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Abstract

Large Language models (LLMs) have achieved
encouraging results in tabular data genera-
tion. However, existing approaches require fine-
tuning, which is computationally expensive.
This paper explores an alternative: prompting
a fixed LLM with in-context examples. We ob-
serve that using randomly selected in-context
examples hampers the LLM’s performance, re-
sulting in sub-optimal generation quality. To ad-
dress this, we propose a novel in-context learn-
ing framework: TABGEN-ICL, to enhance the
in-context learning ability of LLMs for tabu-
lar data generation. TABGEN-ICL operates
iteratively, retrieving a subset of real samples
that represent the residual between currently
generated samples and true data distributions.
This approach serves two purposes: locally, it
provides more effective in-context learning ex-
amples for the LLM in each iteration; globally,
it progressively narrows the gap between gen-
erated and real data. Extensive experiments
on five real-world tabular datasets demonstrate
that TABGEN-ICL significantly outperforms
the random selection strategy. Specifically, it re-
duces the error rate by a margin of up to 42.2%
on fidelity metrics. We demonstrate for the
first time that prompting a fixed LLM can yield
high-quality synthetic tabular data. The code is
provided in the link.

1 Introduction

Tabular data, despite being one of the most preva-
lent data modalities in real-world applications (Ben-
jelloun et al., 2020), often encounters several is-
sues in practical use. These include imbalanced
data categories (Cao et al., 2019), privacy concerns
(Gascón et al., 2016) (as many tabular datasets con-
tain sensitive personal information that cannot be
directly shared), insufficient data quality (Lin and
Tsai, 2020), and high data collection costs (Even
et al., 2007). Tabular generation is an important
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means to address these problems. Classic tabu-
lar generation methods such as GANs (Xu et al.,
2019), VAEs (Liu et al., 2023), and diffusion mod-
els (Kim et al., 2023; Lee et al., 2023; Kotelnikov
et al., 2023; Zhang et al., 2024) have two main
limitations. First, they require large amounts of tab-
ular data for training, which leads to a noticeable
decline in performance in low-resource scenarios.
This is particularly problematic considering that
most real-world situations requiring tabular genera-
tion lack abundant data. Second, they need special
preprocessing to handle heterogeneous data types,
making them less flexible.

The rapid development of large language models
(LLMs) brings new possibilities for solving table
data generation problems with their powerful se-
mantic understanding, reasoning, and generation
capabilities. LLMs can understand and process var-
ious data types and structures without complicated
data preprocessing, offering more flexible and prin-
cipled solutions. Moreover, LLMs’ few-shot learn-
ing ability may alleviate data scarcity issues, en-
abling excellent performance in low-resource sce-
narios. Previous works (Borisov et al., 2023; Sola-
torio and Dupriez, 2023; Zhang et al., 2023; Zhao
et al., 2023; Gulati and Roysdon, 2023; Xu et al.,
2024a; Wang et al., 2024) resort to fine-tuning
general-purpose LLMs on target tables. While ef-
fective, fine-tuning requires substantial computa-
tional resources, making it inapplicable in resource-
scarce scenarios.

In-context learning effectively solves such prob-
lems. By adding examples to the context, distri-
bution characteristics can be provided to LLMs,
guiding them to generate data that conforms to
the target distribution without specific fine-tuning
(Gao et al., 2023). However, simple in-context
learning strategies still face challenges. Figure 1(a)
shows that even without in-context examples (see
the full prompt at Appendix A.2), LLMs can gen-
erate reasonable distributions, reflecting the influ-
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(a) No in-context Ex. (b) Sampled in-context Ex.

(c) Fixed in-context Ex. (d) Ground Truth

Figure 1: Comparison of samples generated with dif-
ferent in-context learning examples. Plots show the
latitude and longitude coordinates of California housing,
with the solid line representing the state boundary. (a)
2000 samples generated by LLM with only the table
header as input, without any in-context examples. (b)
2000 samples generated by LLM, giving in-context ex-
amples sampled from the real dataset. (c) 2000 synthetic
samples generated by LLM, giving in-context examples
with latitude and longitude in a fixed range. (d) 2000
samples from the ground truth training table.

ence of the LLM’s pre-training distribution. Figure
1(b) demonstrates the strategy proposed by (Seedat
et al., 2024), which involves random sampling from
Ground Truth as in-context examples. Although
the generated results are closer to the Ground Truth
shown in Figure 1(d) compared to Figure 1(a), they
are still mainly influenced by the LLM’s original
distribution and struggle to fit the Ground Truth.

This phenomenon reveals the importance of
choosing in-context examples. In this work, we pro-
pose TABGEN-ICL, a dynamic in-context example
selection method. Inspired by the observation in
Figure 1(c), we found that using fixed range in-
context examples leads to generated distributions
closely mimicking those examples, significantly
differing from the LLM’s original distribution. This
indicates in-context learning’s ability to simulate
distributions. By carefully selecting in-context ex-
amples, we can more effectively guide LLMs to
generate distributions closer to the ground truth.

Central to our framework is the design of an auto-

mated strategy for selecting effective in-context ex-
amples while ensuring global consistency with the
real data distribution. Our key idea is to utilize sim-
ple, discernible patterns in subsets of real samples,
which can effectively guide LLMs in generating
realistic tabular data. Specifically, TABGEN-ICL
identifies subsets of real samples that exhibit sim-
ple patterns and closely match the residual between
the current generated data distribution and the real
data distribution. This idea can be categorized as
a novel residual-aware RAG technique, where we
retrieve in-context examples based on the residual
between the generated and real data distributions.

The residual-aware sampling measures the dis-
crepancy between the generated and real data distri-
butions, focusing on areas where the model needs
improvement. This approach enables TABGEN-
ICL to progressively narrow the distribution gap
while maintaining the use of easily learnable pat-
terns in the in-context examples. Our sampling
technique offers two key advantages: flexibility in
selecting simple patterns for effective learning, and
consistent generation through progressive distribu-
tion alignment. The contributions of this paper are
as follows:

1. We propose TABGEN-ICL, an in-context learn-
ing selection method that retrieves in-context ex-
amples by leveraging residual between currently
generated samples and true data distributions.

2. We conduct extensive experiments on five
datasets, evaluated under three distinct groups
of synthetic data evaluation metrics. Experi-
ment results show that TABGEN-ICL outper-
forms the previous in-context learning method
by a margin of 3.5% − 42.2% across multiple
fidelity metrics. Notably, TABGEN-ICL sur-
passes state-of-the-art deep generative models
under the data-scarce scenarios.

2 Related works

Deep generative models for synthetic tabular
data generation Generative models for tabu-
lar data have become increasingly important and
have widespread applications (Assefa et al., 2021;
Zheng and Charoenphakdee, 2022; Hernandez
et al., 2022). For example, CTGAN and TAVE (Xu
et al., 2019) deal with mixed-type tabular data gen-
eration using the basic GAN (Goodfellow et al.,
2014) and VAE (Kingma and Welling, 2013) frame-
work. GOGGLE (Liu et al., 2023) incorporates
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Graph Attention Networks in a VAE framework
such that the correlation between different data
columns can be explicitly learned. Recently, in-
spired by the success of Diffusion models in image
generation, a lot of diffusion-based methods have
been proposed, such as TabDDPM (Kotelnikov
et al., 2023), STaSy (Kim et al., 2023), CoDi (Lee
et al., 2023), and TabSyn (Zhang et al., 2024).

LLMs for synthetic tabular data generation.
Collecting high-quality training data for advanced
deep learning models is often costly and time-
consuming. Pre-trained large language models
(LLMs), been exposed to vast corpora, have
emerged as a promising direction for synthetic
data generation. However, while LLMs have
demonstrated strong capabilities in generating high-
quality natural language, their ability to accurately
replicate tabular data distributions at scale remains
uncertain (Xu et al., 2024b). To address this chal-
lenge, several works have explored fine-tuning
LLMs such as GPT-2 to generate synthetic tab-
ular data more effectively (Borisov et al., 2023;
Solatorio and Dupriez, 2023; Yang et al., 2024).
Another line of work leverages the in-context learn-
ing abilities of LLMs (Seedat et al., 2023), which is
closely related to our method. Seedat et al. (2023)
adopts a straightforward strategy to uniformly sam-
ple in-context examples; we identify the root of
inefficiency of this strategy and instead propose a
residual-aware in-context example selection strat-
egy, which is shown to improve the generation
quality.

3 Preliminaries

Notation. Tabular dataset refers to data organized
in a tabular format with N row and D columns,
where each row denotes a data record or sample,
and each column denotes an attribute or feature.
Each attribute can be either discrete (e.g. categor-
ical) or continuous (e.g. real number R). We use
P(x) to denote the probability distribution of x.

Data Setup. We have access to a training dataset
of N samples: Dtrain = {xi}Ni=1, each sample xi

is i.i.d. drawn from an unknown distribution P(x).

Objective. The goal is to generate a new dataset
Dsyn = {x̂i}Ni=1 such that x̂i is i.i.d. sampled from
P(x). Direct copy of training data is not allowed.

Serialization. As LLMs primarily process
text input, it is necessary to convert tabular data

into a suitable textual format. There are many
serialization formats for tabular data, such as
JSON (Singha et al., 2023), Markdown (Sui
et al., 2024), Sentences (Borisov et al., 2023), etc.
Notably, the JSON format is widely supported
by LLMs, with models like GPT-4o capable of
generating structured outputs in JSON format
through constrained decoding (Liu et al., 2024).
Therefore, in this study, we adopt a JSON format
to serialize tabular data. For instance, a row
from a table containing three columns—name
(categorical), age (numerical), and city (cat-
egorical)—is transformed into a JSON object:
{name:‘Alice’, age:25, city:‘New York’}.
For a table comprising N rows, the serialized data
becomes a list of N JSON objects. See Appendix
A.3 for the implementation of the JSON schema.
During each prompting iteration, TABGEN-ICL
retrieves a subset of these JSON objects to serve
as in-context examples. This process will be
elaborated upon in subsequent sections.

4 TABGEN-ICL

This section presents TABGEN-ICL framework for
tabular data generation. TABGEN-ICL retrieves
a subset of samples from the training dataset that
satisfy two properties: 1) Local: at each prompting
iteration, the LLMs can effectively extract patterns
from the in-context examples; 2) Global: after
enough iterations, the overall generated samples
mimic the distribution of the real samples. In the
following, we will introduce each component of
TABGEN-ICL in detail.

4.1 LLM Generation with In-context
Examples

Our key observation is LLMs have strong prior
distribution, and LLMs tend to generate samples
following their prior distribution, neglecting the in-
context examples, see Figure 1. Formally, given in-
context examples, we assume the LLMs generate
samples following a mixture distribution:

Definition 1 (LLM Generation Distribution).
Given the empirical distribution of in-context ex-
ample: Pic. We define the LLMs generation distri-
bution to be the following mixture of distributions:

Pgen := λPllm + (1− λ)Pic (1)

where Pllm is the prior distribution of LLMs, λ ∈
[0, 1]. To sample from Pgen, we first sample an
index z from a categorical distribution over {0, 1}
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Figure 2: Overview of TABGEN-ICL framework. We generate synthetic samples in batches, at each prompt
iteration, TABGEN-ICL retrieves a subset of real samples that acts as a residual between the currently generated
samples and the real data. The residual samples will be used as in-context examples to prompt LLMs in the next
iteration. The full prompt template is available in the Appendix A.1.

with parameter λ, then sample from the correspond-
ing distribution:

Pgen(x) =

{
Pllm(x) if z = 1

Pic(x) if z = 0

Definition 1 quantifies how the in-context exam-
ples steer the LLMs’ generation from its own prior
distribution towards the target distribution. Intu-
itively, the more in-context examples being pro-
vided, λ will be closer to 0, meaning the LLMs is
more likely to generate samples following the em-
pirical distribution of in-context examples. In prac-
tice, due to the limited context window of LLMs,
only a small number of in-context examples can be
provided, thus we expect λ to be close to 1.

4.2 In-context Examples Selection
Recall our goal is to let LLMs generate samples that
follow the same distribution as the training table,
i.e. Pgen ≈ Ptrain. It is tempting to choose the in-
context examples by sampling from the empirical
distribution of the training table, i.e. Pic = Ptrain

(Seedat et al., 2024). However, as the LLMs’ gen-
eration is affected by the prior distribution Pllm,
the actual output distribution of LLMs would be
Pgen = λPllm + (1 − λ)Ptrain, which is not our
target distribution Ptrain. Instead, a more plausi-
ble way is to select in-context examples s.t., when
combined with λ proportion of data generated from
Pllm, the resulting distribution is close to Ptrain. In
other words, the in-context examples can be under-
stood as the residual of Ptrain w.r.t. Pllm. Formally,
we introduce the definition of residual as follows:

Definition 2 (Residual). Let X be a set of N i.i.d.
samples from a data distribution P(x), and let Y
be an arbitrary set of samples with the same dimen-
sion as X . We define the residual (abbrev. RES) of
X w.r.t. Y as a subset of n samples of X such that,
when concatenated with Y , the empirical distribu-
tion of the concatenated samples is most similar to
the data distribution P(x):

RES(X,Y , n) := argmin
X′⊆X,|X′|=n

d(X,Y ∪X ′)

(2)
where d can be any distance metric between two
empirical distributions.
Remark 1. In our case, X is the real tabular sam-
ples, and Y is the current generated samples by
a LLM. Intuitively, the residual samples capture
the part of the real samples that LLM has not yet
grasped, thus named as residual. To prevent overly
long context prompts when interacting with the
LLM, we enforce an upper-bound n on the size
of the residual samples. In our experiments, we
set n = 500 and instantiate d as Jensen-Shannon
Divergence (JSD) and Kolmogorov-Smirnov Dis-
tance (KSD).

Since brute-force way of computing the residual
is computationally prohibitive for large N and n,
we introduce a heuristic for sampling the residual.
We describe details in the following—pseudo-code
is provided in Appendix 1.

4.3 Compute Residual
We propose to use a simple heuristic to shrink the
search space. Specifically, we first randomly se-

20030



lect a column, then we group the real samples X
based on the value of the selected column1. Each
group of samples is then concatenated with the gen-
erated samples Y . Finally, we select the group
that has the smallest distance to the real samples
X as the residual. The time complexity of this
heuristic search algorithm is O(N). Additionally,
the final residual subset always exhibits a consis-
tent pattern—either sharing the same category or
falling within a narrow numerical range in one of its
columns. We hypothesize that this simple pattern
makes the residual samples particularly effective as
in-context examples for LLMs (see Figure 1 (c)).

4.4 Table Generation by TABGEN-ICL

TABGEN-ICL can be easily integrated with LLMs
to generate high-quality synthetic tabular data. See
Fig. 2 for an overview of the procedure. Here are
the concrete steps involved in this procedure:

1. In-context Prompting: For the first iteration,
we randomly select n samples from the real
dataset X as the initial set of in-context ex-
amples. Otherwise, we plug the residual sam-
ples computed in the previous iteration into the
prompt template to prompt LLMs. We append
the generated samples into Y .

2. Residual Computation: We then compute the
residual of X w.r.t. Y : RES(X,Y , n). Specifi-
cally, if the current iteration is an even number,
we instantiate d as JSD, otherwise, we instanti-
ate d as KSD.

3. Iterative Refinement: Repeat the above steps
until enough synthetic samples are generated.

5 Experiments

We validate the performance of TABGEN-ICL
through extensive experiments. In particular, we
investigate the following questions:

• Can TABGEN-ICL improve generation quality
compared to previous LLM-based methods? (Ta-
ble. 1, 2, Fig. 5)

• How does TABGEN-ICL perform, compared to
training-based deep generative models, under a
data-scarcity setting? (Fig. 3)

• Does TABGEN-ICL generate new synthetic data
instead of copying the training dataset? (Fig. 4)

1For categorical columns, we group by the categorical
values. For continuous columns, we discretize them into a
fixed number of bins and group by the bin index.

5.1 Setup
Datasets. We select five real-world tabular
datasets containing both numerical and categori-
cal attributes: Adult, Default, Shoppers, Magic
and California. The statistics of the datasets are
summarized in Table 5 in Appendix A.5.

Baselines. To comprehensively assess TABGEN-
ICL’s performance, we conduct comparisons
against a wide range of traditional deep genera-
tive models and LLM-based methods, which we
categorize into the following two groups:

• Deep generative models: 1) VAE-based method
TVAE (Xu et al., 2019), 2) GAN-based method
CTGAN (Xu et al., 2019), 3) Diffusion-based
method TabSyn (Zhang et al., 2024), TabDDPM
(Kotelnikov et al., 2023), CoDi (Lee et al., 2023),
STaSy (Kim et al., 2023), 4) Autoregressive
method TabMT (Gulati and Roysdon, 2023),
RealTabformer (RTF) (Solatorio and Dupriez,
2023).

• LLM-based methods: 1) with fine-tuning:
GReaT (Borisov et al., 2023) 2) without fine-
tuning: CLLM (Seedat et al., 2024). CLLM was
originally employed with GPT-3.5 and GPT-4, to
ensure a fair comparison to CLLM, we employ
CLLM with stronger models: GPT-4o-mini and
GPT-4o, and we keep all the other experimental
settings the same as ours.

To the best of our knowledge, CLLM (Seedat et al.,
2024) is the only prior training-free method that
relies solely on in-context learning for synthetic
tabular data generation. It consists of two main
stages: 1) Generation Stage: A large language
model (LLM) is prompted repeatedly to generate
new samples, using in-context examples randomly
selected from the training dataset; 2) Curation
Stage: After generating a sufficient number of sam-
ples, CLLM trains a separate classifier to identify
and filter out low-quality samples based on training
dynamics. To ensure that the performance gains
are solely attributable to the enhanced in-context
sampling strategy, we omit the curation stage of
CLLM. We keep all other experimental settings,
including hyperparameters, identical between the
two methods to enable a fair and controlled com-
parison.

Implementation details. Our main experiments
employ GPT-4o-mini and GPT-4o as the LLMs.
For all LLMs, we set the temperature to 1.0. We
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Method Marginal↓ % Corr↓ % Precision↓ % Recall↓ % C2ST↓ % JSD↓ 10−2

VAE-based
TVAE (Xu et al., 2019) 14.61 17.32 11.65 9.11 41.72 0.63

GAN-based
CTGAN (Xu et al., 2019) 16.36 20.33 30.65 11.41 42.90 0.91

Diffusion-based
STaSy (Kim et al., 2023) 12.35 9.72 11.09 2.66 55.82 1.34
CoDi (Lee et al., 2023) 21.70 24.92 9.89 6.74 57.88 1.07
TabDDPM (Kotelnikov et al., 2023) 14.04 8.16 13.37 2.27 24.21 0.85
TabSyn (Zhang et al., 2024) 1.40 2.36 3.76 2.29 2.64 0.05

Autoregressive Models
RTF (Solatorio and Dupriez, 2023) 5.31 10.42 3.53 5.25 28.16 0.45
TabMT (Gulati and Roysdon, 2023) 4.46 8.24 33.88 50.44 44.77 0.63

LLM-Finetuned
GReaT (Borisov et al., 2023) 15.53 40.48 1.49 10.06 48.28 1.06

LLM-Prompt-Only
CLLM w. GPT-4o-mini 13.17 19.57 6.63 8.08 39.02 0.78
TABGEN-ICL w. GPT-4o-mini (Ours) 11.39 17.07 5.54 4.67 37.63 0.80
Improvement 13.5% 12.8% 19.7% 42.2% 3.5% −
CLLM w. GPT-4o 10.57 13.46 4.00 4.25 31.51 0.63
TABGEN-ICL w. GPT-4o (Ours) 9.14 12.86 4.93 2.80 26.70 0.62
Improvement 13.6% 4.5% − 34.1% 15.3% 1.6%

Table 1: Fidelity comparison: Comparison of various methods on fidelity metrics. Results are averaged over all
datasets. Values are scaled by dividing by 10−2, then reversed by computing their complement: (1 - original value),
so that the lower the better.

generate 3000 samples (N = 3000) for each
dataset. Each experiment is conducted 5 times,
and the average results are reported.

Evaluation metrics. We evaluate the synthetic
tabular data from three distinct dimensions: 1 Fi-
delity - if the synthetic data faithfully recovers the
ground-truth data distribution. We evaluate fidelity
by 5 metrics: 1) Marginal distribution through
Kolmogorov-Smirnov Test, 2) Pair-wise column
correlation (Corr.) by computing Pearson Correla-
tion, 3) Classifier Two Sample Test (C2ST), 4) Pre-
cision and Recall, 5) Jensen-Shannon Divergence
(JSD). 2 Utility - the utility of the synthetic data
when used to train downstream models, we use the
Train-on-Synthetic-Test-on-Real (TSTR) protocol
to evaluate the AUC score of the XGBoost model
on predicting the target column of each dataset. 3

Privacy - if the synthetic data is not copied from
the real records, we employ the Distance to Closest
Record (DCR) metric. We defer the full description
of the metrics to Appendix A.6.

Notably, previous works (Borisov et al., 2023;
Seedat et al., 2024) on evaluating LLMs for tabular
data generation focus only on Machine Learning
Utility and Privacy protection. Our paper fills this
gap by providing the first comprehensive evaluation

of LLMs’ ability on tabular data synthesis.

5.2 TABGEN-ICL outperforms LLM-based
baseline methods

As shown in Table 1, TABGEN-ICL consistently
outperforms existing LLM-based approaches on
fidelity metrics, including both the training-free
method CLLM and the fine-tuning-based method
GREAT. Specifically, with GPT-4o-mini, TABGEN-
ICL achieves fidelity improvements ranging from
3.5% to 42.2%; with GPT-4o, the gains range
from 1.6% to 34.1% across various metrics. The
most significant improvements are observed in Re-
call, with increases of 42.2% for GPT-4o-mini and
34.1% for GPT-4o. Recall quantifies how well the
synthetic data covers the diversity of the real data
distribution. Thus, improvements in Recall indicate
enhanced diversity in the generated samples. This
substantial gain is primarily attributed to TABGEN-
ICL ’s residual-based sampling strategy, which
identifies underrepresented regions of the data dis-
tribution at each prompt iteration and targets them
in subsequent generations. By iteratively refining
generation based on residuals, TABGEN-ICL effec-
tively enhances coverage and diversity, validating
the utility of its residual-aware mechanism.
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Method California Adult Shoppers Magic Default
AUC↑ AUC↑ AUC↑ AUC↑ AUC↑

Real 0.999 0.927 0.926 0.946 0.770

VAE-based
TVAE (Xu et al., 2019) 0.986 0.846 0.898 0.912 0.744

GAN-based
CTGAN (Xu et al., 2019) 0.925 0.874 0.868 0.874 0.736

Diffusion-based
STaSy (Kim et al., 2023) 0.997 0.903 0.909 0.923 0.749
CoDi (Lee et al., 2023) 0.981 0.829 0.855 0.930 0.497
TabDDPM (Kotelnikov et al., 2023) 0.992 0.911 0.915 0.933 0.763
TabSyn (Zhang et al., 2024) 0.993 0.904 0.913 0.934 0.764

Autoregressive Models
RTF (Solatorio and Dupriez, 2023) 0.948 0.925 − 0.931 0.764
TabMT (Gulati and Roysdon, 2023) 0.988 0.873 0.912 0.822 0.714

LLM-Finetuned
GReaT (Borisov et al., 2023) 0.996 0.913 0.902 0.888 0.755

LLM-Prompt-Only
CLLM w. GPT-4o-mini 0.840 0.879 0.708 0.826 0.557
TABGEN-ICL w. GPT-4o-mini (Ours) 0.947 0.894 0.792 0.891 0.628
Improvement 12.7% 1.7% 11.9% 7.9% 12.7%

CLLM w. GPT-4o 0.947 0.891 0.865 0.885 0.718
TABGEN-ICL w. GPT-4o (Ours) 0.975 0.892 0.879 0.903 0.713
Improvement 3.0% 0.1% 1.4% 1.8% 0.5%

Table 2: Utility comparison: AUC scores of Train-on-synthetic-Test-on-real (TSTR) XGBoost model predicting
the target column of each table. ↑ indicates the higher the better. − indicates training failure.

5.3 TABGEN-ICL outperforms deep
generative models under data-scarcity

One important application of tabular data synthe-
sis is addressing data scarcity. In many cases, we
have access to only a limited number of real data
points, yet we require a much larger dataset to ade-
quately train our downstream models. To generate
sufficient training data, generative models can be
employed. In our experiments, we evaluate the
performance of TABGEN-ICL in comparison with
other deep generative models under data-scarce
conditions. To simulate such scenarios, we cre-
ated training sets by randomly sampling 100, 500,
1000, 2000, and 3000 rows from the Default dataset.
The generative models were then trained on these
subsets, and the quality of the synthesized data
was evaluated using the original full training set of
30,000 rows.

As shown in Figure 3, deep generative mod-
els such as TVAE, CTGAN, and TabDDPM ex-
hibit substantial performance degradation and in-
stability when trained on limited data. In contrast,
TABGEN-ICL and CLLM maintain performance
levels comparable to those achieved in the full-data
setting, benefiting from the strong prior knowledge

encoded in large language models (LLMs). No-
tably, the performance of TABGEN-ICL closely
aligns with that of CLLM in low-resource scenar-
ios. This is because, when the dataset is small,
the entire training set can be used as in-context
examples, rendering the residual-aware sampling
strategy effectively equivalent to random sampling.
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Figure 3: Quality comparison under data scarcity.
Under the few-shot setting, TABGEN-ICL and CLLM
achieve the highest quality scores, demonstrating strong
generation capabilities with limited data. In contrast,
TabSyn and GReaT fail to produce meaningful outputs.
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5.4 TABGEN-ICL Does Not Copy Training
Data

In Figure 4, we compare the distribution of L2 dis-
tances, also referred to as DCR scores, between
synthetic samples and both the training and held-
out datasets for CLLM, GReaT, REaLTabFormer,
and TABGEN-ICL. Ideally, DCR scores should
be larger than zero, and their distribution relative
to the training set should closely match that of
the holdout set, indicating low risk of data mem-
orization. Among the models evaluated, GReaT
achieves the most favorable profile: its DCR scores
remain far from zero, and the distance distributions
to the training and holdout sets are well-aligned,
suggesting minimal copying. Both TABGEN-ICL
and CLLM also show nearly overlapping DCR dis-
tributions between the training and holdout sets,
further indicating that they do not overfit or mem-
orize training data. In contrast, REaLTabFormer
exhibits more divergent distributions between the
two sets, which implies a greater tendency to rely
on or replicate training data, raising concerns about
potential memorization.

5.5 Ablation Study
Effect of d. We examine the effect of the distribu-
tion distance metric d used for quantifying residual
in Equation 2. We test TABGEN-ICL (w. GPT-4o-
mini) with only KSD or JSD metric and compare
it with our alternating strategy (KSD+JSD) on the
California dataset. As shown in Table 3, the alter-
nating strategy achieves the best performance.

d KSD JSD KSD+JSD

Marg. 92.43±0.005 90.72±0.009 92.48±0.008

Corr. 88.41±0.022 90.67±0.021 91.24±0.016

Table 3: Ablation study for d.

Effect of Large Language Models. In this sec-
tion, we investigate the impact of large language
model (LLM) capabilities on TABGEN-ICL’s per-
formance. We evaluate TABGEN-ICL using LLMs
of varying parameter sizes, including Gemini-1.5-
Flash, Gemini-1.5-Pro (Team et al., 2023), Claude-
3-Haiku and Claude-3-Sonnet (cla). We assess the
average of the marginal and the correlation metrics
on the California dataset, with results presented in
Table 4. Our findings reveal a correlation between
LLM capacity and synthetic data generation qual-
ity. As the LLMs’ capacity increases, the quality of

generated synthetic data improves. We hypothesize
that this improvement stems from larger models’
enhanced ability to capture and reproduce complex
patterns within the data, resulting in more realistic
synthetic outputs. This relationship underscores
the importance of model capacity in generating
high-quality synthetic data.

Model Quality↑ (%) Rank

GPT-4o-mini 91.86±0.008 3
GPT-4o 94.69±0.006 1

Gemini-1.5-Flash 89.96±0.017 4
Gemini-1.5-Pro 92.21±0.033 2
Claude-3-Haiku 89.17±0.031 5
Claude-3-Sonnet 88.97±0.068 6

Table 4: Effect of large language models on the perfor-
mance of TABGEN-ICL.

6 Conclusion

This work introduces TABGEN-ICL, an in-context
learning (ICL) framework for tabular data gener-
ation using large language models (LLMs). By
iteratively identifying and sampling from underrep-
resented regions in the data distribution, TABGEN-
ICL effectively steers the LLM’s prior toward the
real data distribution. This residual-aware genera-
tion process enables more diverse and faithful syn-
thetic samples. Extensive experiments validate the
effectiveness of our approach across a variety of
domains. A key strength of TABGEN-ICL lies in
its ability to leverage the rich prior knowledge em-
bedded in pre-trained LLMs, making it particularly
valuable in practical scenarios where collecting
large-scale datasets is costly or infeasible.

7 Limitations

While TABGEN-ICL demonstrates strong empiri-
cal performance, it is subject to several limitations.
First, the method for computing residual samples
is based on a simple heuristic search algorithm.
This approach is efficient in practice but does not
provide theoretical guarantees of optimality. One
future direction is to develop more principled meth-
ods for residual computation, which may improve
both the quality and consistency of the generated
samples. Second, TABGEN-ICL currently relies
on closed-source LLMs (e.g., GPT-4o) as the back-
bone model. While those models offer powerful
exhibits of strong performance, they introduce sig-
nificant computational overhead. This reliance may
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Figure 4: Privacy comparison: Distributions of the DCR scores between the synthetic dataset and the training/hold-
out datasets. TABGEN-ICL and Curated-LLM (CLLM) are both employed with GPT-4o-mini.
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Figure 5: Visual comparison: 2D scatter plot of Longitude and Latitude attributes of California dataset. Real
represents the original training datasets. All sets are downsampled to 3000 rows for better visualization. TABGEN-
ICL generates spatially coherent synthetic data that closely matches the distribution of the original dataset.

limit the scalability and deployment of TABGEN-
ICL in time-sensitive or resource-constrained envi-
ronments. A promising direction for future work is
to replace GPT-4o with lighter-weight models with
lower inference latency.
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A Appendix

A.1 Prompts used for generating tabular data

This prompt template is used in Section 4 to generate realistic data that follows the same distribution as
the given real data.

1 You are a synthetic data generator tasked with creating new tabular data samples
that closely mirror the distribution and characteristics of the original dataset
.

2

3 # Instruction
4 1. Analyze the provided real samples carefully.
5 2. Generate synthetic data that maintains the statistical properties of the real

data.
6 3. Ensure all attributes cover their full expected ranges , including less common or

extreme values.
7 4. Maintain the relationships and correlations between different attributes.
8 5. Preserve the overall distribution of the real data while introducing realistic

variations.
9

10 # Key points to consider
11 - Replicate the data types of each column (e.g., numerical , categorical).
12 - Match the range and distribution of numerical attributes.
13 - Maintain the frequency distribution of categorical attributes.
14 - Reflect any patterns or trends present in the original data.
15 - Introduce realistic variability to avoid exact duplication.
16

17 # Real samples
18 {data}
19

20 # Output format:
21 Please present the generated data in a JSON format , structured as a list of objects ,

where each object represents a single data point with all attributes.

A.2 Dummy Prompt

The following prompt only contains the column names, but not any actual data in it. It is used to produce
the results in Fig.1 (a).

1 You are a synthetic data generator tasked with creating new tabular data samples
that closely mirror the distribution and characteristics of the original dataset
.

2 Generate 50 samples of synthetic data.
3

4 Each sample should include the following attributes:
5 {attributes_list}
6

7 Make sure that the numbers make sense for each attribute.
8

9 Output Format:
10 Present the generated data in a JSON format , structured as a list of objects , where

each object represents a single data point with all attributes.

A.3 JSON Schema

The following code define the JSON data class for the structured output function of GPT-4o and GPT-4o-
mini.

1 def create_json_model(df: pd.DataFrame , dataname=None) -> BaseModel:
2 fields = {}
3

4 for column in df.columns:
5 if df[column ].dtype == 'object ':
6 fields[column] = (str , ...)
7 elif df[column ].dtype == 'int64 ':
8 fields[column] = (int , ...)
9 elif df[column ].dtype == 'float64 ':

10 fields[column] = (float , ...)
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11 elif df[column ].dtype == 'bool ':
12 fields[column] = (bool , ...)
13 else:
14 raise TypeError(f"Unexpected dtype for column {column }: {df[column ].

dtype }")
15

16 JSONModel = create_model(dataname , ** fields)
17

18 class JSONListModel(BaseModel):
19 JSON: List[JSONModel]
20

21 return JSONListModel

A.4 Heuristic for computing residual

In this section, we provide the pseudo-code of our heuristic strategy for computing the residual.

Algorithm 1 Compute residual

Require: current dataset X , target dataset Y , distribution distance d.
1: Randomly select a column index j
2: if column j is categorical then
3: Let Cj be the number of categories in column j
4: Group samples in Y into Cj number of subsets based on its category on column j, denote the set

of subsets by (Y i
j )

Cj

i=1

5: else
6: Quantize column i into 50 bins
7: Cj ← 50
8: Group samples in Y into Cj number of subsets based on its bin index on column j, denote the set

of subsets by (Y i
j )

Cj

i=1

9: end if
10: for i = 1 to Cj do
11: Compute distance between Y i

j ∪X and Y : di = d(Y i
j ∪X,Y )

12: end for
13: return subset Y i

j that attains the minimal distance.

A.5 Datasets

We use five real-world datasets of varying scales, and all of them are available at Kaggle2 or the UCI
Machine Learning repository3. We consider five datasets containing both numerical and catergorical
attributes: California4, Magic5, Adult6, Default7, Shoppers8. The statistics of these datasets are presented
in Table 5.

A.6 Evaluation Metrics

Fidelity To evaluate if the generated data can faithfully recover the ground-truth data distribution, we
employ the following metrics: 1) Marginal distribution: The Marginal metric evaluates if each column’s
marginal distribution is faithfully recovered by the synthetic data. We use Kolmogorov-Sirnov Test for
continuous data and Total Variation Distance for discrete data. 2) Pair-wise column correlation: This
metric evaluates if the correlation between every two columns in the real data is captured by the synthetic

2https://www.kaggle.com/
3https://archive.ics.uci.edu/
4https://www.kaggle.com/datasets/camnugent/california-housing-prices
5https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
6https://archive.ics.uci.edu/dataset/2/adult
7https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
8https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
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Table 5: Statistics of datasets. # Num stands for the number of numerical columns, and # Cat stands for the number
of categorical columns.

Dataset # Rows # Num # Cat # Train # Test

California Housing 20, 640 9 1 18, 390 2, 250
Magic Gamma Telescope 19, 021 10 1 17, 118 1, 903
Adult Income 32, 561 6 8 22, 792 9, 769
Default of Credit Card Clients 30, 000 14 10 27, 000 3, 000
Online Shoppers Purchase 12, 330 10 7 11, 098 1, 232

data. We compute the Pearson Correlation between all pairs of columns then take average. In addition, we
present joint density plots for the Longitude and Latitude features in the California Housing data set in
Figure 5. 3) Classifier Two Sample Test (C2ST): This metric evaluates how difficult it is to distinguish
real data from synthetic data. Specifically, we create an augmented table that has all the rows of real data
and all the rows of synthetic data. Add an extra column to keep track of whether each original row is
real or synthetic. Then we train a Logistic Regression classifier to distinguish real and synthetic rows. 4)
Precision and Recall: Precision measures the quality of generated samples. High precision means the
generated samples are realistic and similar to the true data distribution. Recall measures how much of the
true data distribution is covered by the generated distribution. High recall means the model captures most
modes/variations present in the true data. 5) Jensen-Shannon Divergence (JSD): This metric evaluates
the Jensen-Shannon divergence (Nielsen, 2019) between the distributions of real data and synthetic data.

Utility We evaluate the utility of the generated data by assessing their performance in Machine Learning
Efficiency (MLE). Following the previous works (Zhang et al., 2024), we first split a real table into a real
training and a real testing set. The generative models are trained on the real training set, from which a syn-
thetic set of equivalent size is sampled. This synthetic data is then used to train a classification/regression
model (XGBoost Classifier and XGBoost Regressor (Chen and Guestrin, 2016)), which will be evaluated
using the real testing set. The performance of MLE is measured by the AUC score for classification tasks
and RMSE for regression tasks.

Privacy A high-quality synthetic dataset should accurately reflect the underlying distribution of the
original data, rather than merely replicating it. To assess this, we employ the Distance to Closest Record
(DCR) metric. We begin by splitting the real data into two equal parts: a training set and a holdout set.
Using the training set, we generate a synthetic dataset. We then measure the distances between each
synthetic data point and its nearest neighbor in both the training and holdout sets. In theory, if both sets
are drawn from the same distribution, and if the synthetic data effectively captures this distribution, we
should observe an equal proportion (around 50%) of synthetic samples closer to each set. However, if
the synthetic data simply copies the training set, a significantly higher percentage would be closer to the
training set, well exceeding the expected 50%.

A.7 Scalability of TABGEN-ICL

To evaluate the scalability of TABGEN-ICL, we compare TABGEN-ICL with CLLM on a large-scale
dataset: Covertype dataset. This dataset consists of 581,012 instances and 54 features. TABGEN-ICL and
CLLM use iterative in-context learning to generate samples, thus the running time of these two methods
are agnostic to the size of the training dataset, making them scalable to large datasets. In the following
table, we compare TABGEN-ICL with CLLM, employed with both GPT-4o mini and GPT-4o.

Model Marginal ↓ Corr ↓ C2ST ↓ Precision ↓ Recall ↓ JSD ↓ AUC ↑
CLLM w. GPT-4o 3.28 10.70 55.67 32.32 1.95 0.6078 0.8822
TabGEN w. GPT-4o 2.83 11.10 49.91 24.03 1.27 0.5109 0.9070
Improvement (%) 13.72% - 10.34% 25.62% 34.87% 15.94% 2.81%

CLLM w. GPT-4o mini 5.35 13.70 0.7796 0.3225 0.0591 0.8743 0.7113
TabGEN w. GPT-4o mini 5.09 12.62 0.7554 0.2876 0.0436 0.9353 0.8311
Improvement (%) 4.86% 7.88% 3.11% 10.81% 26.25% - 16.86%
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The results demonstrate that TABGEN-ICL outperforms CLLM on most of the metrics. Notably, the
Recall metric again shows the greatest improvement: 34.85% on GPT-4o and 26.25% on GPT-4o mini.
This observation is consistent with our original findings in Sec. 5.2. We believe these results strongly
support TABGEN-ICL’s scalability to larger, more complex datasets.
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