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Abstract

Self-consistency decoding enhances LLMs’
performance on reasoning tasks by sampling
diverse reasoning paths and selecting the most
frequent answer. However, it is computation-
ally expensive, as sampling many of these
(Iengthy) paths is required to increase the
chances that the correct answer emerges as the
most frequent one. To address this, we intro-
duce Confidence-Informed Self-Consistency
(CISC). CISC performs a weighted majority
vote based on confidence scores obtained di-
rectly from the model. By prioritizing high-
confidence paths, it can identify the correct an-
swer with a significantly smaller sample size.
When tested on nine models and four datasets,
CISC outperforms self-consistency in nearly
all configurations, reducing the required num-
ber of reasoning paths by over 40% on average.
In addition, we introduce the notion of within-
question confidence evaluation, after showing
that standard evaluation methods are poor pre-
dictors of success in distinguishing correct and
incorrect answers to the same question. In fact,
the most calibrated confidence method proved
to be the least effective for CISC. Lastly, be-
yond these practical implications, our results
and analyses show that LLMs can effectively
judge the correctness of their own outputs, con-
tributing to the ongoing debate on this topic.

1 Introduction

Modern large language models (LLMs) demon-
strate strong reasoning capabilities (Bubeck et al.,
2023; Guo et al., 2025), driven in part by their
capacity to generate a sequence of intermediate
reasoning steps that lead them toward a final an-
swer (Wei et al., 2022; Jaech et al., 2024). Self-
consistency (Wang et al., 2022) is a popular decod-
ing strategy that further improves LLMs’ reasoning
performance by sampling a diverse set of reason-
ing paths and selecting the most frequent answer
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Figure 1: Accuracy as a function of the number of
sampled responses for self-consistency vs CISC, using
Gemma2-9B on the MATH dataset. CISC achieves
higher overall accuracy while significantly reducing
computational costs. With just 8 samples, it surpasses
the performance of 30-sample self-consistency.

as the final output. Despite its effectiveness, this
approach is also computationally expensive, as it
requires generating a large number of (long) rea-
soning paths to increase the chances that the correct
answer emerges as the most frequent one.

Motivated by recent evidence that LLMs pos-
sess the ability to judge the correctness of their
own outputs (Kadavath et al., 2022; Zhang et al.,
2024), we hypothesize that self-consistency could
be made significantly more efficient if the model
could review each generated reasoning path before
selecting a final answer. We therefore introduce
Confidence-Informed Self-Consistency (CISC),
a lightweight extension of self-consistency. As
illustrated in Figure 2, CISC uses the model to
generate a self-assessment score for each path and
employs these scores in a weighted majority vote.

We conducted a comprehensive comparison of
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Figure 2: A simplified example comparing self-consistency vs CISC. (1) Given an input question, (2) both methods
first sample multiple reasoning paths. (4, top) Self-consistency then simply selects the most frequent answer.
Conversely, (3) CISC adds a self-assessment step, where a confidence score is assigned to each path (see §4.1 for
more advanced methods). Then, (4, bottom) it selects the final answer via a weighted majority vote.

CISC and self-consistency, spanning nine LLMs
of various sizes, four datasets covering a wide
range of mathematical and commonsense reason-
ing tasks, and three popular methods for deriving
self-assessment confidence scores from the model.
Our results demonstrate that CISC outperforms
self-consistency in virtually all the examined con-
figurations. Using the best-performing confidence
estimation method, CISC achieves comparable per-
formance to self-consistency while reducing the
required number of reasoning paths by over 40%
on average (See Figure 1 for an example).

Surprisingly, the most calibrated confidence
method is actually the least useful for CISC. We
offer a potential explanation: existing confidence
evaluation metrics measure the usefulness of con-
fidence scores for comparing answers across dif-
ferent questions, while CISC requires distinguish-
ing correct and incorrect answers for the same
question. To address this, we propose the Within-
Question Discrimination (WQD) metric that specif-
ically measures this ability, and demonstrate that it
can predict the relative performance of CISC with
different confidence methods.

Finally, we conduct a qualitative-analysis and
find a significant agreement between model con-
fidence scores and human assessments of the
reasoning-paths’ quality. Specifically, responses
identified by the model as low-confidence were
also significantly more likely to be flagged by hu-
man evaluators as exhibiting signs of low-quality
reasoning patterns.

To summarize, we contribute practical methods
and foundational insights:

* We propose CISC, a decoding strategy that
can be used as a drop-in replacement to self-
consistency, achieving comparable accuracy
at a significantly lower computational cost.

* We introduce the concept of within-question
confidence evaluation, after showing that stan-
dard evaluation methods are poor predictors of
success in distinguishing correct and incorrect
answers to the same question.

* We present empirical evidence supporting the
idea that LLMs are capable of self-assessing
their responses, contributing to the ongoing
debate regarding this capability (Gero et al.,
2023; Huang et al., 2023; Li et al., 2024a;
Stechly et al., 2024)

2 Notations

We consider an auto-regressive language model M
with parameters 0. We use py(-|x) to denote M’s
distribution over the next token given the provided
context x. Given a question q (e.g., “Jane had 4
apples and ate half of her apples. How many apples
she has now?”), we denote the model’s response as
(r,a), where a is the answer (e.g., “2”) and r is a
reasoning path (or chain-of-thought), a sequence of
logical steps supposedly leading up to this answer
(e.g., “If Jane ate half her apples, this means she
ate 2 apples. 4 minus 2 is 2.”).

3 Confidence-Informed Self-Consistency

In this section we present Confidence-Informed
Self-Consistency (CISC). When designing CISC,
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we hypothesized that it is possible to reduce self-
consistency’s computational costs by generating
a confidence score for each reasoning path, and
performing a weighted majority vote.

As an intuitive example, consider a hypothetical
setting where there exist only two possible answers,
one correct and one incorrect. For a model that re-
sponds with the correct answer 60% of the time,
standard majority voting will require 40 samples to
reach 90% accuracy'. However, a weighted major-
ity vote that weights correct answers twice as much
as incorrect ones, will achieve 90% accuracy with
less than 10 samples.

With this motivation in mind, we build on recent
findings suggesting that LLMs are capable of judg-
ing the correctness of their own outputs (Kadavath
et al., 2022; Tian et al., 2023b; Zhang et al., 2024),
and incorporate the model’s self-assessment of its
reasoning paths into the final answer selection:

Definition 3.1 (Confidence-Informed Self-Con-
sistency). Given a question q and responses
{(r1,a1),...,(rm,amn)}, CISC involves:

* Confidence Extraction: A self-assessed confi-
dence score c; € R is derived for each (r;,a;).

* Confidence Normalization: The confidence

scores are normalized using Softmax: ¢; =
exp( =% :

(T ) o ), where T is a tunable tempera-

i eXp(T . .
ture hyper-parameter (see discussion below).

» Aggregation: The final answer is selected
using a confidence-weighted majority vote:
acrsc = argmaxg y ;o la; = al - é.

The temperature parameter 1" controls the rela-
tive importance of the answer frequency versus the
confidence scores. Namely, as 7" — oo, the distri-
bution of normalized confidence scores approaches
the uniform distribution, and CISC collapses to
vanilla self-consistency. Conversely, as 7' — 0, the
softmax normalization approaches the hard maxi-
mum function, prioritizing the single response with
the highest confidence and disregarding the over-
all frequency of answers. This may lead CISC to
select a different answer than self-consistency (see
Figure 2).

!Calculated using the binomial distribution. All the techni-
cal details are included in Appendix A

4 Experimental Setup

We compare CISC and self-consistency across a
range of confidence extraction methods (§4.1), rea-
soning tasks (§4.2) and models (§4.3).

4.1 Confidence Extraction Methods

We use the following methods:

* Response Probability (Wang et al., 2022): The
confidence in a response (r, a) is taken to be the
model’s (length-normalized) probability of gen-
erating (r,a) = (x1,...,x,) given the question:

3=

po(r,a) = [II_ 1 pg(xi|xy ... 21, q)]

¢ Verbal Confidence (Lin et al., 2022): After sam-
pling (r,a) from the model, we prompt it to rate
its confidence in its previously generated output.
We implement two variants: (1) Verbal Binary
instructs the model to output either O or 1, and
(2) Verbal 0-100 instructs the model to output a
score on a scale of 0-100.

* P(True) Kadavath et al. (2022): We prompt the
model to rate its confidence in (r, a) in binary for-
mat (either O or 1), and compute the probability
that the model assigns to the token 1.

Efficient and Consistent Confidence Prompting.
Our implementation of the prompt-based methods
employs a two-step prompting procedure (as de-
picted in Figure 2). Given a question prompt gq,
we first use the model to generate the reasoning
chain and answer (r,a). We then concatenate a
confidence extraction prompt e (e.g., “Now I will
rate my confidence...””), and continue the genera-
tion on (g, , a, e). This serves two important pur-
poses. First, it ensures that when comparing self-
consistency and CISC, the reasoning chains are
identical. Second, the fact that the prefix (¢, 7, a)
remains unchanged after concatenating the confi-
dence extraction prompt e means it does not re-
quire reprocessing by the LLM. Consequently, the
additional cost of the confidence extraction step
consists only of encoding len(e) ~ 20 tokens and
generating a single token. Since a single (g, 7, a)
typically contains hundreds of tokens, the confi-
dence extraction step adds only a negligible compu-
tational overhead to self-consistency. Further over-
head reduction can be achieved through prompt
optimization or by using the single-step procedure
described in Appendix B. The precise prompts used
and additional technical details are also provided
in Appendix B.
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4.2 Datasets
We used four large reasoning benchmarks:?

* GSMS8K (Cobbe et al., 2021a): A dataset of
grade-school level math word problems. We eval-
uate on the entire validation set (1320 questions).

* MATH (Hendrycks et al., 2021): A more chal-
lenging dataset of math word problems. We used
the entire test set (SK questions).

e MMLU-Pro (Wang et al., 2024d): A more chal-
lenging version of the Multitask Language Under-
standing (MMLU) benchmark, testing language
models’ general knowledge and reasoning abili-
ties with a wide range of topics such as science
and history. We randomly sampled 5K questions.

* Big-Bench-Hard (Suzgun et al., 2022): A chal-
lenging selection of tasks from the big-bench
benchmark (bench authors, 2023), comprises a
variety of reasoning tasks that pose challenges
to LLMs, such as counting objects. We selected
20 out of 23 tasks (5,761 examples), eliminating
three sub-tasks that required designated answer
extraction methods.

4.3 Models

We use nine instruction-tuned open-weights LLMs
from 3 different families:

* GEMMAZ2 (Team et al., 2024): A Google Al
model family, including 2B, 9B, and 27B param-
eter models.

* QWEN2.5 (Yang et al., 2024): A model family
from Alibaba Al, with 7 models ranging from
0.5B to 72B parameters. We selected three mod-
els: 3B, 14B, and 72B.

e Mistral (Mistral-Al, 2024): We used three
of the latest models available - Ministral-
8B-Instruct-2410, Mistral-Small-Instruct-2409,
mistralai/Mistral-Large-Instruct-2411 - with 8B,
22B, 123B parameters respectively.

4.4 Metrics

We compare CISC against self-consistency using
the following metrics:

* % Cost Reduction: The percentage of computa-
tional cost saved by using CISC. We fix the com-
pute budget for CISC (5 or 10 model responses)

2Other than the popular GSMS8K, the other datasets were
chosen as the three largest datasets in the Hugging Face
Leaderboard (Hugging-Face, 2024b) (as of December 1st,
2024).

and measure the number of responses® required
for self-consistency to achieve equivalent accu-
racy:

100 (1 CISC budget >

C# Comparable SC responses

* % Accuracy Improvement: The relative accu-
racy gain of CISC over self-consistency when
both methods utilize the same number of re-
sponses per question:

100 x CISC Acc 1
SC Acc

4.5 Temperature Scaling

As discussed in §3, CISC re-scales the confidence
values using a softmax transformation, parameter-
ized by a temperature 7 > 0. We tune the tem-
perature separately for each model and confidence
extraction method using a 10% held-out set, ag-
gregated across all four datasets (§4.2). The fact
that CISC only employees a single dataset-agnostic
hyper-parameter, makes the tuning process light-
weight and robust. More details and the optimal
temperature values for each configuration are in
appendix D.

4.6 Bootstrap

To compute the performance of a decoding strategy
s (either self-consistency or a variant of CISC) with
a sample budget of b € [1,...,30], we perform
bootstrap sampling. We first sample 30 different
reasoning paths from the model. Next, we draw
n = 500 sets of b paths for each question, apply
s to each set, and compute the accuracy per set.
We then average the results across all bootstrap
samples to obtain the final score.

5 Main Results

This section demonstrates CISC’s (§3.1) substantial
performance advantage over self-consistency. We
compare CISC, using fixed compute budgets of 5
and 10 responses per question, based on the metrics
defined in §4.4.

CISC outperforms self-consistency across virtu-
ally all models and datasets. Table 1 presents
the Cost Reduction and Accuracy Improvement
(see §4.4) achieved by CISC with each confidence

31f self-consistency failed to reach CISC’s accuracy using
up to 30 responses, we use a maximal value of 31 for this
metric.
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Cost Reduction

Acc Improvement

Confidence Method  Budget5 Budget 10 Budget5 Budget 10
Verbal Binary 18% 6.1) 10% (11.1) 0.4% 0.2%
Verbal 1-100 22% 6.4)  30% (14.4) 0.8% 0.4%
Response Probability  22% (6.5) 31% (14.6) 1.1% 0.8%
P(True) 41% 8.4 46% (18.6) 1.6% 1.1%

Table 1: CISC performance (macro-averaged over all datasets and models) per confidence method. CISC
performs better than standard self-consistency in terms of both efficiency gains and accuracy improvements across
all confidence methods. Specifically, the P-True method achieves the best results. For instance, self-consistency
must use 18.6 sampled responses on average to match the accuracy obtained by CISC using only 10 samples,

representing a 46% reduction in computational costs.

method. The results are macro-averaged across
all models and datasets. CISC outperforms self-
consistency with every confidence method.

The P(True) method yields the best results,
achieving an average Cost Reduction of 41% and
46% with budgets of 5 and 10 responses, respec-
tively. Figure 3 presents a detailed breakdown of
CISC’s performance using P(True) across all mod-
els and datasets. Notably, CISC is effective across
nearly all configurations, with some exceeding 67%
cost reduction.

We provide additional results in Appendix C. In
particular, Table 6 shows a per-dataset breakdown
of Table 1, and Table 7 shows the Accuracy Im-
provement metric micro-averaged across configura-
tions, which enables the computation of confidence
intervals. These demonstrate that the observed im-
provements of CISC (for each confidence method
examined) are strongly statistically significant.

Confidence Normalization improves CISC’s
performance. We drill down into the importance
of the within-question confidence normalization
step in CISC. In Table 2, we compare CISC’s per-
formance with and without confidence normaliza-
tion. We see that for every confidence method
examined, CISC with normalization (softmax with
a tunable temperature value) outperforms its un-
normalized counterpart. However, as shown in
Supplementary Table 8, normalization is effective
only when using appropriate temperature hyper-
parameters. Because different confidence extrac-
tion methods produce scores on different scales,
their optimal temperatures vary considerably (val-
ues are provided in Supplementary Figure 8). For
instance, the P(True) method yields confidence val-
ues with high similarity, thus requiring lower tem-

9 9 28
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Figure 3: Results breakdown for CISC using the
P(True) method and a budget of 10 responses per
question. Each cell is annotated with the Cost Re-
duction (Percentage; §4.4) of CISC compared to self-
consistency. As can be seen, CISC improves perfor-
mance across almost all model families and datasets.
In many cases, even 30 samples are not enough for
self-consistency to reach CISC performance, leading to
Cost Reduction of over 67%.

peratures to distinguish between them.

6 Within-Question Confidence
Evaluation

Recent work demonstrated that verbal confidence
methods significantly outperform P(True) in terms
of calibration (Tyen et al., 2023), which is the de-
facto approach to evaluate the quality of confidence
measures. Yet, perhaps surprisingly, CISC is more
effective with P(True) than with verbal confidence
methods (Table 1). In this section we settle these
differences, and explain why well-calibrated confi-
dence measures can still be less useful for CISC.
We argue that existing evaluation metrics,
whether calibration based (Kadavath et al., 2022;
Tian et al., 2023b) or discrimination based (Kuhn
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Confidence Method Cost Reduction @ 10
P(True) (w/o normalization) 32% (14.8)
P(True) (w/ normalization) 46% (18.6)
SP (w/o normalization) 249% (13.1)
SP (w/ normalization) 31% (14.6)
Verbal (w/o normalization) 20% (12.5)
Verbal (w/ normalization) 30% (14.4)

Table 2: CISC performance with and without con-
fidence normalization (bottom and top rows, respec-
tively). We see that while CISC demonstrates substan-
tial cost reductions even without normalization, em-
ploying normalization (Softmax and temperature scal-
ing) significantly enhances performance, across all
three confidence methods.

Verbal Binary 0.005 0.187 52.2% 10%
Verbal 0-100 0.046 0.173 56.1% 30%
Response Prob.  0.090 0.192 59.0% 31%
P(True) 0.030 0.182 62.3% 46 %

Table 3: Comparison of different confidence ex-
traction methods in terms of between-question and
within-question confidence evaluation metrics. We
see that between-question metrics (ECE-t, Brier-t) are
poor indicators of effective confidence extraction for
CISC, while our novel WQD metric (6.1) effectively
predicts which confidence extraction method yields the
best CISC performance.

et al., 2023; Nguyen et al., 2024) examine the confi-
dence behavior between the input questions. How-
ever, for CISC to work well, we want the confi-
dence scores to be able to distinguish correct and
incorrect responses to the same question.

To gain an intuition for the difference between
within-question and between-question confidence
evaluation, consider the following simple example.
Imagine a model M and a dataset with two types of
questions: questions that M finds “easy” (e.g., an-
swers correctly 95% of the time) and questions that
M finds “hard” (e.g., answers correctly 5% of the
time). Consider a confidence measure that assigns
every answer to an “easy” question a confidence
of 0.95 and every answer to a hard question a con-
fidence of 0.05. This confidence signal is useless
for CISC, as it does not make any distinctions be-
tween answers to the same question. On the other
hand, it scores well under existing metrics (e.g., it
is perfectly calibrated).

The above thought experiment shows that the
fact that well-calibrated confidence scores can be

derived from a model does not necessarily imply
the model possesses a capacity to self-assess its
own responses. To isolate this specific ability, we
design a metric that measures whether the confi-
dence scores can distinguish correct and incorrect
responses to the same question:

Definition 6.1 (Within-Question Discrimination).
Given a dataset of questions, for each ques-
tion q, denote the sampled responses by R, =
{(ri,a;)}™,, and let Rq+, R, C Ry be the sub-
sets of correct and incorrect responses respectively.
We evaluate the Within-Question Discrimination
(WQD) of a confidence method c : (r,a) — R as:

WQD(c) =

% . Z Z Z [e(r,a) > c(r',a")]

9 (ra)eRF (7,a/)ERy

where N =3 |RF| - |R;|.

That is, we compute the fraction of cases where
the higher confidence response is indeed the correct
response, out of pairs of responses to the same
question (exactly one of which is correct). In our
work, we use m = 30 (as described in §4.6).

To emphasize the importance of within-question
evaluation, we test if WQD is more predictive of
CISC’s success than standard between-question
confidence metrics. We compare each confidence
method from §4.1 in terms of: (i) standard metrics,
such as ECE (Guo et al., 2017) and Brier Score
(Brier, 1950), (ii) WQD, (iii) CISC performance at
a budget of 10 samples. We follow previous work
(Tyen et al., 2023) and report the standard metrics
after applying temperature scaling (Ovadia et al.,
2019), a technique that fits a single temperature pa-
rameter 7' to the model’s confidences to minimize
the negative log-likelihood on the data. We use
ECE-t and Brier-t to denote the scaled scores.

The results of this comparison, averaged across
all datasets (§4.2) and models (§4.3), are summa-
rized in Table 3. Indeed, we see that the verbal con-
fidence methods obtain the best ECE-t and Brier-t
scores while also achieving the worst performance
in CISC. On the other hand, the WQD metric is
able to perfectly predict the relative scores of each
confidence method in CISC. This emphasizes the
limitations of relying solely on traditional confi-
dence evaluation methods for evaluating the mod-
els ability to self-assess its reasoning.

The WQD metric prioritizes interpretability, fo-
cusing on the discrimination ability of the confi-
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Figure 4: Within-Question Discrimination score (indi-
cated by color) increases smoothly as a function of the
confidence gap (percentiles, x-axis). Here we use the
P(True) method, Gemma?2-9B and the MATH dataset.

dence scores irrespective of the relative magnitude
of the confidence values ¢(r, a) and ¢(r’, a’). How-
ever, examining the relationship between WQD and
the confidence gap |c(r,a) — ¢(r’, a’)| offers addi-
tional insights. Figure 4 illustrates a near mono-
tonic relationship: the within-question discrimina-
tion ability (indicated by color) smoothly increases
with the confidence gap (x-axis). These findings
suggest a fine-grained self-assessment mechanism,
where even small differences in confidence scores
reflect significant variations in the probability of a
response being correct

Taken together, our findings provide a com-
pelling evidence that LLMs indeed posses an in-
trinsic ability to reassess their own responses.

7 Qualitative Analysis

In §5 we showed that CISC has clear performance
advantages over standard self-consistency, and ar-
gued that this suggests LLMs are capable of self-
assessing their confidence in responses to the same
question. To facilitate a better understanding of this
phenomenon, we asked human evaluators to iden-
tify indicators of low-quality model responses (i.e.,
logical patterns that reduced the evaluators’ confi-
dence in the correctness of the LLM response). Our
analysis revealed a strong correlation between the
prevalence of these indicators and lower confidence
scores assigned by the LLM.

Sampling Process. We performed the analysis
on MMLU-Pro (§4.2), using three representative
models, one from each model family.

To reduce the evaluation burden we limited it to
three LLM responses per question. We selected
these triplets based on two criteria: (1) CISC and
SC produced different results, where one method
yielded a correct answer and the other did not, and
(2) the final answers of the three responses were
not all distinct, which would otherwise degenerate
self-consistency’s majority voting.

Out of the remaining triplets, we randomly chose
45 for which SC was correct and 45 where SC was

wrong. Then, for each triplet, we randomly took
either the response with highest relative-confidence
or the response with lowest relative-confidence.
This ensured an equal number of low relative-
confidence responses that were correct and incor-
rect, mitigating potential bias of answer correct-
ness on our analysis. The process resulted in 90
responses for human evaluation.

Human Evaluation. Two human evaluators
(NLP Phd students), unaware of both the model’s
confidence scores and the ground truth labels, re-
viewed 90 samples. The evaluators’ task was to
identify logical patterns in the LLM reasoning-
chain which reduce their confidence that the LLM
has reached a correct answer; we call these patterns
low-quality-indicators. Also, the evaluators were
asked to briefly describe each identified pattern.

Results. Our evaluation demonstrated a signifi-
cant correlation in confidence assessments: 67% of
the samples assessed as relative-low confidence by
the model were also judged to contain low-quality
indicators by human evaluators, while only 33% of
the samples assessed as relative-high confidence
by the model contained the human identified low-
quality-indicators. This strong correlation suggests
that LLMs are adept at assessing their own reason-
ing processes and identifying patterns that humans
consider indicative of low quality.

In addition, we categorized these low-quality in-
dicators. Three primary categories emerged: (1)
the LLM’s final answer was not among the pro-
vided options; (2) the LLM deliberated between
multiple options; and (3) the LLLM omitted neces-
sary calculations. Of these, only categories (1) and
(3) showed a strong correlation with the LLM’s
low-confidence scores. Further details regarding
these categories and their correlation statistics are
available in the Appendix E.

8 Related Work

Confidence signals for LLMs. There is a long
line of work on deriving confidence measures from
LLMs. Popular approaches use the agreement
across multiple samples (Kuhn et al., 2023; Man-
akul et al., 2023; Tian et al., 2023a; Lyu et al., 2024;
Gekhman et al., 2024), the model’s internal repre-
sentations (Azaria and Mitchell, 2023; Burns et al.,
2022; Orgad et al., 2025) or directly prompting
the model to verbalize its confidence (Tian et al.,
2023b; Kadavath et al., 2022). All papers in this

20096



line of work focused on fact-seeking tasks, so confi-
dence is typically derived based on the final answer
alone. To the best of our knowledge, our work is
the first to apply these approaches to scoring the
entire reasoning path.

Reasoning verification. While learned verifiers
have been demonstrated to significantly improve
performance on math word problems (Cobbe et al.,
2021b; Lightman et al., 2023; Li et al., 2022), the
ability of LLMs to perform self-verification and
self-correction is still heavily contested, with some
works providing positive evidence for such capabil-
ities (Weng et al., 2022; Gero et al., 2023; Madaan
et al., 2024; Liu et al., 2024; Li et al., 2024a)
and others arguing that the gains can mostly be
attributed to clever prompt design, unfair baselines,
data contamination and using overly simple tasks
(Tyen et al., 2023; Valmeekam et al., 2023; Hong
etal., 2023; Huang et al., 2023; Stechly et al., 2024;
Zhang et al., 2024). This work contributes to this
ongoing discussion by presenting multiple lines of
evidence supporting LLM self-verification. In par-
ticular, we demonstrate clear benefits from a simple
confidence-based self-verification approach.

Improving self-consistency’s efficiency. Nu-
merous attempts (Chen et al., 2024) have been
made to reduce SC computational overhead while
maintaining quality. However, none have matched
the widespread adoption of self-consistency. This
can be largely attributed to several limitations: (1)
a trade-off where throughput is reduced while /a-
tency increases, for example by sampling chains
sequentially (instead of in parallel) until reaching a
certain condition (Aggarwal et al., 2023; Li et al.,
2024b; Wang et al., 2024b) or running expensive
LLM calls instead of the cheap majority voting
(Yoran et al., 2023), (2) the need for manual feature
crafting and tuning tailored to each dataset (Wan
et al., 2024), (3) promising results on specialized
setups (Wang et al., 2024a) which did not general-
ize to standard benchmarks (Table 9), and (4) as
highlighted by Huang et al. (2023), many of the
more sophisticated methods that appear promising
actually don’t outperform self-consistency when
evaluated with a thorough analysis of inference
costs. Our approach is different in that CISC adds
minimal complexity to self-consistency, and still
allows parallel sampling which enables to improve
throughput without compromising latency, a crucial
requirement for many applications.

Self-consistency with confidence. Related ap-
proaches to CISC’s confidence-weighted majority
vote were previously explored in both the origi-
nal self-consistency paper Wang et al. (2022), that
considered a weighted majority using Sequence
Probability (§4.4), and in Miao et al. (2023), that
concluded that verbally “asking the LLM to check
its own reasoning is largely ineffective” for improv-
ing self-consistency. In both cases, these failures
are attributed to the confidence scores being too
similar to one another. Our work shows that despite
this, the scores contain a useful signal (reflected in
the WQD scores; Table 3) that can be utilized by
a normalization step prior to aggregation to signif-
icantly improve the efficiency of self-consistency.
Furthermore, the P(True) method, which achieves
the highest WQD scores, has not been previously
used for attempting to improve self-consistency.

9 Discussion

In this work we introduced CISC, a lightweight ex-
tension of self-consistency. Across diverse models,
datasets, and confidence extraction methods, CISC
consistently outperformed self-consistency, reduc-
ing computation costs by over 40% on average.

The performance gains achieved by using model-
derived confidence scores provide a practical evi-
dence that LLMs can effectively judge the quality
of their own outputs, contributing to the ongoing
debate on this topic (Huang et al., 2023; Li et al.,
2024a). This is further strengthened by our quali-
tative evaluation, revealing significant agreement
between model confidence and human assessments
of response quality.

Complementing our investigation of LLM self-
assessment, we address the crucial aspect of evalu-
ating confidence methods. Traditional calibration
metrics, which assess confidence across different
questions, fail to capture a model’s ability to dis-
tinguish between high and low quality responses to
the same question. To overcome this, we introduce
the Within-Question Discrimination (WQD) metric
and demonstrate its effectiveness.

We encourage future research to explore the inte-
gration of model self-confidence into more sophisti-
cated reasoning frameworks like Tree of Thoughts
(Yao et al., 2024) or Graph of Thoughts (Besta
et al., 2024), believing that harnessing this inher-
ent capability can further boost performance. An-
other promising avenue is training models to pro-
duce more accurate intrinsic or verbal confidence
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(Lin et al., 2022; Chaudhry et al., 2024), which
would directly improve CISC and related methods.
For instance, recent evidence suggests that a bet-
ter signal can be derived from the model’s internal
states, even outperforming P(True) (Gekhman et al.,
2025). Conversely, CISC and WQD can be used to
assess the impact of advancements in confidence
generation.

10 Limitations

Confidence Prompting. Our confidence extrac-
tion prompting approach minimizes the computa-
tional overhead (§4.1) by using short confidence
prompts (less than 5% of the input and reasoning
chain length) that, unlike other works, are appended
after the reasoning chain. This allows us to con-
tinue to use the auto-regressive cache that was used
when the models generated the answer. While this
approach is readily implementable within frame-
works like HuggingFace (Hugging-Face, 2024a), it
may not be universally supported. An alternative
one-step prompting approach, which does not rely
on prefix caching, is discussed in Appendix B. We
opted for the two-step approach in this study to
ensure a clear and robust evaluation of CISC, fully
mitigating the impact of confidence integration on
the generated reasoning paths.

Access to the model’s probabilities.  The pre-
ferred CISC approach calculates P(True) (as de-
scribed in §4.1) by examining the model’s as-
signed probability to the verbal confidence token.
This method is available in both popular open-
weights frameworks (e.g., Hugging-Face (2024a))
and closed-weights frameworks (e.g., OpenAl
(2025)). However, this feature may not be uni-
versally available across all frameworks.

Human Evaluation. The qualitative human
evaluation presented in Section 7 provides further
support for our claims regarding LLMs’ ability to
self-assess the correctness of their responses. This
evaluation was conducted on the MMLU dataset,
which offers a diverse set of single-choice ques-
tions. Extending this analysis to other datasets
could offer additional insights.

Additional ablations. = We examined the per-
formance of CISC across several key aspects, fo-
cusing on the impact of the choice of confidence
extraction method and the impact of the confidence
normalization step. Additional ablations could in-
clude examining the effect of zero-shot vs few-shot

prompting, different choices of normalization tech-
niques, and using trainable confidence methods
(Lin et al., 2022; Chaudhry et al., 2024) to improve
the performance of CISC.

11 Ethics Statement

This work improves LLM reasoning efficiency by
introducing a new decoding strategy (CISC). While
CISC itself introduces no new ethical issues, LLMs
can perpetuate biases and have societal impacts.
Responsible LLM development and deployment,
including bias mitigation, are crucial.
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A Quantitative example from §3

Consider a simplified binary setting in which there
are two possible answers: correct and incorrect.
Given a number of samples n and a probability
p = 0.6 of generating the correct answer, the num-
ber of samples with the correct answer follows
the Binomial distribution X ~ Binomial(n,p).
For such distribution, the majority vote is accu-
rate whenever X > % and it has 50% chance to be
accurate when X = & (i.e., a random choice).

Now, to illustrate how the self-assessment score
of LLMs can be helpful, consider that we have an
oracle that assigns twice the weight for answers
that are correct. In this case, a weighted majority
vote would be accurate whenever X > 7 and it
has 50% chance to be accurate when X = %.

In Figure 5 we plot the relationship between,
(x-axis) the number of samples, and (y-axis) the
accuracy of the weighted majority vote over these
samples. The graph features two lines: (blue) each
sample gets an equal weight, and (orange) correct
answers are assigned twice the weight of incorrect
ones.

While this intuition about cost-saving also ap-
plies to the general case of an arbitrary set of an-
swers, this setting is trickier to analyze in closed-
form because the specific distribution of incorrect
answers impacts the majority vote. E.g., an an-
swer that appears only 20% of the time can still
be correct under majority vote if all the other 80%
incorrect answers are different from one another.
This could be obtained by placing additional distri-
butional assumptions on the sampled answers. The
analysis of the binary case can be thought of as
a worst-case analysis of the general case, since in
the worst case, all the incorrect answers are identi-
cal and the majority will be accurate if and only if
more than half the sampled answers are correct.

B Prompting Techniques

As described in Section 4.1, for our prompt based
confidence extraction techniques (Verbal Confi-
dence, P(True)), we used a two-step approach:
First, we prompted the model to answer bench-
mark questions using the prompts shown in Table
4. Then, we extracted confidence by concatenat-
ing the prompts shown in Table 5 and running the
model again. This two-step process allowed using
the same answers when comparing self-consistency
and CISC.

While a simpler single-step implementation (out-
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Figure 5: The relationship between the number of sam-
ples (x-axis) and the accuracy of majority vote over
these samples (y-axis), for two different hypothetical
cases sampled from a Binomial distribution: (blue)
Each sample receives an equal weight in majority vot-
ing, and (orange) Correct answers are assigned double
the weight of incorrect ones. Adding this additional
weighting information translated into 4.X reduction in
the number of samples required for the majority vote to
reach 90% accuracy.

putting both answer and confidence in a single re-
sponse) is possible, we did not explore it in this
study. For research purposes, we prioritized a clean
setup that ensured requesting confidence scores did
not influence the generated answers and chain-of-
thoughts.

As shown in Table 5, all the confidence ex-
traction prompts that we used are extremely
lightweight. We deliberately avoided methods that
significantly increase the number of generated to-
kens like generating k guesses with associated prob-
abilities (Tian et al., 2023b).

For the P(True) method, we modified the
prompts from Kadavath et al. (2022) in two ways:
(1) We changed the format to allow concatenation
after the model provided its answer, ensuring that
prefix caching could be re-used between the two
steps. (2) We changed the prompt format to 0/1 in-
stead of True/False, as some benchmarks are using
True/False as ground truth labels, and we observed
that it might confuse the model when extracting
confidence scores.
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C Additional Results

For each confidence method, Table 1 shows
the macro-average results across all models and
datasets. A more detailed version of this table,
with a per dataset breakdown, is given at Table 6.

In addition, Table 7 shows micro-averaged aggre-
gated results with confidence intervals, demonstrat-
ing the strong statistical significance of our findings.
These bootstrap confidence intervals were calcu-
lated as follows: (1) For each confidence method,
results from all datasets and models were combined
into a single dataset of approximately n ~ 150, 000
rows. (2) 10,000 bootstrap sets were generated by
repeatedly sampling n elements with replacement.
(3) The procedure described in 4.6 was applied to
each set, yielding 10,000 estimates of the mean
accuracy difference. (4) We used these estimates
to calculate the 95% interval.

Table 8 is an extended version of table 2. One
important insight that can be derived from the ex-
tended table, is that using softmax normalization
without temperature scaling is strongly discouraged
for CISC.

We also add Figures 6, 7 featuring additional
graphs similar to Figure 1, but with all the confi-
dence methods.

Finally, in Table 9, we include ablations compar-
ing CISC’s weighted majority mechanism to more
simple methods like selecting the max confidence
(Wang et al., 2024a) or using the confidence values
as a tie-breaker for self-consistency.

D Temperature Scaling Results

As discussed in §4.5, a single optimal temperature,
T*, was determined for each model and confidence
extraction method by using a 10% held-out set, ag-
gregated across all datasets. Fitting is done using
grid search on 80 evenly spaced values ranging
from 10~4 to 10%. This was a light-weight process,
only taking a few minutes on a standard desktop
since no LLM re-runs were necessary. The tem-
peratures for each configuration are presented in
Figure 8. As can be seen, each of the confidence ex-
traction method work with a different temperature
magnitude because it produce confidence values on
a different scale.

E Qualitative Appendix

The qualitative analysis presented in §7 involved
sampling the reasoning paths using three mod-
els: Qwen2.5 3B, Gemma?2 9B and Mistral Large

(123B). To broaden our evaluated sample pool, we
employed a bootstrap process, sampling three dis-
tinct traces per question multiple times. Then, we
first filtered these samples so that each of them ar-
rived from a different question, and continued with
the sampling process described in §7.

Human evaluators were asked to identify logi-
cal patterns in the LLMs’ reasoning paths that re-
duced the evaluators’ confidence in the correctness
of the LLMs’ answers. Importantly, the MMLU
dataset requires significant domain knowledge and
unspecialized humans achieved only 34.5% accu-
racy (Hendrycks et al., 2020), compared to a ran-
dom baseline of 25%. The MMLU-pro dataset
18 based on the MMLU dataset, but is considered
much harder. This means that our evaluators, which
lacked specialized knowledge, could not easily how
to solve each question. Instead, we instructed them
to focus on identifying low-quality reasoning er-
rors in the responses of the LLMs. This approach
aligns with findings from a prior analysis on GPT-
40 (Wang et al., 2024c¢), which attributed 39% of
its errors to reasoning flaws that do not rely on
specialized domain knowledge.

Following this review, we aggregated the indica-
tors of low quality into high-level categories. Three
main categories encompassed 49% of the samples.
The remaining samples either lacked low-quality
indicators (50%) or had indicators that did not fit
into a sizable category (1%). The different cate-
gories and their prevalence are presented in Table
11.

Two of these three categories show a strong as-
sociation with relative-low confidence scores from
the model: (1) The model arrived at solutions not
present among the available options, and (2) The
model only conducted partial calculations neces-
sary. Interestingly, the pattern where the model
explores several plausible solutions without identi-
fying a definitive "correct" one was not specifically
associated with either high or low confidence in the
model’s reasoning paths, underscoring that not all
human-identified patterns significantly influence
the model’s assessment.

Overall, the alignment of human-identified low-
quality indicators with low-confidence scores pro-
vides another evidence of the ability of LLMs to
self-assess and prioritize high confidence solutions.
An ability that is leveraged by CISC.
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Figure 6: Comparison between different confidence extraction methods using Gemma2-9B model and four datasets
(§4.2). CISC with P(True) outperforms Self-Consistency and is the best of all the CISC variants.

F Compute

For each model (§4.3), we generated approximately
500,000 responses - 17,000 questions (§4.2), with
30 samples (§4.6). As a reference, inference with
Gemma2-2-Billion (1K token context length) re-
quired an order of 100 Nvidia H100 GPU hours.
We consider 30 samples to be a substantial sam-
ple size. In more practical scenarios, we anticipate
practitioners would likely use a smaller number
of samples. As illustrated in Figures 1 and 6, the
improvement curves show a logarithmic shape. On
average, across all models and datasets, we found
that just 13 responses were sufficient to achieve
90% of the maximum effect observed with 30 re-

Sponses.

20104



General Instructions

Before giving your answer, provide a step-by-step explanation of your thought process. Then on
a new line, give your proposed answer adhering to this precise format: *Proposed answer: (X).’,
where X is your proposed answer.

Dataset Prompt

You will be given a single-choice question. Answer the question by
selecting the letter of the best fitting option.

MMLU-Pro  [General Instructions]

The answer MUST ALWAYS be the letter of one of the available options;
it CANNOT be "None of the Above".

You will be given a question and your goal is to answer it correctly.\n Your
proposed answer should be a TeX expression, such as *$5%°, °$3.14%’, or
MATH "$\\sqrt{8}$

[General Instructions]

BBH You will be given a question and your goal is to answer it correctly.

no options .
( p ) [General Instructions]

You will be given a question and your goal is to answer it correctly.

BBH [General Instructions]
(with options)
Select the letter of the best fitting option. The answer CANNOT be
"None of the Above".

You will be given a question and your goal is to answer it correctly.
GSMB8K
[General Instructions]

Table 4: The prompts used to generate model responses for benchmark questions. For all datasets, we used the
General Instructions (shown at the top) asking the model to solve each question step-by-step and provide its final
answer in a specified format. In addition, for each dataset we briefly explained the expected questions format. All
prompts were zero-shot; few-shot experiments are reserved for future work.

Confidence Method Prompt

Now I will rate my confidence in the proposed answer on a scale of 0-100.

Verbal 0-100 Proposed confidence: (

Now I will rate my confidence in the proposed answer as either O or 1.

Verbal Binary Proposed confidence: (

Table 5: The prompts used to extract the model confidence in its response. As explained in section B, these prompts
are concatenated as a second step, after the model already answers the question. For the P(True) method, we used
the Verbal Binary prompt and looked at the probably the model assigns to the token 1. Importantly, in all the
models evaluated in this work, "(0" and "(1" are tokenized as two separate tokens.
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Figure 7: Comparison between different confidence extraction methods using Mistral 123B model and four datasets
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3 graphs.
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Comparable SC Samples  Acc Improvement (%)
Dataset  Confidence Method  Budget5 Budget 10 Budget5 Budget 10

MMLU  Verbal Binary 18% (6.1) 12% (11.3) 04 0.2
Verbal 1-100 25% 6.7)  32% (14.6) 0.9 0.7
Response Probability 17% 6.0) 23% (13.0) 0.7 0.6
P(True) 37% (790 47% (18.8) 1.4 1.0
MATH Verbal Binary 18% 6.1) 11% (11.2) 0.8 0.5
Verbal 1-100 17% 6.0) 12% (11.3) 1.3 0.6
Response Probability 19% (6.2) 17% (12.0) 2.2 1.2
P(True) 32% (1.3) 34% (15.2) 3.0 2.0
GSMB8K  Verbal Binary 18% 6.1) 7% (10.8) 0.2 0.1
Verbal 1-100 22% (6.4)  32% (14.6) 0.3 0.1
Response Probability 21% (6.3)  33% (14.9) 0.7 0.5
P(True) 43% 8.8) 53% (21.2) 0.9 0.6
BBH Verbal Binary 17% 6.00 10% (11.1) 0.2 0.1
Verbal 1-100 22% (6.4) 41% (17.0) 0.5 04
Response Probability 32% (7.3)  45% (18.3) 0.7 0.8
P(True) 48% (9.7) 47% (19.0) 1.0 0.9

Table 6: Aggregated results across all models for each dataset and confidence extraction method. All methods
demonstrate better performance than standard self-consistency, with the P-True method achieving the best results
and leading to an computational cost reduction of up to 53%

Acc Improvement

Confidence Method Budget 5 Budget 10

Verbal Binary 0.35 (0.34-0.37)  0.20 (0.18-0.21)
Verbal 1-100 0.68 (0.64-0.72)  0.46 (0.40-0.51)
Response Probability  0.88 (0.84-0.92)  0.69 (0.63-0.74)
P(True) 1.38 (1.32-1.43)  1.03 (0.96-1.10)

Table 7: Micro-averaged Aggregated Results. This table presents the micro-averaged aggregated results with
confidence intervals for each confidence method. Each confidence method demonstrates statistically significant
improvements over self-consistency, and P(True) method exhibits significant superiority over other methods. This
detailed view supplements the macro-average results shown in Table 1 and provides statistical verification of the
efficiency gains and accuracy improvements attributed to CISC methods.
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% Cost Reduction % Acc Improvement

5 10 5 10 30
Confidence Method
P(True) - No Normalization 29% (100 32% (148 14 08 04
P(True) - Softmax T=1 27% 6.8) 30% (142) 13 0.8 0.3
P(True) - Softmax T=Tuned 41% 84 46% 186) 1.6 1.1 0.9
Sequence Probability - No Normalization 21% (6.3) 24% (13.1) 1.1 0.6 0.3
Sequence Probability - Softmax T=1 20% 6.3) 23% (13.00 1.1 0.6 0.2
Sequence Probability - Softmax T=Tuned 22% (6.5) 31% (14.6) 1.1 0.8 0.7
Verbal O - 100 - No Normalization 20% 6.3) 20% (1259 0.7 04 0.1
Verbal O - 100 - Softmax T=1 12% 5.7)  -1% (9.9) 03 -14 -26
Verbal O - 100 - Softmax T=Tuned 22% 6.4 30% (144) 08 04 0.3

Table 8: Normalization Ablation. This table extends Table 2, showing that temperature-scaled softmax is optimal
for all methods, and that softmax should be avoided without temperature scaling.

Comparable SC Samples  Acc Improvement (%)
Confidence Method Budget5  Budget 10 Budget5 Budget 10
Max -11% @450  -84% (5.9 -1.9 -4.5
Tie 27% 6.8)  28% (13.9) 1.3 0.7
CISC 41% (8.4 46 % (18.6) 1.6 1.1

Table 9: Simplified ablation.

Here we compare CISC with two simplified ablations: (Max) Which selects

the answer with highest confidence score, and (Tie) Only uses CISC if self-consistency resulted in a tie. All
methods are calculated using the P(True) confidence. Results are aggregated across all models and datasets. CISC
significantly outperforms both ablations, and the Max method even degenerates performance.

GSM8K MATH MMLU

Dataset BBH
Model

Gemma 27b  57.1
Gemma 2b 55.8
Gemma 9b 55.3
Mistral 123 56.2
Mistral 22 64.1
Mistral 8 594
Qwen 14b 58.9
Qwen 3b 56.3
Qwen 72b 53.5

66.1 62.9 59.9
66.2 64.3 53.6
68.3 71.8 58.9
66.1 61.2 63.4
81.4 74.9 67.7
71.8 62.9 58.8
65.5 59.0 60.2
61.9 57.5 56.0
62.4 63.6 58.8

Table 10: Within-Question-Discrimination Breakdown. This table presents a breakdown of the aggregated
Within-Question-Discrimination (WQD) results presented in Table 3, using the P(True) method. In all cases,

WQD scores exceed the 50% chance level.
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Category Definition Low High Snippet
The model arrives at a solution
which is not present in the list "... After reviewing the options,
of available options. This can it’s clear that none of them per-
include case where a mathemat- fectly fit the requirements. How-
No choice ical answer significantly diverg- 38% 13%  ever, the closest correct option is
ing from all options, answers that (A), which only has a minor er-
are only partially correct, or the ror in calculating the remaining
elimination of all options as part inches. Proposed answer: (A)"
of the reasoning process.
The model begins to solve the " sCalculate Heat Flow:**
problem but does not complete N e .
. q" =h (T-surface - T-air)
the full calculation, often due to .
**Note:** Without the actual val-
Incomplete  the lack of necessary data. For ex- . . . .
. . 22% 2% ues for air density, viscosity, and
Calculations ample, when attempting to com- S 5
. thermal conductivity at 68°F, we
pute acceleration, the absence of )
cannot perform the precise calcu-
mass data prevents an exact and . N
. lations. Proposed answer: (C).
full calculation.
.. 2.**Identify Buddhist
The model explores several plau- Thinkers:** The options list sev-
sible solutions without identify- eral prominent Buddhist figures
ing a definitive "correct" one. from various traditions... 4.
Multiple This occurs when the model 1% 16% **Most Prominent:** The Dalai
candidates solves a problem generally, re- 7 ” Lama and Thich Nhat Hanh stand

lying on estimations rather than
concrete data, resulting in a range
of potential answers.

out for their consistent empha-
sis on self-sacrifice in their teach-
ings and actions. Proposed an-
swer: (I)"

Table 11: Human evaluators identified low-quality reasoning indicators in LLM responses (see §7). These indica-
tors were then clustered into three categories, each described above with a definition and an example snippet from
an LLM response. The (Low, High) columns show the percentage of LLM responses with low/high self-assessed
confidence that exhibited each pattern. The "No Choice" and "Incomplete Calculation" categories are strongly
associated with low confidence.
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Evaluate the LLMs’ reasoning paths, looking for logical inconsistencies or
errors that lower your confidence in their conclusions. Because the questions
are very difficult, even for experts, your task is to identify general reasoning
flaws, not to assess the correctness of the final answers themselves. Examples:

General

Instructions * Incorrect Assumption: The model assumes something without justification
* Missing Step: The model skips a crucial step in the reasoning process
¢ Contradiction: The model states both A and not-A

Question [Pre-filled - The original question given to the LLM]

I(;Ililt\sut [Pre-filled - The LLM output for the given question]

Table 12: The input given to human evaluators as part of our qualitative analysis (§7).
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Figure 8: The best temperatures values for each model
/ confidence-method combination. As discussed in Sec-
tion 4.5, we fit a single temperature hyper-parameter
across 10% of all datasets together. As can be seen,
each of the confidence extraction method work with a
different temperature magnitude. We also see variabil-
ity between models using the same confidence extrac-
tion method.
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