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Abstract

LLMs face privacy risks when handling sensi-
tive data. To ensure privacy, researchers use
differential privacy (DP) to provide protection
by adding noise during LLM training. How-
ever, users may be hesitant to share complete
data with LLMs. Researchers follow local DP
to sanitize the text on the user side and feed
non-sensitive text to LLMs. The sanitization
usually uses a fixed non-sensitive token list or a
fixed noise distribution, which induces the risk
of being attacked or semantic distortion. We
argue that the token’s protection level should be
adaptively adjusted according to its semantic-
based information to balance the privacy-utility
trade-off. In this paper, we propose DYNTEXT,
an LDP-based Dynamic Text sanitization for
privacy-preserving LLM inference, which dy-
namically constructs semantic-aware adjacency
lists of sensitive tokens to sample non-sensitive
tokens for perturbation. Specifically, DYN-
TEXT first develops a semantic-based density
modeling under DP to extract each token’s
density information. We propose token-level
smoothing sensitivity by combining the idea
of global sensitivity (GS) and local sensitivity
(LS), which dynamically adjusts the noise scale
to avoid excessive noise in GS and privacy leak-
age in LS. Then, we dynamically construct an
adjacency list for each sensitive token based
on its semantic density information. Finally,
we apply the replacement mechanism to sam-
ple non-sensitive, semantically similar tokens
from the adjacency list to replace sensitive to-
kens. Experiments show that DYNTEXT ex-
cels strong baselines on three datasets.

1 Introduction

LLMs demonstrated exceptional capabilities in
NLP tasks, particularly with closed-source LLMs
like GPT-4 (Open, 2023) that exclusively provide
online inference services. However, directly sub-
mitting text containing sensitive information to

*Corresponding Authors

those LLMs poses significant privacy risks (Huang
et al., 2023). To ensure privacy protection, A prov-
able theoretical guarantee is crucial. DP (Dwork
et al., 2014) formally defines and quantifies privacy.
Consequently, most researchers apply DP to LLMs
to safeguard privacy (Edemacu and Wu, 2024).

To achieve DP, methods like DP-SGD (Abadi
et al., 2016) and PATE (Papernot et al., 2016),
mainly focus on adding calibrated noise to the
model or input representations during the train-
ing so that sensitive user data are hardly inferred
from the trained model. Users need to send their
data to LLMs for training under the DP framework
with noise. However, they may hesitate to share
their complete data due to privacy concerns, fearing
that LLMs may not be fully trustworthy or that an
intermediary eavesdropper could compromise sen-
sitive information (Lyu et al., 2020). To address the
above issues, LDP (Duchi et al., 2013) introduces a
new scenario with two phases: local processing and
LLM training/inference. Local processing occurs
on the user side, which can access and process the
private data to protect them. The protected data are
then transmitted to LLMs for training or inference.
Typically, these local processing methods gener-
ate perturbed text by replacing the tokens (e.g.,
words or n-grams) in the private text with new non-
sensitive tokens (Feyisetan et al., 2019; Qu et al.,
2021). Specifically, some methods (Feyisetan et al.,
2020; Li et al., 2025) inject calibrated noise with
a DP guarantee into the original token embedding
(high-dimensional vector) to generate a noisy em-
bedding, then replace the original token with the
token closest to the noisy embedding. However,
token (i.e. text) embedding space is usually uneven
and irregular since the text signals are too sparse
and discrete to represent with dense embeddings
so well (Yaghoobzadeh and Schütze, 2016; Yin
and Shen, 2018; Zheng et al., 2023). DP-required
noises are totally randomized within a regular dis-
tribution (i.e. Gaussian or Laplace). Applying a
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DP required noises to the original token embedding
sometimes leads to unexpected bias to damage the
semantics.

To avoid the above problem, researchers pro-
pose replacing the original tokens by sampling new
tokens from a pre-computed distribution. These
methods, like SANTEXT+ (Yue et al., 2021) and
CUSTEXT+ (Chen et al., 2023), leverage DP learn-
ing methods to sequentially replace sensitive words
in text with new words, which are sampled from a
fixed word list carrying non-sensitive words similar
to the sensitive words. These methods are more
reliable and interpretable, effectively avoiding un-
expected bias caused by noise and thereby enhanc-
ing the practicality of the text. However, the fixed
token list introduces predictable replacement pat-
terns, making it easier for attackers to exploit this
regularity of information to infer the original sensi-
tive information (Tong et al., 2025).

To mitigate the above vulnerability for potential
attacks (Song and Raghunathan, 2020), researchers
introduce randomness in the non-sensitive tokens
list to replace each sensitive token, avoiding po-
tential attacks and strengthening defense against
privacy threats (Tong et al., 2025; Fan et al.,
2024). However, adding random perturbation to
non-sensitive lists still has limitations. These meth-
ods often apply perturbations with the same distri-
bution to all tokens, ignoring the sensitivity of each
token. For tokens with low semantic sensitivity,
overly strict privacy protection mechanisms may
lead to unnecessary semantic loss, thus affecting
the quality of the generated perturbed text.

To balance the privacy-utility trade-off, we ar-
gue that sanitization should consider the token’s
semantic-based information while maintaining anti-
attack capabilities. So, we should integrate the
token’s semantic-based information with its non-
sensitive token list under privacy protection (i.e.
DP), enhancing the quality of the perturbed text
and adaptively adjusting the list to resist attacks.

In this paper, we propose an LDP-based
Dynamic Text (DYNTEXT)1 sanitization mecha-
nism for privacy-preserving LLM inference, which
dynamically builds a semantic-aware adjacency list
of sensitive tokens to sample non-sensitive tokens
for perturbation. The adjacency list satisfies DP
and is customized to each token’s semantic den-
sity, with smaller lists in high-density areas and

1The implementation is available at: https://github.
com/mhyt-ning/DYNTEXT.

larger ones in low-density areas, which encourages
the sampling of high-density tokens and assigning
high noise to low-density tokens. Specifically, we
first develop a semantic-based density information
modeling module under DP to extract the density
information of each token in the embedding space.
This module employs the Gaussian noise to achieve
DP and a token-level smoothing sensitivity mecha-
nism by combining the idea of GS and LS to avoid
excessive noise in GS and privacy leakage in LS.
We then dynamically construct an adjacency list
for each sensitive token based on noisy semantic-
based density information, which adjusts the size
of each sensitive token’s non-sensitive adjacency
token list. This strategy effectively preserves se-
mantic information while resisting attacks. Finally,
we employ a sensitive token replacement to sample
non-sensitive similar tokens from the adjacency list
and replace the sensitive token for perturbation.

Our contributions are as follows: (1) We propose
DYNTEXT, an LDP-based dynamic text sanitiza-
tion mechanism that replaces sensitive tokens based
on semantic density, adaptively adjusting the pro-
tection level for a better privacy-utility trade-off.
(2) We design a DP-compliant semantic-aware dy-
namic adjacency list adjusted by token density in-
formation, promoting sampling from high-density
areas for semantic preservation and assigning high
noise to low-density areas for privacy protection.
(3) Experiments show that DYNTEXT excels in all
baselines and achieves SOTA on three datasets.

2 Related Work

2.1 Privacy Protection in LLMs

The privacy protection lifecycle of LLMs includes
training and inference phases. (1) Most of the pre-
vious work focuses on privacy protection during
training, where DP reduces privacy risks by adding
noise (Tholoniat et al., 2024; Wicker et al., 2024).
ANADP (Li et al., 2024) allocates noise and privacy
budgets based on the importance of the parameters.
(2) Current research is gradually focusing on pro-
tecting input privacy during inference, addressing
challenges through data anonymization (Yang et al.,
2024) and text-to-text privatization (Li et al., 2025).

2.2 DP learning algorithm

DP implementations mainly use gradient or output
perturbation techniques. (1) Gradient perturbation
approaches modify training gradients. The DP-
SGD framework (Abadi et al., 2016) applies gradi-
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ent clipping followed by Gaussian noise injection
to limit the influence of individual data points. Sub-
sequent studies (Yue et al., 2023; Kurakin et al.,
2023) refine these noise injection and clipping
mechanisms to speed up convergence. Adaptive
noise scheduling (Yang and Ma, 2024; Jiao et al.,
2024) optimizes the approach by adjusting noise
levels based on gradient sensitivity and selectively
updating parameters to reduce noise accumulation.
Output perturbation methods include PATE-based
approaches (Yuan et al., 2024; Song et al., 2024;
Tian et al., 2022; Papernot et al., 2016), which pro-
duce private labels by noisy voting from multiple
teacher models, and objective perturbation (Pus-
tozerova et al., 2023), which adds noise directly to
the loss function to prevent gradient exposure.

2.3 Local Privacy Protection for LLMs
Recent advancements in local privacy preservation
for LLMs reveal trade-offs between security and
practicality. LDP approaches ( MLDP (Feyisetan
et al., 2020), SANTEXT+ (Yue et al., 2021)) in-
troduce word/vector-level sanitization mechanisms
that risk semantic distortion, while CUSTEXT+
(Chen et al., 2023) improves output quality at po-
tential privacy costs. SnD (Mai et al., 2024)’s de-
noising pipelines reduce semantic distortion but
introduce system complexity due to the need for
additional model training. RANTEXT (Tong et al.,
2025) applies LDP with dynamic random adja-
cency lists and knowledge distillation to enhance
privacy (Lee et al., 2022). The above methods
struggle to balance the privacy-utility trade-off. In
contrast, our approach dynamically adjusts privacy
protection based on semantic density information,
achieving an effective balance.

3 Preliminaries

Differential Privacy (DP) (Dwork, 2006; Dwork
et al., 2014)) is widely regarded as the gold stan-
dard for data privacy. Its definition is as follows:

Definition 3.1 (ε, δ)-Differential Privacy. Let
ε ≥ 0 and δ ∈ [0, 1]. A randomized algorithm
M is (ε, δ)-differentially private if for any two
neighboring datasets D and D′, which differ in
only a single record, and for any set S of possible
outputs:

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ.
(1)

where ε upper bounds the privacy loss, and δ is the
probability that this guarantee does not hold.

Local Differential Privacy (LDP) is a special
case of DP in which the server is untrusted, and
data privatization is performed on the client side.

Definition 3.2 (ε, δ)-Local Differential Privacy.
Let ε ≥ 0 and δ ∈ [0, 1]. A randomized mecha-
nism M is said to satisfy (ε, δ)-LDP if for any two
possible inputs x, x′ ∈ D and any possible output
y ∈ Y , the following condition holds:

Pr[M(x) = y] ≤ eεPr[M(x′) = y] + δ. (2)

4 Methods

4.1 Overview
Our proposed DYNTEXT consists of three mod-
ules, as shown in Fig. 1: (1) Semantic-based Den-
sity Information Modeling under DP (§4.2) ob-
tains the semantic-based density information of
each token in the embedding space while satisfy-
ing DP; (2) Dynamic Construction of Adjacency
List (§4.3) constructs an adjacency list with dy-
namically adjustable size based on the semantic-
based density information. The list contains a set
of non-sensitive tokens with semantics similar to
the target-sensitive token, serving as candidates for
replacing the target token; (3) Private Token Re-
placement via Similarity (§4.4) samples a new
token from the adaptive adjacency list considering
the similarity between the sensitive token and can-
didate tokens, and then replace the sensitive token
to generate the non-sensitive text. In summary, we
first obtain semantic-based density (§4.2) to con-
struct the adjacency list for sensitive tokens (§4.3),
and then sample a non-sensitive token from that
list to replace the sensitive token (§4.4) to generate
sanitized texts. The sanitized texts act as the input
for downstream text generation tasks.

4.2 Semantic-based Density Information
Modeling under DP

We model the semantic-based density informa-
tion of each token in the semantic embedding
space, which applies Gaussian noise to achieve DP
(§4.2.1) and token-level smooth sensitivity mecha-
nism to mitigate impacts of abnormal data (§4.2.2).

The density information is used to adjust the
privacy protection degree for different tokens (de-
tails in §4.3), aiming to enhance protection in low-
density areas while moderately relaxing it in high-
density areas, thereby improving the practicality of
the DP algorithm. This is because, as inspired by
TEM (Carvalho et al., 2023), low-density areas in
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Figure 1: Overview of DYNTEXT. Given a sensitive text, DYNTEXT sanitizes it through three modules, executed
sequentially: (1) Semantic-based Density Information Modeling under DP extracts each token’s semantic-based
density information in the embedding space and applies noise; (2) Dynamic Construction of Adjacency List
builds an adjacency list for each token based on this density information; (3) Finally, Private Token Replacement
via Similarity samples non-sensitive tokens from the adjacency list to replace sensitive tokens.

the embedding space typically correspond to rare
tokens with fewer semantically similar words. Rare
tokens are often sensitive because they have low en-
tropy, high information content, and are more likely
to represent entities. So, tokens in low-density ar-
eas are more vulnerable to privacy leakage and
thus more sensitive. In contrast, high-density areas
present lower privacy risks and sensitivity.

4.2.1 Density Calculation with Gaussian
Mechanism

We obtain the target tokens’ density information
and apply the Gaussian mechanism for protection.

Density Calculation. We compute density infor-
mation with three steps: (1) Semantic distance.
In the N -dimensional embedding space RN , we
first calculate the Euclidean distance between each
token t and all tokens (including itself) in the token
vocabulary Vt. Next, we identify the K-th closest
token tK to t and obtain their distance as follows:

d(t, tK) = ||ϕ(t)− ϕ(tK)||2, (3)

where the function ϕ : Vt → RN , maps each token
to a vector in embedding space. The parameter K
represents the default size of the adjacent list for
a token t ∈ Vt. (2) Density range. We calculate
a threshold γ as the density range of tokens. For
each token t ∈ Vt, we compute the semantic dis-
tance d(t, tK); then, γ is defined as the average
distance of tokens in Vt: γ = 1

|Vt|
∑

t∈Vt
d(t, tK).

(3) Density information. We define the density
information f(t) of token t as the number of tokens
t̂ in Vt whose semantic distance to token t is less
than or equal to the threshold γ:

f(t) =
∣∣{t̂ ∈ Vt | d(t, t̂) ≤ γ}

∣∣ . (4)

The f(t) reflects the number of neighboring tokens
within a certain range around the target token t,
making it a valuable measure of its density infor-
mation in the embedding space. The threshold γ
controls the range of the local neighborhood, en-
suring that only tokens semantically close enough
to the target token are considered in the density cal-
culation, thereby defining the “local dense area”.

Gaussian Mechanism. To prevent density infor-
mation from leaking information (i.e. semantic den-
sity) of sensitive tokens, we add calibrated Gaus-
sian noise (Bu et al., 2020) to the density infor-
mation f(t) of the token t ∈ Vt to satisfy DP, as
F (t) = f(t) + N (0, σ2

d). It satisfies (εd, δ)-DP
for εd ≥ 0, where N (0, σ2

d) represents Gaussian
noise with mean 0 and variance σ2

d. The variance
of Gaussian noise σ2

d is determined by the privacy
budget parameter εd and the sensitivity ∆f :

σ2
d =

2(∆f)2 ln(1.25/δ)

ε2d
. (5)

4.2.2 Token-Level Smooth Sensitivity
Mechanism

To reduce noise amplitude and mitigate privacy
leaks from sensitivity fluctuations, we propose the
token-level smooth sensitivity for more stable and
controlled noise addition at the token level.

Existing methods mainly determine the noise
scale via global and local sensitivity. GS (Iooss and
Lemaître, 2015) represents the maximum change
of the query function, which takes input data and
returns statistical information, across all possible
inputs. LS (Nguyen et al., 2024) measures the
change based on the specific data. During density
calculation, for any token t, density information
f(t) of token t acts as the query function f here
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(as shown in Eq. 4). The local sensitivity LSf (t)
of the query function f is defined as: LSf (t) =
maxt̂∈Cr(t) |f(t) − f(t̂)|, where t̂ ∈ Cr(t) is a
token in the adjacency list of t. The global sensitiv-
ity GSf is defined as: GSf = maxt∈Vt(LSf (t)).
However, both of the above sensitivities have their
limitations. GS is based on the worst-case estimate
across all possible input tokens, often resulting in
excessive noise due to its conservatism. In contrast,
LS dynamically adjusts the noise amplitude based
on the information of each input token. However,
this also means that the noise amplitude itself could
potentially leak the privacy of the input token, and
LS alone cannot satisfy the requirements of DP2.

Hence, we propose a token-level smooth sensitiv-
ity mechanism that combines global and local sensi-
tivity ideas at the token level. We use a “smoothed”
approximation of LS to adjust the noise scale and
prevent leaks of sensitive information. Specifically,
we use the β-smooth sensitivity Sf,β(t) (defined in
Eq. 6) when adding noise to the token t’s density
information. For a token t ∈ Vt, t’s adjacent token
t̂ ∈ Cr(t), Sf,β(t) has two parts:

• LSf (t̂) represents the LS of t̂.

• e−βd(t,t̂) is an exponential decay function,
where d(t, t̂) is the Euclidean distance (Eq. 3)
between adjacent tokens. β is defined as

εd
2 log(2/δ) , controlling the impact of distance.

With Eq. 6, the LS is smoothed: (1) for each token
t̂ ∈ Cr(t), its local sensitivity LSf (t̂) is scaled
using the exponential decay function e−βd(t,t̂) ; (2)
the scaled maximum value maxt̂∈Cr(t)(LSf (t̂) ·
e−βd(t,t̂)) is selected as the smooth sensitivity
Sf,β(t) of the target token t:

Sf,β(t) = max
t̂∈Cr(t)

(LSf (t̂) · e−βd(t,t̂)). (6)

As the distance d(t, t̂) between adjacent tokens
increases, the decay function e−βd(t,t̂) decreases
rapidly, thereby lowering the value of LSf (t̂) ·
e−βd(t,t̂). Since Sf,β(t) is the maximum value of
LSf (t̂) · e−βd(t,t̂), tokens closer to the target token
are more likely to contribute to the maximum value
than distant tokens. So, Sf,β(t) is more sensitive to

2When noise is adjusted based on a token’s LS, high sensi-
tivity leads to larger noise amplitudes. If an attacker detects
these changes, they could infer the token’s local characteristics,
potentially exposing privacy. For instance, density information
may reveal the token’s location in the embedding space.

changes in closer tokens, allowing it to better pre-
serve semantic features while avoiding excessive
interference. Additionally, a larger β accelerates
the decay of e−βd(t,t̂), emphasizing neighboring
tokens while reducing the influence of distant ones;
conversely, a smaller β slows the decay of e−βd(t,t̂),
allowing distant tokens to contribute more, thereby
enhancing privacy protection.

The benefit of the above method is twofold: (1)
Compared to GS, our proposed smooth sensitivity
incorporates LS to dynamically adjust the noise
amplitude for each input token, reducing the noise
amplitude and thus improving the model perfor-
mance. (2) Compared to LS, our proposed smooth
sensitivity mitigates the fluctuations in the sensi-
tivity of individual data, weakening the impact of
outliers, thereby ensuring that the sensitivity sat-
isfies DP. Since the smooth sensitivity calculation
of the target token t incorporates LS of all adja-
cent tokens, the adjacent token t̂ at the peak3 in
the LS may significantly influence and potentially
improve the sensitivity of t. This operation actually
smoothes the sensitivity peak of t̂ in disguise and
reduces the fluctuation of single data.

4.3 Dynamic Construction of Adjacency List

To better preserve token semantics while generating
non-privacy text, we use the noisy semantic density
to dynamically construct token adjacency lists.

4.3.1 Adjacency List Construction
We construct an adaptive-size adjacency list for
each token t. Given a token t ∈ Vt, the adjacency
list Cr(t) consists of kt tokens nearest to t con-
sidering the Euclidean distance in the embedding
space: Cr(t) = {t1, t2, · · · , tkt}, where kt denotes
the size of the token t’s adjacency list. Note that
Cr(t) always contains at least token t itself.

4.3.2 Dynamic Adjacency List Using Noisy
Semantic Density

To achieve fine-grained control over the adjacency
list, we leverage the noisy semantic density ob-
tained by DP-based semantic density information
modeling to dynamically adjust each token’s ad-
jacency list size. The motivation stems from the
limitations of existing studies, which either set a
fixed adjacency list size (Yue et al., 2021; Chen
et al., 2023) or apply a uniform noise distribution
on all tokens (Tong et al., 2025) to determine the

3The occurrence of a peak means that the LS of a token is
significantly higher than that of other adjacent tokens.
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range of the adjacency list. However, for tokens
with higher density (i.e. lower semantic sensitiv-
ity), enforcing the same strict privacy protection
may result in unnecessary semantic loss. There-
fore, to preserve the token’s semantic information
as much as possible, we aim to adjust the size of
the adjacency list based on the token’s sensitivity.

Specifically, we dynamically determine the size
of the adjacency list of a token based on its density
information. The process consists of two steps:

Step 1: Density Normalization. We apply a
Min-Max normalization (Henderi et al., 2021) to
the noisy density information F (t) of token t, en-
suring that the normalized value F̂ (t) falls within
[0, 1], thereby adjusting the adjacency list size on
a unified scale. Fmin and Fmax represent the mini-
mum and maximum values of the density informa-
tion for all tokens in the embedding space.

F̂ (t) =
F (t)− Fmin

Fmax − Fmin
, (7)

Min-max normalization linearly scales data, pre-
serving its relative proportions. It retains the origi-
nal distribution shape and statistical properties.

Step 2: Dynamic Scaling of Adjacency Lists.
We use the normalized density information F̂ (t)
to scale the adjacency list size. With a default
hyperparameter K as the maximum size, we obtain
the adjacency list size kt for token t as:

kt = max
(
1,
⌊
(1− F̂ (t))K

⌋)
. (8)

Eq. 8 ensures that when F̂ (t) is close to 0 (low den-
sity), kt approaches K, creating a larger adjacency
list; and when F̂ (t) is close to 1 (high density), kt
approaches 1, resulting in a smaller adjacency list.

According to Eq. 8, the size of a token’s ad-
jacency list is inversely proportional to its noisy
density information, enabling dynamic adjustment
based on semantic density. Specifically, tokens
with higher density have lower sensitivity (See §4.2
for analysis), resulting in a smaller adjacency list
where the included tokens are semantically closer
to the target token. This increases the likelihood of
sampling closer tokens, effectively preserving the
target token’s semantic information. In contrast,
tokens with lower density have higher sensitivity,
resulting in a larger adjacency list that includes
more tokens farther in semantic distance from the
target token, thereby enhancing privacy protection.

4.4 Private Token Replacement via Similarity
For each sensitive token, we replace it with a per-
turbed non-sensitive token sampled from its adja-
cency list under DP protection. To achieve this,
we design a replacement mechanism that integrates
the exponential mechanism (McSherry and Talwar,
2007), ensuring the LDP guarantee while account-
ing for semantic relevance. We introduce similarity-
based scoring to determine the probability of select-
ing a replacement token from the adjacency list.

Similarity-based Score. We design a scoring
function u(·) for the replacement mechanism M(·).
The goal is to assign higher scores to candidate to-
kens that exhibit greater semantic similarity to the
target token, thereby increasing their probability
of being sampled. Thus, we use the negative Eu-
clidean distance and normalize it to the range [0, 1].
Specifically, for a token t ∈ Vt and its candidate to-
ken t̂ ∈ Cr(t), we first compute the Euclidean dis-
tance d(t, t̂) to measure their semantic distance and
define the scoring function as: u(t, t̂) = 1− d(t,t̂)

dmax
,

where dmax represents the semantic distance be-
tween token t and the farthest token tkt in its ad-
jacency list as: dmax = d(t, tkt). Since d(t, t̂) ≤
dmax, it follows that 0 ≤ d(t,t̂)

dmax
≤ 1. Consequently,

we can deduce: 0 ≤ u(t, t̂) ≤ 1,∆u = 1.

Replacement Mechanism. Given the privacy
budget parameter εr of the replacement module, for
the input token t ∈ Vt, the probability (McSherry
and Talwar, 2007) of the replacement mechanism
M(·) outputting the candidate token t̂ ∈ Cr(t) is:

Pr[M(t) = t̂] = softmax(
εr · u(t, t̂)

2∆u
)

=
exp( εr·u(t,t̂)2∆u )

∑
ti∈Cr(t)

exp( εr·u(t,ti)2∆u )

(9)

The replacement mechanism leverages the scor-
ing function u(t, t̂) to prioritize candidate tokens
with higher semantic similarity in the adjacency list
obtained in (§4.3), ensuring that tokens with closer
tokens have a greater probability of being sampled.
At the same time, the intensity of privacy protection
can be flexibly controlled by adjusting the privacy
budget εr. A higher privacy budget leads the mech-
anism to favor candidate tokens closer in semantics
to the target token, while a lower budget increases
randomness to strengthen privacy protection. We
prove that the replacement mechanism satisfies εr-
DP, with the detailed proof provided in the APP. A.
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Method IMDb 20 Newsgroups PubMedQA
MAUVE Coherence MAUVE Coherence MAUVE Coherence

GPT-4 0.258 0.599 0.228 0.601 0.315 0.737
Vicuna-7B 0.094 0.023 0.180 0.406 0.230 0.609

ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3

FBDD 0.049 0.074 0.062 0.169 0.169 0.172 0.056 0.040 0.043 0.159 0.156 0.157 0.092 0.096 0.078 0.352 0.351 0.352
SANTEXT+ 0.205 0.228 0.236 0.403 0.463 0.550 0.115 0.102 0.135 0.373 0.418 0.494 0.219 0.230 0.238 0.595 0.676 0.726
CUSTEXT+ 0.225 0.252 0.197 0.588 0.580 0.550 0.153 0.171 0.152 0.557 0.562 0.562 0.183 0.224 0.219 0.693 0.698 0.703
RANTEXT 0.038 0.047 0.054 0.113 0.125 0.128 0.030 0.040 0.047 0.095 0.125 0.132 0.010 0.010 0.010 0.127 0.142 0.151
DYNTEXT 0.241 0.254 0.242 0.589 0.590 0.590 0.183 0.180 0.158 0.578 0.579 0.579 0.271 0.289 0.341 0.727 0.728 0.732

Table 1: Comparing the performance of all methods on open text generation tasks with different privacy budgets
(ε = 1, 2, 3) on three datasets, evaluated using MAUVE and Coherence metrics. The best results are highlighted in
bold. Our improvements are significant under the t-test with p < 0.05 (See details in App. E).

Method
IMDb 20 Newsgroups PubMed QA

MAUVE Coherence MAUVE Coherence MAUVE Coherence

ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3

w/o smooth 0.241 0.248 0.242 0.589 0.589 0.585 0.158 0.124 0.157 0.295 0.294 0.295 0.269 0.287 0.299 0.726 0.726 0.729
w/o dynamic adj. list 0.235 0.248 0.240 0.586 0.587 0.589 0.156 0.139 0.155 0.294 0.294 0.292 0.246 0.287 0.254 0.726 0.728 0.727

w/o replacement 0.241 0.247 0.241 0.582 0.587 0.589 0.172 0.164 0.125 0.293 0.293 0.292 0.264 0.258 0.325 0.722 0.724 0.722
DYNTEXT 0.241 0.254 0.242 0.589 0.590 0.590 0.183 0.180 0.158 0.578 0.579 0.579 0.271 0.289 0.341 0.727 0.728 0.732

Table 2: Ablation results on DYNTEXT. w/o indicates that we remove a specific module or an approach from our
full model. The best results are highlighted in bold.

5 Experiments

5.1 Experimental Settings

Datasets. For open-ended text generation tasks,
we use three widely-used NLP datasets: IMDb, 20
Newsgroups, and PubMedQA (details in App. B).

Baselines. We use two non-DP methods as refer-
ences: GPT-4, continues the original private text us-
ing GPT-4 without privacy protection. Vicuna-7b,
continues the original private text using the local
model Vicuna-7b (Chiang et al., 2023). We use
four types of DP-based sanitization mechanisms
to obtain the sanitized text, followed by text gen-
eration with GPT-4: FBDD (Feyisetan et al., 2020)
adds noise to token embeddings and replaces the
token with the token closest to the noisy embed-
ding. SANTEXT+ (Yue et al., 2021) applies the ex-
ponential mechanism to replace each token with a
semantically similar one from the embedding space.
CUSTEXT+ (Chen et al., 2023) uses a fixed set of ad-
jacent candidates and the exponential mechanism
for replacement. RANTEXT (Tong et al., 2025) ap-
plies Laplace noise (Kotz et al., 2012) to introduce
randomness into the non-sensitive token list and
uses the exponential mechanism for replacement.

Metrics. Following (Tong et al., 2025), we eval-
uate the quality of the generated text with (see
App. C for details): 1) MAUVE (Pillutla et al., 2021);
2) Coherence.

Details of implementation in App.D.

5.2 Overall Performance

Tab. 1 compares the continued text quality per-
formance of all baselines across three benchmark
datasets under different privacy budgets. Across
all datasets, DYNTEXT consistently outperforms DP-
based baselines in both MAUVE and Coherence,
demonstrating superior text quality even under low
privacy budgets. Specifically, (1) GPT-4 typically
represents the upper bound of performance, as it
directly accesses the original private text. The qual-
ity of its generated text generally surpasses that of
the local model Vicuna. (2) Despite the DP pertur-
bation applied to the prompts, DYNTEXT generates
text that closely approximates the quality of GPT-4.
(3) In the PubmedQA dataset, focused on the medi-
cal privacy domain, DYNTEXT performs exception-
ally well, achieving significant improvements over
other baseline methods. This demonstrates that
DYNTEXT excels in the privacy domain as well.

5.3 Ablation Study

Tab. 2 presents the ablation studies of DYNTEXT.
The ablation results show that the full DYNTEXT
consistently outperforms all other configurations,
validating the effectiveness of each module. (1)
w/o smooth uses GS instead of token-level smooth
sensitivity (§ 4.2). The performance drops signifi-
cantly on the 20 Newsgroups, indicating that using
GS when there is abnormal data may introduce ex-
cessive noise, leading to poor performance. (2) w/o
dynamic adj. list uses a fixed adjacency list of
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Method IMDb 20 Newsgroups PubMedQA
ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3

SANTEXT+ 0.97143 0.97143 0.97143 0.01136 0.04735 0.18939 0.02667 0.11000 0.25556
CUSTEXT+ 0.39778 0.38778 0.37333 0.31439 0.32955 0.36237 0.27333 0.26333 0.27111
RANTEXT 0.00243 0.01160 0.02439 0.00000 0.00192 0.00637 0.00000 0.00333 0.00222
DYNTEXT 0.00008 0.00008 0.00007 0.00000 0.00010 0.00009 0.00000 0.00001 0.00002

Table 3: Comparing the attack success rates (rats) of input inference attacks under different methods with different
privacy budgets (ε = 1, 2, 3) on three datasets. Bold text denotes the best attack resistance.

Figure 2: The cosine similarity between the replace-
ment token and the original token in GloVe embedding
obtained by different baselines with DP budgets.

size 2
K instead of dynamically adjusting the adja-

cency list size based density information (§ 4.3).
The performance is significantly reduced, highlight-
ing the effectiveness of the dynamic adjacency list
in preserving semantics. (3) w/o replacement
adds noise directly to the original token embed-
ding, then finds the token closest to the noisy em-
bedding in the dynamic adjacency list to replace
the original token, instead of using the replacement
mechanism (§ 4.4). The decline in results confirms
that the replacement mechanism effectively sam-
ples semantically closer tokens while ensuring DP.

5.4 Analysis Study of Anti-attack

To evaluate the anti-attack capability of each
method under different privacy budgets, we con-
duct input inference attack (Yue et al., 2021) ex-
periments on three datasets and compute the attack
success rate rats. In this attack, the adversary uses
a pre-trained BERT model to recover the original
private text from the perturbed text by masking
and predicting each token. The attack is successful
if the prediction matches the original token. The
results in Tab. 3 show that DYNTEXT outperforms
other baselines in privacy protection against input
inference attacks, with rats approaching 0. More-
over, DYNTEXT maintains high stability as the pri-
vacy budget increases, unlike other baselines that
rise significantly. This demonstrates DYNTEXT’s ro-
bust and stable privacy protection capabilities.

5.5 Analysis Study of Token Similarity

To reflect the semantic loss caused by replacing
sensitive tokens among different methods, we com-
pare the similarity between the replacement tokens
obtained by each method and the original token.
Specifically, we measure the cosine similarity (Xia
et al., 2015) between the original token and its re-
placement in the GloVe embedding (Pennington
et al., 2014). As shown in Fig. 2: (1) For the same
privacy budget ε, DYNTEXT achieves the highest co-
sine similarity, indicating minimal semantic loss.
(2) As ε decreases, all methods show a decline
in similarity, reflecting higher semantic loss with
stronger privacy protection. (3) FBDD and Rantext
show notably low cosine similarity, indicating that
methods introduce significant semantic deviation.

5.6 Distribution in Different Density Areas

(a) High-density area. (b) Low-density area.

Figure 3: The original token distribution and the replace-
ment token distribution of DYNTEXT and RANTEXT
samples in different density areas.

We plot the token distribution of Origin and the
sampling distributions of RANTEXT and DYNTEXT in
different density areas. First, we reduce the high-
dimensional space to three dimensions. Using Eq.4,
we extract tokens from both high- and low-density
areas and randomly sample some as original tokens.
Then, we apply the sanitization mechanism to gen-
erate replacement tokens. From Fig.3, we observe:
(1) In high-density (low-sensitivity) areas, DYNTEXT
closely resembles Origin, preserving semantics
well; while in low-density (high-sensitivity) areas,
semantic deviation increases, enhancing privacy.
(2) RANTEXT matches DYNTEXT in low-density ar-
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eas but diverges in high-density areas, suggesting
that RANTEXT applies the same privacy strategy to
all tokens, leading to unnecessary semantic loss.

6 Conclusion

In summary, we proposed DYNTEXT to sanitize
text for privacy-preserving LLM inference. DYN-
TEXT extracts token density using semantic-based
density information modeling under DP; then dy-
namically constructs the adjacency list of each to-
ken based on the density information to adaptively
adjust the protection level; finally, samples non-
private tokens from the list through a replacement
mechanism to replace sensitive tokens. Experi-
ments show that DYNTEXT achieves SOTA per-
formance in balancing the privacy-utility trade-off.

7 Limitations

In our study, several limitations warrant attention.
Firstly, the current method has been exclusively
validated within the context of single-language text
continuation tasks. Considering that state-of-the-
art models for other tasks, such as multilingual
processing, machine translation, or text summa-
rization, often incorporate complex components,
substantial further research is necessary to adapt
our model for these applications. In future work,
we intend to extend DYNTEXT to new domains
beyond text generation, including optimization for
these intricate components, to enhance its versatil-
ity and performance across diverse scenarios.

Secondly, due to the current method’s reliance on
internal semantic information, it has not fully lever-
aged external knowledge bases, contextual data, or
external retrieval mechanisms to augment semantic
understanding. This limitation may result in in-
adequate identification and protection of sensitive
information in complex scenarios, a prevalent chal-
lenge in this field. To address this issue, we plan
to explore the integration of multi-source informa-
tion into the privacy protection mechanism, aiming
to further balance the trade-off between semantic
retention and privacy safeguarding.

8 Ethical Considerations

We have rigorously proven through theoretical anal-
ysis that our method DYNTEXT satisfies DP guar-
antees and has demonstrated strong empirical secu-
rity through adversarial attack experiments. How-
ever, residual theoretical risks of malicious ex-
ploitation still exist, particularly when processing

sensitive medical or legal documents. Despite our
experiments indicating nearly zero successful at-
tacks, real-world adversaries may utilize unfore-
seen attack vectors. Consequently, for high-stakes
applications such as healthcare or legal advice, we
recommend augmenting our method with human
reviews to ensure that outputs adhere to ethical and
safety standards. We propose that users consider
our method as a robust initial defense mechanism,
complementing it with additional security measures
to establish a comprehensive protection system. Fu-
ture research will focus on further enhancements
to mitigate these residual risks.
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A εr-LDP Proof for the Replacement
Mechanism

We need to prove that, given a privacy parameter
εr ≥ 0, for any two adjacent input tokens t, t′ ∈ Vt

and output token t̂ ∈ Cr(t) ∧ Cr(t
′), their proba-

bility ratio satisfies:

Pr[M(t) = t̂]

Pr[M(t′) = t̂]
≤ eεr . (10)

According to the probability formula Eq. 9 of the
replacement mechanism, we expand the probability
ratio:

Pr[M(t) = t̂]

Pr[M(t′) = t̂]
=

exp
(

εr ·u(t,t̂)
2∆u

)

∑
ti∈Cr(t)

exp
(

εr ·u(t,ti)
2∆u

)

exp
(

εr ·u(t′,t̂)
2∆u

)

∑
ti∈Cr(t′) exp

(
εr ·u(t′,ti)

2∆u

)
.

(11)
Because of 0 ≤ u(t, t̂) ≤ 1, 0 ≤ u(t′, t̂) ≤ 1 and
∆u = 1, it can be further deduced that:

exp
(
εr·u(t,t̂)
2∆u

)

exp
(
εr·u(t′,t̂)

2∆u

) = exp
( εr
2∆u

(u(t, t̂)− u(t′, t̂))
)

≤ exp
(εr
2

)
.

(12)
We use the maximum-minimum ratio inequality to
analyze the change in the denominator. Assump-
tions: (1) The smallest softmax normalization term
in Cr(t) corresponds to exp

(
εr·umin(t)

2

)
. (2) The

largest softmax normalization term in Cr(t
′) corre-

sponds to exp
(
εr·umax(t′

2

)
. Therefore:

∑

ti∈Cr(t′)

exp

(
εr · u(t′, ti)

2

)

≤|Cr(t
′)| · exp

(
εr · umax(t

′)
2

)
,

(13)

∑

ti∈Cr(t)

exp

(
εr · u(t, ti)

2

)
≥ exp

(
εr · umin(t)

2

)
.

(14)

Thereby, it can be further deduced that:

∑
ti∈Cr(t′) exp

(
εr·u(t′,ti)

2

)

∑
ti∈Cr(t)

exp
(
εr·u(t,ti)

2

)

≤|Cr(t
′)| · exp

(
εr(umax(t

′)− umin(t))

2

)

≤|Cr(t
′)|e εr

2 .

(15)

By combining the changes in both the numerator
and denominator, we obtain:

Pr[M(t) = t̂]

Pr[M(t′) = t̂]
≤ e

εr
2 · |Cr(t

′)|e εr
2 = |Cr(t

′)|eεr .
(16)

Since in DYNTEXT, the size of the adjacency list
|Cr(t

′)| is a finite constant (at most K), the re-
placement mechanism satisfies εr-LDP. It can be
proved:

Pr[M(t) = t̂]

Pr[M(t′) = t̂]
≤ eεr . (17)

So the replacement mechanism satisfies εr-DP.

B Details of Datasets

For open-ended text generation tasks, we em-
ploy three benchmark corpora comprising distinct
scales and domains: (a) The IMDb dataset4 (3,000
samples) provides movie review texts for binary
sentiment analysis; (b) 20 Newsgroups5 contains
1,766 documents across 20 thematic categories
for multi-class news classification and (c) Pub-
MedQA6 (1,000 expert-annotated instances) sup-
ports biomedical question answering using research
abstracts.

C Details of Metrics

Following previous works of open-ended text gen-
eration (Welleck et al., 2019; Xu et al., 2022; Tong
et al., 2025), we use the first 50 tokens of the arti-
cles referred to as the raw document Doc, which
requires privacy protection. We use the continu-
ation writing of Doc, referred to as Gen, which
consists of 100 tokens. Tokens are counted by the
tokenization scheme of GPT-2 (Lagler et al., 2013).
Following (Tong et al., 2025), we use two metrics

4https://huggingface.co/datasets/shubnandi/
imdb_small

5https://huggingface.co/datasets/aihpi/20_
newsgroups_demo

6https://huggingface.co/datasets/knowledgator/
PubmedQA
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Dataset
MAUNE Coherence

ε=1 ε=2 ε=3 ε=1 ε=2 ε=3

IMDb 1.78e-10 1.24e-02 8.08e-22 1.62e-37 8.22e-06 6.09e-19
20 Newsgroups 1.09e-16 1.79e-04 6.31e-06 4.61e-13 3.93e-10 1.28e-12

PubMedQA 1.65e-20 1.42e-24 1.31e-31 1.46e-35 4.95e-26 6.23e-03

Table 4: Statistical significance test results (p-values) across privacy budgets ε for MAUNE and Coherence metrics.
All p-values < 0.05 confirm significant improvements over baselines.

to evaluate the quality of the generated text in the
open-ended generation task:

1) MAUVE (Pillutla et al., 2021): It is used to
assess the similarity between text generated by a
language model and human-authored target contin-
uation text.

2) Coherence: It calculates the cosine similarity
between the text and the continuation.

COH(Doc,Gen) =
SimCSE(Doc) · SimCSE(Gen)

|SimCSE(Doc)| · |SimCSE(Gen)|
(18)

where SimCSE(x) ∈ Rd denotes the sentence
embedding vector of x generated by the SimCSE
model (Gao et al., 2021).

D Details of Implementation

The total privacy budget of DYNTEXT is ε =
εd + εr. The privacy budget parameter εd defaults
to 0.5. We set δ to 1 × 10−6 by default. Follow-
ing Custext, we default K to 20. For black-box
inference, we use GPT-4 (OpenAI, 2023a) to gen-
erate continuation text with the temperature param-
eter set to 0.5. Correspondingly, the token vocabu-
lary Vt of GPT-4 is cl100k_base (OpenAI, 2023c).
For the embedding function ϕ(·), we select text-
embedding-ada-002 (OpenAI, 2023b), which uti-
lizes the same token vocabulary cl100k_base with
GPT-4.

E Significance Test Results

We conduct the t-test (Bartlett, 1937) to examine
whether the improvements of our method are sig-
nificant. The p values in Tab. 4 are all smaller
than 0.05, demonstrating the significance of our
improvements.
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