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Abstract

Large language models (LLMs) have signifi-
cantly advanced human language understand-
ing and generation, with pretraining data qual-
ity and organization being crucial to their per-
formance. Multi-stage pretraining is a promis-
ing approach, but existing methods often lack
quantitative criteria for data partitioning and in-
stead rely on intuitive heuristics. In this paper,
we propose the novel Four-quadRAnt Multi-
stage prEtraining strategy (FRAME), guided by
the established principle of organizing the pre-
training process into four stages to achieve sig-
nificant loss reductions four times. This princi-
ple is grounded in two key findings: first, train-
ing on high Perplexity (PPL) data followed by
low PPL data, and second, training on low PPL
difference (PD) data followed by high PD data,
both causing the loss to drop significantly twice
and performance enhancements. By partition-
ing data into four quadrants and strategically
organizing them, FRAME achieves a remark-
able 16.8% average improvement over random
across MMLU and CMMLU for the 3B model,
effectively boosting LLM performance.

1 Introduction

LLMs have significantly advanced human language
understanding and generation (Touvron et al., 2023;
Dubey et al., 2024; Islam and Moushi, 2024). The
quality and organization of pretraining data are
crucial as they directly impact LLM performance.
Studies show that LLMs require different data at
various pretraining stages (Yu et al., 2024), offering
key insights for developing more efficient pretrain-
ing data organization strategies.

Recent studies partition the pretraining process
into multiple stages, allowing models to learn from
data with distinct characteristics at each stage,
which enhances pretraining efficiency(Liu et al.,
2021a; Yıldız et al., 2024; Anonymous, 2025). For
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(a) Accuracy on MMLU.
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(b) Accuracy on CMMLU.
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(c) Accuracy on CEVAL.
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(d) Accuracy on average.

Figure 1: Few-shot downstream performance on various
benchmarks with respect to pretraining iterations, for 3B
models trained on 1T tokens. The average performance
is based on 8 downstream tasks. FRAME achieves
15.3% improvement over Random across MMLU, and
18.2% on CMMLU.

instance, MSP introduces specific tasks and data
at each phase, allowing models to learn language
structures and semantics from simple to complex
progressively (Liu et al., 2021a). However, these
methods don’t provide quantitative criteria for par-
titioning data across stages, often relying on in-
tuitive heuristics. The limitation underscores the
need for more systematic approaches to optimize
multi-stage pretraining.

In this paper, we propose a novel Four-
quadRAnt Multi-stage prEtraining strategy
(FRAME) to boost LLMs’ performance. This
strategy is systematically guided by the principle
of organizing the pretraining process into four
stages to achieve significant loss drops four times.
The principle is derived from two key findings
based on quantifiable data metrics.

Specifically, we intuitively use the metric Per-
plexity (PPL) to partition the data into two parts:
high PPL and low PPL. Our first key finding reveals
that training on high PPL data first, followed by low
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Figure 2: The overall framework of FRAME.

PPL data, leads to the loss dropping significantly
twice and boosts model performance. Inspired by
PDPC (Zhang et al., 2025), we also introduce the
PPL difference (PD) between strong and weak mod-
els as another metric for data partitioning. Our sec-
ond key finding shows that training on low PD data
first, followed by high PD data, similarly causes the
pretraining loss to drop significantly twice, thereby
boosting model performance.

Based on these two major findings, we estab-
lish the principle of organizing the pretraining
process into four stages to achieve significant
loss reductions four times. Specifically, we parti-
tion the data into four quadrants based on PPL and
PD: Quadrant 1 (Q1) with low PD and low PPL,
Quadrant 2 (Q2) with high PD and low PPL, Quad-
rant 3 (Q3) with low PD and high PPL, and Quad-
rant 4 (Q4) with high PD and high PPL. Through
further analysis and experiments, we determine
that the optimal strategy is to reorganize the pre-
training data in the Q3 → Q4 → Q1 → Q2 se-
quence. To ensure smooth data transitions between
stages, we also implement a smoothing process
for gradual stage transitions. All data is processed
offline to ensure the continuity of model training
is not disrupted. Practical evidence shows that
FRAME results in loss dropping significantly four
times, enhances the models’ emergent abilities, and
boosts their performance. As shown in Figure 1,
FRAME achieves a significant average improve-
ment of 15.3% on MMLU and 18.2% on CMMLU
over random selection, respectively.

In summary, our contributions are as follows:
(1) We identify two key findings: first, training on
high PPL data followed by low PPL data, and sec-
ond, training on low PD data followed by high PD
data, both causing two significant loss reductions
and performance enhancements. (2) Guided by
the principle of continuous loss reduction, we pro-

pose FRAME, a novel strategy that partitions data
into four quadrants and organizes the pretraining
process into four stages, resulting in loss dropping
significantly four times and boosting model perfor-
mance. (3) Experiments on 3B model, trained on
1T tokens, demonstrate a 16.8% improvement over
uniform sampling in average performance across
MMLU and CMMLU.

2 Four Quadrant Multi-stage Pretraining
Strategy

In this section, we first evaluate the effectiveness
of PPL and PD as metrics for data organization in
two-stage training (Sections 2.1 and 2.2). Based
on these insights, we propose FRAME with both
metrics(Section 2.3), as shown in Figure 2.

2.1 Two-stage pretraining guided by PPL

Research has explored pre-determining the se-
quence of pretraining data points based on their
characteristics, which helps optimize models to
globally optimal solutions (Pattnaik et al., 2024; So-
viany et al., 2022). A critical aspect of this process
is selecting appropriate metrics to organize data
effectively, thereby minimizing training loss. Char-
acteristics for text data include length, rare word
frequency, and syntactic structure (Campos, 2021).
Although these heuristic methods seem reasonable
from a human cognitive perspective, they may not
necessarily align with the specific requirements of
the model. Thus, data characteristics should be
determined using metrics that are perceptible to
the model and align with the standards of the tar-
get tasks (Xu et al., 2020). In pretraining tasks,
PPL closely aligns with the self-supervised learn-
ing objective (language modeling) and effectively
evaluates model-data fit, making it an appropriate
metric for organizing data.

Experimental Setting We extract 500B tokens
from a bilingual dataset, with both English and Chi-
nese corpora 1. We train a 1.3B reference model
(RM) on the subset using a random sequence and
compute PPL of the subset using the RM. Based
on the median PPL of the dataset, we partition
the training data into two equal subsets: Alow

PPL
and Ahigh

PPL . The data within each subset is uni-
formly distributed. We conduct two-stage training
on the 3B model in the sequences Alow

PPL → Ahigh
PPL

and Ahigh
PPL → Alow

PPL, and compare the results with

1For the details of the dataset, please refer to Section 3.1
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Methods MMLU CMMLU

Random 24.8 25.6
Alow

PPL → Ahigh
PPL 26.0 26.0

Ahigh
PPL → Alow

PPL 39.6 42.6

Table 1: Accuracy on MMLU and CMMLU for two-
stage pretraining based on PPL with 3B models.

those from the random training model. We evaluate
model performance using MMLU(Hendrycks et al.,
2020) and CMMLU(Li et al., 2023).
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(a) PPL training loss.
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(b) PD training loss.

Figure 3: Two-stage pretraining losses based on PPL
and PD, respectively.

Results Figure 3a illustrates the changes in train-
ing loss over time. It is observed that training on
high PPL data followed by low PPL data results
in significant loss reductions occurring twice, ul-
timately achieving a lower loss level. Conversely,
the reverse setting maintains a higher loss, which
remains above that of the Random setting. Table 1
shows the model’s benchmark accuracy for the set-
tings Alow

PPL → Ahigh
PPL and Ahigh

PPL → Alow
PPL. Training

on high PPL data followed by low PPL data yields
significantly higher performance than random train-
ing. In contrast, in the Alow

PPL → Ahigh
PPL setting, the

model shows only slight improvement. This leads
to our first key finding: training first on high
PPL data followed by low PPL data can cause
the loss to drop significantly twice, ultimately
boosting model performance.

2.2 Two-stage pertaining guided by PD
Subsequent analysis (detailed in Section 3.4) re-
veals that relying solely on PPL as a metric presents
issues, as it is not stable across diverse data do-
mains. Inspired by PDPC (Zhang et al., 2025), PD
between strong and weak models can also reflect
the difficulty of samples for the models. Consider
two models, the weak model Mw and the strong
model Ms, both trained on an identical dataset D.
For any sample x, we calculate PD as follows:

PD(x) =
PPLMw(x)− PPLMs(x)

PPLMw(x)
(1)

Methods MMLU CMMLU

Random 24.8 25.6
Alow

PD → Ahigh
PD 26.9 27.2

Table 2: Accuracy on MMLU and CMMLU for two-
stage pretraining based on PD with 3B models.

where PPLMw(x) and PPLMs(x) are the per-
plexity of the sample x calculated using Mw and
Ms, respectively. A low PD indicates similar learn-
ing efficiency for both models, while a high PD
suggests the sample is more challenging for the
weak model.

If checkpoints from earlier and later training
stages of the same model are viewed as weak
and strong models (with the same parameters but
improved performance due to more data in later
stages), then data with low PD values pose similar
difficulty for both early and late stages, while data
with high PD values are more challenging for the
model’s early checkpoints. In light of the above
analysis, PD emerges as a model-aware difficulty
metric that is well-suited for organizing text data.

The distributions of PPL and PD on different
domains are analyzed in Appendix B.5, PD exhibits
a relatively consistent distribution across varied
domains, following a normal distribution with an
approximate mean value of 0.3. Compared to PPL,
PD offers a better advantage in maintaining data
diversity throughout each stage of training.

Experimental Setting We train a 100M parame-
ter RM and then calculate the PD for each sample
using both the 100M and 1.3B RMs, referred to
as PD(100M-1.3B). Using the median value of
PD across all data, we divide the training dataset
into two subsets with equal token counts: Alow

PD and
Ahigh

PD . Based on PDPC’s finding that a low-to-high
PD ordering achieves better results, we conduct a
two-stage training process with Alow

PD first, followed
by Ahigh

PD , and compare the results to the random
setting. We use the evaluation methods described
in Section 2.1.

Results Figure 3b shows the training loss
changes under the Alow

PD → Ahigh
PD setup. The loss

initially drops rapidly during the low PD phase,
then stabilizes, and decreases further with high PD
data, eventually falling below the Random model’s
loss. It suggests that the first phase sets a beneficial
optimization path for the second, helping avoid lo-
cal optima. Table 2 shows the model’s accuracy
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under the Alow
PD → Ahigh

PD setting. Notably, it ex-
ceeds the Random setting by 2.1% on MMLU and
1.6% on CMMLU, which validates PD as an ef-
fective metric. Further, this leads to our second
key finding: training first on low PD data fol-
lowed by high PD data can cause the loss to drop
significantly twice, ultimately boosting model
performance.

2.3 Four-Quadrant Guided Training Strategy

Inspired by the two key findings about PPL and
PD, we establish the principle of organizing pre-
training data to achieve significant reductions in
training loss. Based on this principle, we introduce
a novel Four quadRAnt Multi-stage prEtraining
strategy (FRAME), which uses PPL and PD to
partition data and reorganize the data sequence to
make the training loss drop significantly. The core
process of FRAME is shown in Algorithm 1.

Specifically, we train two RMs on the target train-
ing set D, with the strong model Ms having more
parameters than the weak model Mw. Both models
are trained on data from the same distribution and
under identical settings. We compute PPL using
Ms and PD using both Ms and Mw for each data
point in D. We use the two metrics to partition D
into four quadrants, as shown in Figure 4a. Our
main goal is to ensure that the token numbers of
the four quadrants are roughly equal. Therefore,
we first determine the PPL threshold to divide the
entire dataset into two parts with equal token num-
bers. Then, for both the high PPL and low PPL
parts, we separately find each of their respective
PD thresholds to further divide them into two sub-
parts with equal token numbers, resulting in four
quadrants. During the experiments, there are only
slight differences in the PD thresholds for the two
PPL subsets, and these dierences did not affect the
final experimental results.

The data from four quadrants can be described
as follows: Quadrant Q1 contains data that both
Ms and Mw can fit well; Quadrant Q2 contains
data that Ms learns well, but Mw struggles with.
Data from this subset is challenging and requires a
higher model capacity to understand them; Quad-
rant Q3 contains data poorly learned by both Ms

and Mw; Quadrant Q4 contains data poorly learned
by Ms and even worse by Mw.

Based on the two key findings about PPL and
PD, we should follow these constraints:

∀x ∈ Si, ∀y ∈ Si+1, PPL(x) ≥ PPL(y) (2)

Low
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(a) Four Quadrants.
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(b) Losses of four quadrants.

Figure 4: Four-quadrant partitioning and pretraining
losses of four quadrants.

∀x ∈ Si,∀y ∈ Si+1, PD(x) ≤ PD(y) (3)

where Si represents stage i of the training process.
Equation (2) ensures that the PPL of data in stage
i is not less than that in stage i + 1. Equation (3)
ensures that the PD of data in stage i is not greater
than that in stage i+ 1.

To efficiently organize data from the four quad-
rants while adhering to constraints, we use a
double-loop approach: first, dividing the training
into two main phases based on a specific constraint,
then further splitting each main phase into two
sub-phases according to another constraint. The
approach yields two distinct four-stage training
strategies: the first strategy follows the sequence
Q3 → Q4 → Q1 → Q2, while the second
adopts Q3 → Q1 → Q4 → Q2. Both strate-
gies break the constraints between the second and
third stages. However, experiments in Sections
2.1 and 2.2 show that the loss change from low to
high PPL is much greater than from high to low
PD. Thus, we prioritize the constraints in Equation
(2), making the first four-stage training strategy
Q3 → Q4 → Q1 → Q2 the better choice.

Formulation of FRAME with Stage Transition
As illustrated in Figure 6b, direct stage transitions
cause performance fluctuations. We aim to facili-
tate a smooth transition between stages.

We start by outlining the smoothing process
fmerge for two-stage training: given the need to
train on mixed data from two subsets D1 and D2,
let i be the current training step and m the total
number of training steps. The completion ratio is
defined as p = i

m . The sampled batch Bi should
satisfy the following condition:

Bi = {x | x ∼ D1}f(p)·N∪{x | x ∼ D2}(1−f(p))·N
(4)

where N represents the batch size, and f(p) de-
notes the proportion of samples from D1. Inspired
by PDPC (Zhang et al., 2025), we employ the S-
shape function as f(p):
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Algorithm 1 Ordered dataset construction via FRAME

1: Input: pretraining data D, batch size N , steepness a
2: Output: ordered dataset Sframe
3: function MERGEDATASETS(D1, D2, RandomSample)
4: Total training steps m← |D1|+|D2|

N
5: if RandomSample then
6: Randomly shuffle D1 and D2

7: end if
8: Initialize l← 0, r ← 0, Qmerged ← []
9: for i = 1 to m do

10: Calculate completion ratio p← i
m

11: Calculate proportion f(p)← 1
1+exp(a(p−0.5))

12: B1 ← D1[l : l + f(p)N ]
13: B2 ← D2[r : r + (1− f(p))N ]
14: Batch Bi = B1 ∪B2

15: l← l + f(p)N , r ← r + (1− f(p))N
16: Add all the samples in Bi to Qmerged
17: end for
18: return Qmerged
19: end function
20: Train RMs on i.i.d. subset of D
21: Calculate PPL and PD for all samples in D using RMs
22: Divide into 4 quadrants: Q1, Q2, Q3, Q4, based on PPL

and PD thresholds.
23: S34 ← MERGEDATASETS(Q3, Q4,True)
24: S12 ← MERGEDATASETS(Q1, Q2,True)
25: Sframe ← MERGEDATASETS(S34, S12, False)

f(p) =
1

1 + exp(a(p− 0.5))
(5)

where a controls the steepness of the curve. Unlike
PDPC, we merely utilize the S-shape function for
smoothing during stage transitions. Therefore, we
use a larger a = 35 instead of a = 10 as in PDPC,
to achieve a steeper function curve, as illustrated in
Appendix B.4.

In the four-stage training of FRAME, we ini-
tially obtain S34 = fmerge(Q3, Q4) and S12 =
fmerge(Q1, Q2). During this phase, samples are
randomly selected from the two data sources for
each batch. Subsequently, we construct Sframe =
fmerge(S34, S12). In this phase, samples must be
drawn in the original sequence of S12 and S34 to
maintain the order of Q3 → Q4 → Q1 → Q2.

Notably, FRAME only organizes the given data
without performing selection, which can serve as
the final data preprocessing step before pretraining,
without disrupting the continuity of training.

3 Experiments

3.1 Settings
Data Source For 3B models, our pretraining data
is derived from various domains, including books
(Gao et al., 2020), blogs (Baumgartner et al., 2020),
patents (Sharma et al., 2019), Common Crawl
(Penedo et al., 2024), and Wikipedia. It comprises
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Figure 5: Pretraining losses of main results. (a) Com-
parison of different methods. (b) Details of pretraining
loss. The marked numbers indicate the process of the
loss decreasing four times.

a total of 1T tokens, with 500B tokens each for
Chinese and English, akin to the Matrix dataset
(Zhang et al., 2024a). For 1.3B models, we ran-
domly select 100B tokens from the SlimPajama
dataset (Soboleva et al., 2023).

Pretraining Setting We train 100M and 1.3B
models on i.i.d subsets of the collected dataset,
comprising 500B tokens, to compute PPL and PD.
And we test on 3B models for the main experi-
ments, with a batch size of 640 and a context win-
dow length of 8192. The Adam optimizer is used
for training within the Megatron framework. In ad-
dition, we validate our approach on a 1.3B model,
employing the same configuration. More details
of model structure and training could be found in
Appendix B.1.

Baselines We compare FRAME with random
data sequence and PDPC (Zhang et al., 2025). In
addition we also validate on a 1.3B model, com-
paring it with other models based on PPL, PD, and
QuRating metrics. More details of baselines could
be found in Appendix B.1.

Evaluation For 1.3B models, we evaluate the
models’ performance on the following bench-
marks: ARC-E (Clark et al., 2018), ARC-C (Clark
et al., 2018), SciQ (Welbl et al., 2017), HellaSwag
(Zellers et al., 2019), and PIQA (Bisk et al., 2020).
For 3B models, we additionally use benchmarks in-
cluding MMLU (Hendrycks et al., 2020), CMMLU
(Li et al., 2023), BBH (Suzgun et al., 2022), and
CEVAL (Huang et al., 2023), covering more com-
plicated tasks. We apply in-context learning and
select examples based on task characteristics. Stan-
dard accuracy serves as the final metric for all tasks.

3.2 Main Results

Table 4 shows our experimental results. FRAME
significantly outperforms the Random baseline,
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Method Metric Order ARC-E ARC-C SciQ HellaSw. PIQA AVG.

- - Random 56.5 23.6 85.8 34.2 67.3 53.5

Sequential

PD High2Low 54.7 ↓1.8 21.8 ↓1.8 87.1 ↑1.3 33.7 ↓0.5 67.8 ↑0.5 53.0 ↓0.5

PD Low2High 56.1 ↓0.4 21.3 ↓2.3 86.2 ↑0.4 34.4 ↑0.2 67.6 ↓0.2 53.1 ↓0.4

PPL High2Low 45.5 ↓11.0 20.6 ↓3.0 71.2 ↓14.6 30.3 ↓3.9 63.7 ↓3.6 46.3 ↓7.2

PPL Low2High 47.8 ↓8.7 17.9 ↓5.7 72.7 ↓13.1 29.1 ↓5.1 62.4 ↓4.9 46.0 ↓7.5

Qu.Edu High2Low 57.2 ↑0.7 26.4 ↑2.8 85.4 ↓0.4 33.0 ↓1.2 66.2 ↓1.1 53.6 ↑0.1

Qu.Edu Low2High 56.8 ↑0.3 26.0 ↑2.4 84.1 ↓1.7 33.5 ↓0.7 67.9 ↑0.6 53.7 ↑0.2

Preference CL

PPL S.R. 56.1 ↓0.4 24.1 ↑0.5 87.8 ↑2.0 33.9 ↓0.3 67.4 ↑0.1 53.9 ↑0.4

PPL S. 56.1 ↓0.4 22.6 ↓1.0 85.5 ↓0.3 34.2 0.0
67.5 ↑0.2 53.2 ↓0.3

Qu.Edu S.R 56.7 ↑0.2 24.9 ↑1.3 86.2 ↑0.4 33.6 ↓0.6 66.9 ↓0.4 53.7 ↑0.2

Qu.Edu S. 55.5 ↓1.0 24.8 ↑1.2 87.8 ↑2.0 34.0 ↑0.2 67.4 ↑0.1 53.9 ↑0.4

PD S.R. 56.7 ↑0.2 24.9 ↑1.3 86.2 ↑0.4 33.6 ↓0.6 67.4 ↑0.1 53.8 ↑0.3

PDPC PD S. 57.3 ↑0.8 26.6 ↑3.0 87.9 ↑2.1 33.7 ↓0.5 68.0 ↑0.7 54.7 ↑1.2

FRAME PPL&PD - 62.9 ↑6.4 26.5 ↑2.9 90.5 ↑4.7 38.4 ↑4.2 69.6 ↑2.3 57.6 ↑4.1

Table 3: Downstream tasks results for different settings on 1.3B models. We report accuracy for each task, and
the best performances are marked in bold. Abbreviations: AVG. = Average, S.=S-shape Function, S.R.=S-shape
Reverse Function.

Method MMLU CMMLU CEVAL BBH ARC-E ARC-C HellaSw. PIQA AVG.

Random 27.7 27.5 27.2 27.9 68.6 33.7 49.4 76.0 42.3

PDPC 35.8 ↑8.1 35.6 ↑8.1 36.1 ↑8.9 25.7 ↓2.2 69.7 ↑1.1 35.8 ↑2.1 49.9 ↑0.5 76.3 ↑0.3 45.6 ↑3.3

Q3 → Q1 → Q4 99K Q2 25.8 ↓1.9 26.4 ↓1.1 25.5 ↓1.6 28.9 ↑1.0 68.3 ↓0.3 35.2 ↑1.5 48.3 ↓1.1 75.4 ↓0.6 41.7 ↓0.6

FRAME 43.0 ↑15.3 45.7 ↑18.2 44.0 ↑16.8 27.9 0.0 71.0 ↑2.4 36.5 ↑2.8 50.2 ↑0.8 76.9 ↑0.9 49.4 ↑6.1

Table 4: Results of downstream tasks for different methods using 3B models on 1T tokens. "99K" indicates that the
model’s accuracy has significantly decreased before reaching this stage, so we stopped at the third stage.

with a 6.1% improvement in average performance.
For specific tasks, it achieves notable gains of
15.3% on MMLU and 18.2% on CMMLU. For the
1.3B model, as illustrated in Table 3, FRAME also
surpasses all the baselines, with 4.1% improvement
in average, and a maximum of 6.4% gain in a single
task. These findings validate the effectiveness of
FRAME. Moreover, in our experiments with the
1.3B and 3B models, distinct pretraining datasets
are utilized for each model. Notably, FRAME con-
sistently yield substantial performance gains across
all evaluated benchmarks. These results highlight
the robustness and generalizability of our method,
demonstrating its effectiveness across varying data
sources and model architectures.

Figure 1 shows the model’s benchmark perfor-
mance over training steps. The model remains
stable initially, with a significant performance in-
crease after 90K steps. Figure 5 illustrates the
training loss, showing four declines that align with
benchmark performance improvements. This con-

firms the strong link between training loss and
benchmark performance: when training stages are
equally divided, lower training loss results in bet-
ter performance. Additionally, FRAME effectively
enhances the model’s emergent capabilities, allow-
ing it to acquire foundational skills quickly and
better understand data patterns in later stages, im-
proving overall performance. Through the loss
smoothness analysis in Appendix B.7, we found
that the loss curve of FRAME has the lowest high-
frequency energy proportion of only 0.02%, signif-
icantly lower than Random and PDPC. This indi-
cates that FRAME can make the model converge
more stably and reduce the impact of gradient fluc-
tuations during training.

We find that the Q3 → Q4 → Q1 → Q2 strat-
egy significantly outperforms the Q3 → Q1 →
Q4 → Q2 strategy, with the latter showing a per-
formance decline in the third stage. This supports
our argument that prioritizing the PPL dimension
over the PD dimension is beneficial.
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Figure 6: Ablation studies of different combinations.

3.3 Ablation Study
We investigate the differential effects of data from
distinct quadrants and to characterize their intrin-
sic properties. Figure 4b presents the training loss
trajectories across different quadrants. The results
demonstrate a significant disparity in loss magni-
tude, with high PPL data (Q3 and Q4) exhibiting
substantially greater loss values compared to their
low PPL counterparts (Q1 and Q2). Furthermore,
under equivalent PPL conditions, data with higher
PD (Q2 and Q4) consistently enabled the model to
converge to lower final loss values than data with
lower PD (Q1 and Q3). Notably, our analysis re-
veals that PPL exerts a more substantial influence
on training loss than PD.

Furthermore, we could observe a slower conver-
gence rate when training on high PD data. This
phenomenon can be attributed to the difficulty of
high PD samples, which are particularly challeng-
ing for the model in the early stage of training when
its capacity is still limited. However, as training
progresses, the model’s capabilities gradually im-
prove. Since the weak and strong models fit low
PD data similarly, even as the model enhances, the
training loss will not further decrease, leading to
faster convergence. On the other hand, high PD
data, with the improvement of model abilities, can
further guide the model to learn new features and
continue reducing training loss.

From the perspective of four quadrants, do the
conclusions of Sections 2.1 and 2.2 still hold? We
test various quadrant combinations and find that:

Training first on high PPL data followed by low
PPL data proves to be a superior strategy Fig-
ure 6a illustrates the outcomes for each combina-
tion. We see a significant performance boost when
transitioning from larger PPL data to smaller ones
Q3 → Q1. However, moving in the opposite di-
rection Q1 → Q3 and Q2 → Q4 causes a certain
degree of accuracy drop, regardless of whether PD
is large or small. Over a longer training period,
moving from Q1 → Q2 to Q4 also results in a
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Figure 7: Human intuitive quality metric distribution.

performance decline.

Starting with low PD data followed by high
PD data is more effective As shown in Figure
6b, when PD increases (Q3 → Q4, Q1 → Q2,
and Q3 → Q2), the model performs better on
the benchmark. Furthermore, in a longer train-
ing phase, transitioning from Q3 → Q1 → Q2 can
further enhance the model’s performance.

In addition, the Q3 → Q1 → Q2 setup, where
fmerge is not applied, shows a performance drop
between the second and third stages. This suggests
that fmerge is necessary. More results can be found
in Appendix B.8.

3.4 Analysis

Data in Quadrants Without Inherent Human
Intuitive Cognition Favorability We investigate
the characteristics of data within the four quadrants
by extracting 1,000 samples from each and ana-
lyzing their quality using four raters from QuRat-
ing. As shown in Figure 7, the quality distribu-
tions are similar across all dimensions for samples
from each quadrant, which suggests that model-
perceived measures like PPL and PD don’t signifi-
cantly correlate with human cognition-based mea-
sures, such as knowledge, quality, and diversity.
FRAME maintains consistent data quality through-
out the training process, preventing the model from
focusing solely on low-quality data at any stage.

PPL and PD Distribution We extract 70K sam-
ples from 7 domains within our training dataset,
covering areas such as Arxiv, Law, Code, and Math.
Using the 1.3B reference model, we calculate the
PPL of all samples and present the PPL distribu-
tions in Figure 12. Significant differences are ob-
served across various domains, with mean values
ranging from 5 to 22 and varying degrees of vari-
ance. Data from domains such as Wikipedia typi-
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Figure 8: Data distribution across different sources.

cally exhibit lower PPL, whereas data from Reddit
show higher PPL. This implies that sorting data by
PPL could cause obvious shifts in domain repre-
sentation between initial and later training stages,
potentially exposing the model to overly homoge-
neous data during each training stage. Sachdeva
et al. (2024) highlight that data diversity enhances
model performance, and an uneven distribution
may lead to a decline in performance.

We calculate the PD of the sampled data from
the 100M and 1.3B reference models and visualize
its distribution across various sources, as shown in
Figure 13. We find that the PD distribution is quite
similar across different sources. This similarity im-
plies that using PD as a metric for data partitioning
allows each training phase to include data from
various sources, ensuring data diversity through-
out the training process and thereby maintaining
pretraining efficiency.

Data Distribution of the Four Quadrants We
extract 1 million samples from each of the four
quadrant distributions and visualize them, as shown
in Figure 8. We observe that each quadrant contains
data from a wide range of sources, indicating that
FRAME effectively ensures data diversity through-
out the training process. Notably, there are distinct
differences among the quadrants. For instance,
Q2 contains a large number of domain-specific
datasets such as Wikipedia, and StackExchange.
This aligns with common cognitive understanding,
as these datasets may feature more complex sen-
tence structures and terminology, which large mod-
els can learn effectively while small models may
struggle to master, thus suitable for learning in the
later stages of training. This also explains the ex-
cellent performance in knowledge-intensive tasks,
as the texts in Wikipedia contain a wealth of factual
knowledge. Additionally, the data distribution in
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Q3 is relatively balanced, which is advantageous
for the initial training phase. Presenting data from
Q3 at the beginning of the training process allows
the model to learn from sufficiently diverse data,
thereby establishing a strong foundation for subse-
quent learning stages.

Semantic Properties Analysis To assess distinct
semantic properties within each quadrant’s data,
we randomly select 1K samples from each quad-
rant and devise 10 language-text related traits for
GPT-4o evaluation. For simplicity and precision,
all traits are formulated as yes-or-no questions, and
we calculate the percentage of samples meeting
each trait’s criteria. Details of all traits are listed in
Appendix C. As shown in Figure 9, the data across
all four quadrants exhibit similar semantic proper-
ties. In addition, we use T5 (Raffel et al., 2023) to
obtain dense vectors of the samples and perform
dimensionality reduction using t-SNE, as shown
in Figure 10. We could observe that the data in
the four quadrants do not have obvious distinctions
at the semantic level. This indicates no obvious
difference in the semantic distribution of data be-
tween the initial and later training stages, ensuring
a diverse range of data is consistently encountered
throughout the training process, and avoiding the
collapse of the model into a certain preference,
thereby damaging generalization performance.
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4 Related Works

Multi-stage pretraining has emerged as a pivotal
strategy in the development of LLMs, enabling
models to better capture and utilize diverse data
characteristics by dividing the training process into
distinct phases(Pavlova, 2025; Zhao et al., 2024;
Liu et al., 2021b; Tan et al., 2022). Liu et al.
(2021b) propose a multi-stage pretraining method
that leverages various granularities of information,
significantly boosting model performance. Tan
et al. (2022) explore the use of multi-stage prompt-
ing to improve translation tasks, demonstrating
its effectiveness in enhancing downstream appli-
cations.

In LLM pretraining, data preprocessing is key to
ensuring dataset quality(Duan et al., 2025). Tradi-
tional methods use expert rules to filter low-quality
data (Raffel et al., 2020; Rae et al., 2021; Lau-
rençon et al., 2022; Computer, 2023; Penedo et al.,
2024) and remove duplicates (Lee et al., 2022;
Sorscher et al., 2022; Abbas et al., 2023; Sobol-
eva et al., 2023; Tirumala et al., 2024). These ap-
proaches enhance quality but may lack semantic
depth. To improve semantic selection, strategies
involve using targeted sources or proxy models
(Wenzek et al., 2020; Xie et al., 2023; Marion et al.,
2023; Thakkar et al., 2023; Engstrom et al., 2024;
Yu et al., 2024). Classifiers automate selection,
like the logistic regression model used by Du et al.
(2022), with others employing complex scoring
(Zhang et al., 2024b; Sachdeva et al., 2024). QuRat-
ing (Wettig et al., 2024) uses multiple raters for
nuanced evaluation.

Current methods focus on selection but overlook
aligning data characteristics with learning stages,
missing opportunities in data organization and se-
quencing to boost pretraining effectiveness.

5 Conclusion

In this study, we propose the Four-quadRAnt
Multi-stage prEtraining strategy (FRAME), a novel
approach designed to boost the performance of
LLMs by systematically organizing the pretraining
process into four stages. Guided by the princi-
ple of achieving significant loss reductions four
times, FRAME employs a strategic partitioning
of pretraining data into four quadrants based on
PPL and PD. The experimental results, showing
a 16.8% average improvement across MMLU and
CMMLU over random sampling, underscore the
effectiveness of FRAME in optimizing pretraining

data organization.

6 Limitations and Future Works

In this study, we simply attempt to split the data into
two parts based on the size of PPL and PD. Future
research can be more detailed, such as subdividing
a dimension into three parts or more, to explore
more training stages. In addition, we plan to ex-
pand the scope of work to verify the applicability
of the two-stage pretraining method in more lan-
guage model architectures, such as Mamba(Gu and
Dao, 2023), and Mixture of Experts(Wang et al.,
2024). Although our evaluation criteria are already
quite comprehensive, it is still possible to extend
to a wider range of evaluations, including more
detailed domain-specific or interactive tasks, such
as the evaluation of analogy reasoning ability(Hu
et al., 2023). Despite these potential limitations, we
firmly believe that our research provides valuable
insights and practical contributions to the academic
community.

References
Amro Abbas, Kushal Tirumala, Dániel Simig, Surya

Ganguli, and Ari S Morcos. 2023. Semdedup: Data-
efficient learning at web-scale through semantic dedu-
plication. arXiv preprint arXiv:2303.09540.

Anonymous. 2025. Multi-agent collaborative data se-
lection for efficient language model pretraining.

Jason Baumgartner, Savvas Zannettou, Brian Keegan,
Megan Squire, and Jeremy Blackburn. 2020. The
pushshift reddit dataset. In Proceedings of the inter-
national AAAI conference on web and social media,
volume 14, pages 830–839.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Daniel Campos. 2021. Curriculum learning for lan-
guage modeling. arXiv preprint arXiv:2108.02170.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Together Computer. 2023. Redpajama: an open dataset
for training large language models.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.

20286

https://openreview.net/forum?id=1fwZJzGdKj
https://openreview.net/forum?id=1fwZJzGdKj
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data


Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference on
Machine Learning, pages 5547–5569. PMLR.

Feiyu Duan, Xuemiao Zhang, Sirui Wang, Haoran Que,
Yuqi Liu, Wenge Rong, and Xunliang Cai. 2025. En-
hancing llms via high-knowledge data selection. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 23832–23840.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Logan Engstrom, Axel Feldmann, and Aleksander
Madry. 2024. Dsdm: Model-aware dataset selection
with datamodels. arXiv preprint arXiv:2401.12926.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Xiaoyang Hu, Shane Storks, Richard L Lewis, and
Joyce Chai. 2023. In-context analogical reasoning
with pre-trained language models. arXiv preprint
arXiv:2305.17626.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,
Maosong Sun, and Junxian He. 2023. C-eval: A
multi-level multi-discipline chinese evaluation suite
for foundation models. Preprint, arXiv:2305.08322.

Raisa Islam and Owana Marzia Moushi. 2024. Gpt-4o:
The cutting-edge advancement in multimodal llm.
Authorea Preprints.

Hugo Laurençon, Lucile Saulnier, Thomas Wang,
Christopher Akiki, Albert Villanova del Moral, Teven
Le Scao, Leandro Von Werra, Chenghao Mou, Ed-
uardo González Ponferrada, Huu Nguyen, et al. 2022.
The bigscience roots corpus: A 1.6 tb composite mul-
tilingual dataset. Advances in Neural Information
Processing Systems, 35:31809–31826.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8424–8445.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2023. Cmmlu: Measuring massive multitask
language understanding in chinese. arXiv preprint
arXiv:2306.09212.

Tongtong Liu, Fangxiang Feng, and Xiaojie Wang.
2021a. Multi-stage pre-training over simpli-
fied multimodal pre-training models. Preprint,
arXiv:2107.14596.

Tongtong Liu, Fangxiang Feng, and Xiaojie Wang.
2021b. Multi-stage pre-training over simplified mul-
timodal pre-training models. CoRR, abs/2107.14596.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex
Wang, Marzieh Fadaee, and Sara Hooker. 2023.
When less is more: Investigating data pruning
for pretraining llms at scale. arXiv preprint
arXiv:2309.04564.

Pulkit Pattnaik, Rishabh Maheshwary, Kelechi Ogueji,
Vikas Yadav, and Sathwik Tejaswi Madhusudhan.
2024. Curry-dpo: Enhancing alignment using
curriculum learning & ranked preferences. arXiv
preprint arXiv:2403.07230.

Vera Pavlova. 2025. Multi-stage training of bilingual is-
lamic llm for neural passage retrieval. arXiv preprint
arXiv:2501.10175.

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov,
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A Ethical Considerations

We utilized publicly available training corpora from
the internet to train our models, which inevitably in-
cluded biased or harmful content, raising concerns
about the safety of the model-generated content.
To mitigate this issue, we prioritized the selection
of high-quality datasets and implemented rigor-
ous data-cleansing processes to remove harmful
elements. Additionally, considering the computa-
tionally intensive nature of LLM training and its
potential environmental impact, this paper explores
a multi-stage training approach, aiming to enhance
resource efficiency and reduce environmental pol-
lution during the training process.

B Experimental Details

B.1 Experimental settings
Model configuration and training We train ref-
erence models with 100M and 1.3B parameters on
500B tokens randomly sampled from the collected
dataset, utilizing the Llama architecture (Touvron
et al., 2023). We use the 1.3B model to compute
PPL and both the 100M and 1.3B models to calcu-
late PD. For the main experiments, we train a 3B
model. We set the batch size to 640 and the context
window length to 8192. The initial learning rate is
2× 10−4, with a warm-up phase of 375M tokens.
We apply cosine learning rate scheduling with a
weight decay of 0.1. We use the Adam optimizer
to train the model within the Megatron framework
(Shoeybi et al., 2019). Furthermore, we validate

Hyperparameter Value

Precision bfloat16
Layers 30
Hidden dimension 1920
Attention heads 15
Vocab size 131072
Sequence length 8192
Activation SiLU
Position embedding RoPE

Table 5: Model structure of 1.3B model

Hyperparameter Value

Precision bfloat16
Layers 32
Hidden dimension 2560
Attention heads 32
Vocab size 131072
Sequence length 8192
Activation SiLU
Position embedding RoPE

Table 6: Model structure of 3B model

our approach on a 1.3B model, using the same set-
tings as the 3B model. We use Ascend 910B NPU
for training. For the 3B model, we use 512 NPUs
for training, each model takes over 180 hours; For
the 1.3B models, we use 96 NPUs, each model
takes 6 hours.

In Table 5 and 6, we present the model configu-
ration of the 1.3B and 3B models.

Baselines In the 3B model setting, we compare
FRAME with several baselines:

• Random: Data is organized in a completely
random order, meaning there is no specific
sequence or strategy for data input

• PDPC (Zhang et al., 2025): Utilizes PD as
a model-aware curriculum learning indicator,
organizing the data sequence through a pref-
erence function that aligns with the model’s
inherent preferences.

• Q3 → Q1 → Q4 → Q2: Adopts the same
smoothing process as FRAME but prioritizes
satisfying PD-related constraints to organize
the data order.

In the 1.3B model setting, we also compare
FRAME with other baselines:

Methods Steps MMLU CMMLU

Random
30K

25.4 25.9
Alow

PPL → Ahigh
PPL 26.7 26.2

Ahigh
PPL → Alow

PPL 25.3 25.5

Random
60K

25.9 25.8
Alow

PPL → Ahigh
PPL 25.5 25.5

Ahigh
PPL → Alow

PPL 33.4 35.4

Random
95K

24.8 25.6
Alow

PPL → Ahigh
PPL 26.0 26.0

Ahigh
PPL → Alow

PPL 39.6 42.6

Table 7: Accuracy on MMLU and CMMLU for two-
stage pretraining across different steps based on PPL
with 3B models.

20289



Methods Steps MMLU CMMLU

Random 30K 25.4 25.9
Alow

PD → Ahigh
PD 26.7 26.2

Random 60K 25.9 25.8
Alow

PD → Ahigh
PD 26.2 25.1

Random 95K 24.8 25.6
Alow

PD → Ahigh
PD 26.9 27.2

Table 8: Accuracy on MMLU and CMMLU for two-
stage pretraining based on PD with 3B models.

• Sequential: Organizes data by directly sorting
according to PPL, PD, and QuRating (Wettig
et al., 2024), in either ascending or descending
order.

• Preference CL: Utilizes the same preference
function as PDPC but replaces the indicators
with PPL or QuRating. We adopt both S-shape
and S-shape reverse function.

B.2 Benchmark Accuracy of Two-stage
Pretraining Based on PPL

Table 7 shows the model’s benchmark accuracy
at various steps for the settings Alow

PPL → Ahigh
PPL and

Ahigh
PPL → Alow

PPL. Training on high PPL data followed
by low PPL data initially yields lower performance
than random training at 30K steps, but accuracy im-
proves significantly in the later phases at 60K and
95K steps. In contrast, in the Alow

PPL → Ahigh
PPL setting,

the model shows slight improvement initially but
eventually aligns with the random sequence results.
This leads to our first key finding: training first
on high PPL data followed by low PPL data can
cause the loss to drop significantly twice, ultimately
boosting model performance.
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Figure 11: S-shape functions with a=10 and a=35.

B.3 Benchmark Accuracy of Two-stage
Pretraining Based on PD

Table 8 shows the model’s accuracy as training
steps increase under the Alow

PD → Ahigh
PD setting. The

model consistently outperforms the Random model
at most steps. Notably, at 95K steps, it exceeds the
Random setting by 2.1% on MMLU and 1.6% on
CMMLU, which validates PD as an effective met-
ric. This leads to our second key finding: training
first on low PD data followed by high PD data can
cause the loss to drop significantly twice, ultimately
boosting model performance.

B.4 S-shape Functions with a=10 and a=35

By applying the S-shape function, we gradually
decrease the proportion of Q3 data while increasing
the proportion of Q4 data, resulting in the mixed
data S34. Figure 11 illustrates the two forms of
Equation 5 with a = 10 and a = 35. In this
paper, we adopt the steeper form with a = 35 for
smoothing transitions between different stages. In
the early stages of model training, the proportion
of data from the first stage is close to 1. As training
progresses, this proportion approaches 0. During
the mid-training phase, there is a gradual transition
between the data from the first and second stages.

B.5 Data Distribution

Figure 12 and 13 show the PPL and PD distribu-
tion of samples in our training set. The PPL of
data from different domains shows significant vari-
ations, with mean values ranging from 5 to 22 and
varying degrees of variance. Sorting data by PPL
may lead to imbalanced domain representation be-
tween early and late training stages, exposing the
model to overly homogeneous data at each stage
and potentially degrading performance. In contrast,
the distribution of PD is quite similar across differ-
ent data sources, ensuring that each training phase
includes diverse data, thereby maintaining pretrain-
ing efficiency and enhancing model performance.

Figure 14 illustrates the domain distribution of
data across the four quadrants, arranged in descend-
ing order of proportion. Quadrants 1 and 2 pre-
dominantly contain data related to code (sourced
from Github and Stack Exchange) and knowledge
(sourced from Arxiv and Wikipedia). In contrast,
the data in Quadrants 3 and 4 primarily originate
from books and the Common Crawl.
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Figure 12: PPL distribution across different sources.

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

D
en

si
ty

Histogram of CommonCrawl

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

1.00

2.00

3.00

4.00

D
en

si
ty

Histogram of Github

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

1.00

2.00

3.00

4.00

5.00

D
en

si
ty

Histogram of StackExchange

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

1.00

2.00

3.00

4.00

5.00

6.00

D
en

si
ty

Histogram of Wikipedia

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

1.00

2.00

3.00

4.00

5.00

6.00

D
en

si
ty

Histogram of ArXiv

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

D
en

si
ty

Histogram of Book

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

D
en

si
ty

Histogram of C4

Figure 13: PD Distribution across different sources.

B.6 Additional evaluation results

In Figure 15, we present additional evaluation re-
sults on 3B models. It is evident that in the majority
of benchmarks, FRAME significantly outperforms
Random, underscoring the effectiveness of our pro-
posed method.

B.7 Smoother LOSS Curve from FRAME

To analyze the training loss curve’s smoothness,
we use spectral analysis. We perform a Fast
Fourier Transform (FFT) on the loss curve l[n]
as Y [k] = FFT(l[n]) to convert it to the frequency
domain and compute the Power Spectral Density
PSD[k] = |Y [k]|2

N to examine energy distribution
across frequencies. By selecting a cutoff frequency
fc, we divide the spectrum into low and high fre-

quencies and calculate the high-frequency energy
proportion R =

∑
f>fc

PSD[k]
∑N/2

k=0 PSD[k]
. A smaller R indi-

cates a smoother temporal curve with fewer high-
frequency components.

Our analysis reveals that the loss curve from
FRAME has the lowest high-frequency energy pro-
portion at 0.02%, significantly lower than that of
PDPC and Random. This suggests that FRAME
allows the model to converge more stably, and re-
duces the impact of gradient fluctuations during
training. This improvement is due to our four-
stage training strategy, which organizes similar data
into consecutive batches, thus stabilizing the model
training process.
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Figure 14: Data distribution details. We’ve rearranged the order based on the frequency of different sources
appearing in each quadrant.

B.8 Ablation Studies

In Figures 16, 17, 18 and 19, we provide a more
detailed presentation of the performance of our
ablation experiments across various subsets.

PPL Ordering During two-stage training, we ob-
served that training in the order from high PPL to
low PPL enhances the model’s emergent capabili-
ties. This training strategy shows significant advan-
tages across multiple datasets, such as MMLU and
CMMLU. Following the training path from Q3 to
Q1 can significantly improve accuracy on bench-
marks. However, if the opposite training order is
adopted (i.e., from Q1 to Q3 or from Q2 to Q4),
the model’s performance is similar to that of a ran-
domly initialized model, and in some cases, even
worse. This indicates that the impact of training
order on model performance is asymmetric, high-
lighting the importance of properly arranging the
training stages.

In three-stage training, the same trend persists.
Specifically, after completing training from Q1 to
Q2 and then switching to Q4, following the order of
data PPL from small to large, the model’s accuracy
on multiple benchmarks is even lower than that of
Random.

PD Ordering From the perspective of two-stage
training, the training order from small PD to large
PD is beneficial for model training. We found that
whether in the same PPL region (e.g., Q3 to Q4

or Q1 to Q2) or between different PPL regions
(e.g., Q3 to Q2), the model can ultimately achieve
performance superior to that of Random.

This conclusion is also applicable in three-stage
training. During the transition from the second
stage (Q1) to the third stage (Q2) (Figure 19), the
model’s final accuracy still improved. This further
supports the effectiveness of the small PD to large
PD order, emphasizing the importance of properly
arranging training steps in multi-stage training.
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Figure 15: Performance of downstream tasks on 3B models with respect to training iterations. We compare FRAME
with Random baseline.
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Figure 16: PPL related ablation study (2 quadrants).
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Figure 17: PPL related ablation study (3 quadrants).
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Figure 18: PD related ablation study (2 quadrants).
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Figure 19: PD related ablation study (3 quadrants).
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C Prompts for Case Study

The prompt used in Section 3.4 to analyze the linguistic features of data across different qhadrants is as
follows.

Prompts for Property Recognition

You are a language model training data annotator. Your task is to identify whether the given text
possesses the following characteristic: {Property}

The text to be annotated is:
{text}

Please determine whether the given text possesses this characteristic according to the above
rules.

The output format should be "Because..., my answer is 'X'." where X must be either "yes" or "no
."

You should remain objective and refrain from adding any further comments after making your
choice.

The property comes from the following rules:

1. Does the text contain polysemous words? Polysemous words may make understanding more difficult.

2. Does the text use specialized terminology? Specialized terminology may require specific domain
knowledge to understand.

3. Does understanding the text require specific cultural background knowledge? Cultural background
dependence may increase the complexity of understanding.

4. Does the text require logical reasoning to understand? Logical reasoning adds depth to understanding.

5. Does the text contain elements of humor? Humor may affect the way the text is understood.

6. Does the text explore ethical or moral issues? This may increase the depth of thought.

7. Does the text use complex sentence structures? Complex sentence structures may increase the
difficulty of understanding.

8. Does the text contain scientific or technical concepts? These concepts may require specific knowledge
to understand.

9. Does the text express obvious emotional tones? Emotional tones may affect the understanding of the
text.

10. Does understanding the text require additional background knowledge? Background knowledge
requirements may affect the comprehensibility of the text.
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D Data Cases

Table 9 presents samples extracted from each quadrant.

Quadrant 1

Sample 1: ... 112. Ra4+ Kd5 113. Ra5+ Kc4 114. Ra6 Qd7+ 115. Kb6 Kb4 116. Ra7 Qd6+ 117. Kb7 Kb5 118. Kc8
Qf8+ 119. Kb7 Qd8 120. Ra1 Qe7+ 121. Kc8 Qe8+ 122. Kb7 Qe4+ 123. Kc8 Qc4+ 124. Kb7 Qf7+ 125. Kc8 Qg8+ 0-1
Analysis of Utegaliyev - Goh from the Baku Olympiad - Life is tough! ***Addendum: The Rook & Bishop vs Rook ending
at move 102 was covered specifically by Karsen Muller & Frank Lamprecht on page 301 of Fundamental Chess Endings.
My annotations are slightly confusing there ...

Sample 2: ... Women With an Alcoholic Parent Have More Risk Factors Ray Kachatorian / Photographer’s Choice / Getty
Images There are differences in how parental alcoholism affects daughters as opposed to how it affects sons, particularly
when it comes to psychopathology, or mental health disorders, in each gender. Daughters of alcoholics are affected by a
parent’s alcoholism in many of the same ways that sons are. Both are at higher risk of developing alcohol abuse disorders
compared to children of non-alcoholic parents. But there are some differences in how women are influenced, scientists say ...

Quadrant 2

Sample 1: ... pension advice be sought in the case of South Africa. Residents in South Africa are subject to tax (up to 40%)
on their total income no matter the source-country. Foreign pensions are exempt from this. Any UK pension, as long as it
was not ’received or accrued’ from or in South Africa, and is ’in consideration of past employment’ elsewhere, is exempt
from income tax. This specifically excludes anyone whose pension has arisen from time in public office in South Africa. For
residents of South Africa, ...

Sample 2: ... , Bengaluru (As Prepared for Delivery) Honorable President Pranab Mukherjee, Ministers, Excellencies,
Distinguished guests: Thank you, it is such a great honor to be here today, accepting this award among such distinguished
company. Let me first thank His Excellency the Honorable President Mukherjee, Prime Minister Modi, and the Government
of India2̆013 2̆026 By U.S. Mission India | 9 January, 2017 | Topics: Chennai, Press Releases, Speeches | Tags: Bilateral
relationship Remarks by Ambassador Richard R. Verma at the inaugural plenary of Indo-Asia Connectivity for Shared
Prosperity ...

Quadrant 3

Sample 1: ... information may be obtained from CPO. The Anti-Kickback Act of 1986 (41.U.S.C.51-58) was passed to deter
subcontractors from making payments and contractors from accepting payments for the purpose of improperly obtaining or
rewarding favorable treatment in connection with a prime contract or subcontract. Imposes criminal penalties on any person
who knowingly and willfully engages in the prohibited conduct addressed in paragraph (a) of this subsection. Provides for
the recovery of civil penalties by the United States from any person who knowingly engages in such prohibited conduct and
from any person whose employee, subcontractor, or subcontractor employee provides, accepts, or charges a kickback ...

Sample 2: ... also wrote Brave New World and numerous essays. Consider some of his words as follows: Ẅe are in a process
of developing a whole series of techniques which will enable the controlling oligarchy to get people to actually love their
servitude. A really efficient totalitarian state would be one in which the all-powerful executive of political bosses and their
army of managers control a population of slaves who do not have to be coerced, because they love their servitude. To make
them love it is the task assigned, in present-day totalitarian states, to ministries of propaganda ...

Quadrant 4

Sample 1: ... in which 3000 people died in a single atrocity, to one’s horror at the deaths of ten and perhaps sometimes
twenty times as many in each of the bombings of such places as Hamburg, Dresden, Tokyo, Hiroshima and Nagasaki. This
way of grasping the purport of what area bombing meant, really meant, is vital to making a difference to how we behave and
what we accept today in the conduct of conflicts. There is nothing abstract or theoretical about the mass murder in which
bombing consists: it is real and terrible, and anything that drives the point home has its place in the debate ...

Sample 2: ... and China in Africa. Ba’ath Party Dominance and Mistakes. Iraq. A Fragile Country. Burkina Faso. The
Church under attack. DR Congo. Insecurity and bad governance contribute to the spread of Ebola. Drug Trafficking.
RD.Congo. Beatification of twenty martyr missionaries on track. Africa. Start-ups rolling out. Between Maras and Pandilla
El Salvador. A Country In Transition. Nigeria. Troubles in Kano. A New President. The Church of Africa. A Return To
Its Origins. Mexico. Üntil dignity becomes the custom.̈ Philippine. Modern Day Missionaries of the World. The Gumuz
People, their culture. The Religious Universe of the Gumuz. The Gumuz in front of a changing world. Africa. The art of
food. Ancient flavours and genuine ingredients ...

Table 9: Samples from different quadrants.
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