58d35d2b31b2.pdf  flight_to 01/08/20
45£3875f-2b24-42fe-ddb4-fa203f4eec30.pdf flight_from 01/22/20
45£3875t-2b24-42fe-ddb4-fa203f4eec30.pdf flight_to 02/05/20
4cc700a3-6¢b8-b791-2428-890e7fb7cf2a.pdf flight_from 10/06/20
4cc700a3-6cb8-b791-2428-890e7fb7cf2a.pdf flight_to 10/12/20
64243566-745a-3edd-224b-542129a844a6.pdf  flight_from Aprl6/20
64243566-745a-3edd-224b-542129a844a6.pdf  flight_to Apr22/20
64243566-745a-3edd-224b-542129a844a6.pdf  product POLITICIAL
7b9c8208-d2be-2a81-8al5-215a9a5a26e8.pdf  flight_from Feb15/20
7b69¢8208-d2be-2a81-8al5-215a9a5a26e8.pdf  flight_to Feb21/20
7b9c8208-d2be-2a81-8a15-215a9a5a26e8.pdf  product BLOOMBERG 4 PRES
dbd4ed2d-11f1-ba35-cc98-43127897504a.pdf  flight_from Jun05/20
dbd4ed2d-11f1-ba35-cc98-43127897504a.pdf  flight_to Jun19/20
dbd4ed2d-11f1-ba35-cc98-43127897504a.pdf  product OWENS FOR CON UT04
0be55a7b-c4b9-7956-d523-30f79a4ebcla.pdf  flight_from 1/27/2020
Obe55a7b-c4b9-7956-d523-30f79a4ebcla.pdf  flight_to 2/23/2020
4b330586-f3e8-28ea-b0cc-2d060dc10622.pdf  flight_from 4/27/2020
4b330586-f3e8-28ea-b0cc-2d060dc10622.pdf  flight_to 5/31/2020
38alec3a-18bd-0b73-1155-b6ced503f7al.pdf  flight from 1/27/2020
38alec3a-18bd-0b73-1155-b6ced503f7al.pdf  flight_to 2/23/2020
clede720-d1{9-dcb4-e56f-65bf46300e84.pdf flight_from 02/11/20
clede720-d1f9-dcb4-e56f-65bf46300e84.pdf flight_to 02/17/20
cda5811d-3cf3-9¢50-0941-28094bf9880f. pdf flight_from 01/01/20
cda5811d-3cf3-9¢50-0941-28094bf9880f.pdf flight_to 01/08/20

b009ea0d-d54e-7410-320d-2dc99dbc8c09.pdf  tv_address PO BOX 206270 Dallas, TX 75320-6270
b009ea0d-d54e-7410-320d-2dc99dbc8c09.pdf  flight_from 2/1/2020
b009ea0d-d54e-7410-320d-2dc99dbc8c09.pdf  flight_to 2/29/2020
a5a37afc-bbf5-db26-bd19-a71feelae67a.pdf flight_from 05/06/20
88fa6e33-408f-6ac2-a253-d30e32bce302.pdf flight_from 03/31/20

88fa6e33-408f-6ac2-a253-d30e32bce302.pdf flight_to 04/05/20
80ff3aad-3617-496e-fc29-cf9fdbecc54d.pdf flight_from 04/29/20
80ff3aa4-3617-496e-fc29-cf9fdbecc54d.pdf flight_to 05/05/20
65ebbb18-8a01-357a-94ce-bfal6723822e.pdf  flight_from 06/09/20
65ebbb18-8a01-357a-94ce-bfal6723822e.pdf  flight_to 06/15/20
64780ed0-180c-a77b-bfe0-478c2a48a3a0.pdf  flight_from 05/19/20
64780ed0-180c-a77b-bfe0-478c2a48a3a0.pdf  flight_to 05/22/20

73badb45-b62c-0c2e-1a2f-4b5fb4fdaSb9.pdf tv_address 6301 Bandel Road NW ROCHESTER Rochester,
MN 55901-8798
73badb45-b62c-0c2e-1a2f-4b5fb4fda5b9.pdf flight_from 10/06/20

73badb45-b62c-0c2e-1a2f-4b5fb4fdas5b9.pdf flight_to 10/12/20
685a2568-66ec-e3e0-27a1-78b56402b8cb.pdf  flight_from 09/15/20
685a2568-66ec-e3e0-27a1-78b56402b8cb.pdf  flight_to 09/21/20
2437f486-c8f2-72ad-1c75-4d45eedd57d2.pdf  flight_from 05/05/20
2437f486-c8f2-72ad-1c75-4d45eedd57d2.pdf  flight to 05/05/20
c1£3f40£-9003-6d17-9d92-17d62836f017.pdf flight_from 04/06/20
c1£3f40£-9003-6d17-9d92-17d62836f017.pdf flight_to 04/13/20
35b3207f-bd16-d173-09a5-570acac710b2.pdf  flight_from 03/30/20
35b3207f-bd16-d173-09a5-570acac710b2.pdf  flight_to 04/06/20
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Listing 5: Meta-Prompt for Generating Factual Correctness Prompts with JSON Output

I have a corpus of invoices for political advertisements from TV channels,
where information should be extracted. The following set of information
should be extracted:

advertiser

agency

channel

contract_num

flight_from

flight_to

gross_amount

product

program_desc

program_end_date

program_start_date

property

sub_amount

tv_address

I want to verify the factual correctness of each of these information using
a prompt. Please generate a prompt for every information in the style of
this prompt for the tv—-address and add it to this JSON file:

factual_correctness_prompts = {
"tv_address": "You will evaluate addresses to determine if they are
likely to be the official locations of a TV channel or broadcasting
company. For each address:

Assess Suitability: Evaluate whether the address could realistically
serve as a media or broadcasting location. Consider factors such as
the presence of corporate offices, proximity to media hubs, or known
broadcasting facilities that would support its use as a TV channel address.

Provide a Confidence Score: Based on this assessment, assign a confidence
score from O to 1, reflecting how likely it is that the string is a valid
location for a TV channel.

Output Format (CSV):

score; justification

<numerical score (0 to 1)>; '<Short explanation of the score, highlighting
specific aspects of the address that support or detract from its
completeness and correctness.'>"
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