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Abstract

Text-Attributed Graphs (TAGs), which are char-
acterized with text attributes, are widely used
in the real world. When evaluating fully trained
models designed for TAG predictions, they may
perform significantly unsatisfactory on samples
outside the In-Distribution (ID) data, which
may raise serious security issues. To tackle
it, Out-Of-Distribution (OOD) detection is in-
troduced to the TAGs field, which aims to uti-
lize a detector to classify OOD and ID sam-
ples. Recent studies attempt to introduce ex-
tra OOD datasets to regularize the detection
model. However, due to the vastness of the
OOD data space, high-quality OOD samples
for training the detector are scarce and difficult
to obtain in the real world. Thus, we utilize
Large Language Models (LLMs) to generate
the OOD training samples with high quality.
There are two issues in this process: (1) LLMs
tend to generate OOD nodes noticeably distinct
from ID nodes, with a limited learning value for
OOD and ID relations. (2) Due to the inherent
structure of TAGs, obtained OOD nodes need to
be integrated with existing nodes by generating
edges using LLMs. However, the large num-
ber of nodes makes reasoning over each node
pair computationally unbearable. Toward these
issues, we introduce LLMGuard with challeng-
ing OOD-node generation and lightweight edge
predictors. Extensive experiments prove the ef-
fectiveness of LLMGuard. The source code is
available !.

1 Introduction

Text-Attributed Graphs (TAGs), whose graph struc-
tures are characterized with text attributes, are
commonly applied in various real-world scenar-
ios (Chen et al., 2024; Yang et al., 2021). Within
text-attributed graphs, graph nodes capture entities
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Figure 1: Differences between our method and tradi-
tional methods to detect node-level OOD data. Our key
idea is to leverage LLMs to generate challenging OOD
nodes and efficiently structure them to facilitate the for-
mation of a tighter decision boundary.

with textual information and graph edges encapsu-
late relationships between different entities, such
as social graphs where each user node is attributed
with a textual description (Sharma et al., 2024; Fan
et al., 2019) and paper citation graphs in which lan-
guage content is linked to each paper node (Kipf
and Welling, 2016). Despite significant progress,
directly transferring fully trained TAG models to
samples from unknown distributions may lead to
a sharp drop in performance, thereby reducing the
prediction reliability and raising security issues
(Yang et al., 2024b). To tackle this issue, the Out-
of-Distribution (OOD) detection (Li et al., 2022)
is introduced to the field of text-attributed graphs.
It aims to utilize a detector to identify graph OOD
data and separate it with In Distribution (ID) data
to reduce the risk of unreliable predictions.

The widely used solution (Yang et al., 2024b;
Wu et al., 2023) for distinguishing OOD and ID
text-attributed graphs predominantly relies on train-
ing the detector with ID samples and naturally col-
lected OOD ones. However, due to the vast di-
versity of the OOD text-attributed graphs (Ming
et al., 2022), there may be an extremely low per-
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centage of the naturally collected graphs exactly lo-
cated near the classification boundary. The textual
node properties and topological graph structures of
these collected samples often exhibit substantial se-
mantic differences from existing ID text-attributed
graphs. Consequently, these OOD samples are con-
sidered low-quality because they are too easy to
distinguish and offer limited value in enhancing
the graph detector’s ability to identify more chal-
lenging OOD graphs. To establish a more precise
decision boundary, it’s crucial to focus on high-
quality OOD graphs sharing similar patterns with
ID ones yet differ fundamentally.

To acquire more OOD text-attributed graphs
with high value, we attempt to utilize the pre-
trained Large Language Models (LLMs) to gen-
erate the qualified samples. In this synthesis pro-
cess, two major issues need to be considered: (1)
Low-Quality OOD Node Generation. The OOD
nodes directly generated by large language mod-
els typically belong to classes that are noticeably
distinct from those of the ID nodes. As a result,
these OOD nodes are positioned far from the de-
cision boundary separating OOD and ID nodes,
thereby diminishing their values for training the
detection model. Even when OOD nodes belong
to ID-related classes, the specific textual descrip-
tions associated with these directly generated OOD
nodes remain disconnected from the existing ID
nodes, which is another serious damage to their
training value. It is crucial to consider strategies
that can effectively prompt large language models
to generate OOD nodes of genuinely high qual-
ity. (2) Costly Edge Completion. Due to the
node interdependence of graphs, newly generated
OOD nodes need to be associated with existing ID
nodes. The inherent differences between OOD and
ID nodes make it impractical to directly infer OOD
edges using a predictor trained solely on ID nodes.
One possible approach is to leverage pre-trained
large language models for direct edge prediction
between node pairs. However, due to the presence
of numerous nodes in text-attributed graphs, this ap-
proach often requires an excessive number of calls
to large language models for each pair of nodes,
leading to an unbearable computational burden.

To address these issues, we propose an effective
and efficient framework via LLM-guided Graph
oUtlier generAtion foR OOD Detection in text-
attributed graphs, called LLMGuard. The key
idea is to leverage large language models to gener-
ate challenging OOD nodes that facilitate learning

a clear decision boundary while distilling the edge
prediction capabilities of large language models
into lightweight modules for efficient edge gener-
ation. This consists of two key processes. Pro-
cess 1: We employ pre-trained large language mod-
els, guided by potential ID-related classes of OOD
nodes and textual content of ID subgraphs, to gener-
ate high-quality OOD nodes. These obtained OOD
nodes may be highly correlated with existing ID
nodes while still preserving OOD characteristics.
Process 2: We first construct training data for edge
prediction using a limited number of LLM calls
to identify relationships between generated OOD
nodes and ID nodes. To better capture semantic dif-
ferences between ID and OOD nodes, we fine-tune
a local LLM on the node distinction task to ob-
tain informative node representations. Leveraging
both the edge training data and node representa-
tions from the local LLM, we further train two
lightweight edge predictors to distill the LLM’s
ability for edge prediction.

2 Related Work

2.1 LLM for Text-Attributed Graphs

Text-attributed graphs (TAGs) (Jin et al., 2024; Ren
et al., 2024), where both node and edge features are
represented as text, have attracted considerable at-
tention for their universal ability to represent graph
from diverse domains (Feng et al., 2024). With the
emergence of large language models (LLMs) such
as GPT-4 (OpenAl, 2023), researchers have increas-
ingly explored their potential across a wide range of
applications (Zhao et al., 2024a,b; Dong et al.; Wu
et al., 2024), particularly in enhancing tasks related
to attributed graphs (TAGs). One paradigm focuses
on designing prompts to enable LLMs to better un-
derstand graph structures and respond to queries
effectively, as seen in InstructGLM (Ye et al., 2023)
and NLGraph (Wang et al., 2023). Another line of
approaches, exemplified by GraphGPT (Tang et al.,
2024) and GraphLLM (Chai et al., 2023), involves
encoding graph data as token sequences, allowing
LLMs to process and generate graph-related out-
puts more efficiently.

2.2 Node-level OOD Detection on TAGs

In real-world applications, data samples encoun-
tered during test time often exhibit domain shifts
(Lv et al., 2025a; Yang et al., 2024a; Lv et al.,
2025b; Wang et al., 2025). In this work, we fo-
cus on node-level out-of-distribution (OOD) de-
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tection on attributed graphs (TAGs), aiming to
identify nodes that deviate from the in-distribution
data. This enables more reliable and robust pre-
dictions. Traditional methods focus on develop-
ing scoring metrics to detect OOD nodes, such as
MSP (Hendrycks and Gimpel, 2016), ODIN (Liang
et al., 2017), and Energy (Liu et al., 2020). For
graph OOD detection, GKDE (Zhao et al., 2020)
is proposed to utilize a multi-source uncertainty
framework to predict node-level Dirichlet distribu-
tions and detect OOD nodes. Recently, GNNSAFE
(Wu et al., 2023) leverages TAG structures with
an energy propagation scheme to improve perfor-
mance. NodeSAFE (Yang et al., 2024b) further
regularize the energy term to mitigate extreme val-
ues. GRASP (Ma et al., 2024) proposes a new
edge augmentation strategy to better propagate
OQOD scores among neighboring nodes. Another
approach integrates additional OOD samples into
training. GNNSAFE++ (Wu et al., 2023) and Node-
SAFE++ (Yang et al., 2024b) extend GNNSAFE
and NodeSAFE with extra graph OOD data to en-
hance performance. However, collecting additional
OOD datasets in real-world scenarios either im-
practical or low-quality due to the vast diversity of
the OOD space. Our approach harnesses LLMs to
generate high-quality OOD graph nodes and strate-
gically structure them, facilitating a more precise
decision boundary.

3 Preliminaries

3.1 Notations

In this paper, we study the problem of node-
level graph Out-of-Distribution (OOD) detection
on Text-Attributed Graphs (TAGs), where unknown
classes emerge from an OOD domain. Let G =
(V,E,T) be a text-attributed graph, where V' de-
notes the set of nodes, E the set of edges, and T’
the set of textual attributes. Each node v; € V
is associated with a text representation ¢t; € 7.
The adjacency matrix of G is A € R™ ", where
Aj; = 1 if an edge exists between v; and vj,
and A;; = 0 otherwise. The node set V' is par-
titioned into labeled nodes V; and unlabeled nodes
Vi, such that V. = V; U V,,. The unlabeled
nodes further include in-distribution (ID) nodes
Vwia and out-of-distribution (OOD) nodes V.04,
ie., Vi = Vg U Viooq- The label space of ID
nodes is Y;g = {y1,%2,...,yc}, where C is the
number of ID classes. In contrast, the OOD label
space Y,,q is typically unknown and highly diverse.

3.2 Node-level Graph OOD Detection

3.2.1 Problem Definition

Let D,; denote the distribution of ID nodes v €
Viia with labels y € Y4, and D,,q represent
the OOD distribution, consisting of OOD nodes
v € Viyooq With unknown labels y € Y,,q4. Graph
OOD detection aims to distinguish whether a given
sample x € V,, belongs to an ID or OOD class. For-
mally, the objective is to design an OOD detector
F’, defined as:

ID, if S(x) >~
00D, if S(x) <~
ey
Here, fgnn represents a Graph Neural Network
(GNN) trained for node classification. More on
GNNs is in Appendix D. The text encoder fiex :
T — R? maps a node’s text attribute to its initial
representation. The scoring function S(x) assigns
a value to x, with a threshold ~ set for high classi-
fication accuracy (e.g., 95%). Samples with higher
score are classified as ID, while those with lower
scores are labeled as OOD.

F(XaG;fGNNaftext) == {

3.2.2 Energy-based Graph OOD Detection

Motivated by the equivalence between classifiers
and energy-based models (Ranzato et al., 2007),
recent works (Ma et al., 2024; Wu et al., 2023;
Yang et al., 2024b) have leveraged energy values
derived from GNN prediction logits to facilitate
OOD detection. For a given node v, its energy
E(v) is defined as:

C
E(v) = —log» €™, )
c=1

where z. € R denotes the predicted logit of
the GNN model for class ¢ € Y;4, formally ex-
pressed as z. = foNN(v; G)(g- In node-level tasks,
the GNN model is typically trained using a task-
specific loss. Therefore, the supervised loss can be
formulated as:

Lap = E@wy~n,(—2y —E(w)) )
Recent works (Wu et al., 2023; Yang et al., 2024b)
attempt to introduce additional OOD datasets to

better separate the energy values of ID and OOD
nodes. Specifically, they incorporate an energy
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Figure 2: The architecture of LLMGuard consists of two componets: (a) LLM-Guided Hard OOD Node Synthesis
leverages sampled ID subgraphs and pre-generated challenging OOD labels to synthesize hard OOD nodes. (2)
Two-Staged OOD Edge Completion distills the edge prediction capabilities of LLMs into two lightweight edge

predictors through a two-stage tuning process.

regularization term:

Lreg = E(vy)~Dig ( max(0, E(v) — ‘““)2)

+ E(y)~Dyou ( max (0, agy — E(v))Q)
“4)

where a;j, and aqy; are thresholds that control the
separation margin. The final objective function is
given by:

Eﬁnal = Esup + A£reg (5)

where A is a hyperparameter that balances the
contribution of the regularization term. Notably,
extra OOD datasets are typically unavailable in
real-world scenarios. To address it, our proposed
method generate high-quality and efficient graph
OOD data, enabling more effective detection.

4 Method

4.1 Overview

In this section, we introduce our novel graph OOD
data generation framework, LLMGuard, designed
to generate high-quality OOD nodes and structure
them efficiently into a graph, thereby facilitating

exposure to high-quality graph OOD data. Here,
high-quality OOD nodes specifically refer to chal-
lenging or hard OOD nodes that closely resemble
ID nodes, making them difficult to distinguish.

As illustrated in Figure 2, our framework con-
sists of two key components: (1) LLM-Guided
Hard OOD Node Synthesis. Hard OOD nodes are
constructed by first generating challenging OOD
labels and then leveraging related ID subgraphs as
contextual knowledge to guide LLMs in the gener-
ation process. (2) Two-Staged OOD Edge Com-
pletion. Since TAGs’ structured interconnections,
newly generated OOD nodes cannot exist in isola-
tion. To mitigate the high cost of extensive LLM
calls for each node pair, we distill the edge predic-
tion capabilities of LLMs into lightweight modules
through a two-staged training process.

4.2 LLM-Guided Hard OOD Node Synthesis

Leveraging the extensive domain knowledge and
strong generative capabilities of LLMs, we aim
to generate potential OOD nodes to enhance the
training of detection models. However, since OOD
nodes are more diverse and scattered than ID nodes
in the data space, blindly generating low-quality
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OOD nodes offers limited benefits in forming a
tighter decision boundary between ID nodes and
OOD nodes. Therefore, our key idea is to generate
challenging OOD nodes—those that share similari-
ties with ID nodes but have distinct label attributes.
This approach enables the detector to learn a more
precise and well-defined decision boundary.

To implement it, we frist construct a set of po-
tential challenging OOD labels for each ID label.
Then, using the contextual information from the
ID subgraph, we generate new OOD nodes that
preserve OOD characteristics while maintaining
semantic similarities with ID nodes.

4.2.1 Challenging OOD Label Generation

We classify OOD nodes in D, as easy or hard
based on their distinguishability from ID nodes.
Easy OOD nodes are well-separated from ID data,
making them relatively straightforward to identify.
However, hard OOD nodes lie are closer to the
decision boundary, posing greater challenges. For
example, in an artificial intelligence citation net-
work, given an ID label machine learning, a hard
OOD label like data mining shares semantic simi-
larities, while an easy OOD label like optimization
algorithm exhibits a larger semantic shift, offering
limited benefit for refining the detector’s discrimi-
nation ability.

Given the existing ID label space Y4, for each
label y; € Y4, we design prompts to call LLMs to
generate K related hard OOD label set, denoted as
Shood- In fact, this process constructs a mapping
function ¢ : Y;q — Shood>» Which maps a specific
ID label to a set of candidate hard OOD labels. To
streamline the generation of hard OOD labels, we
assume that given an ID label y;, the conditional
distribution of its corresponding hard OOD label
y2°4 € ¢(y;) is independent of the graph structure
G, ie., P(y?°Yy;, G) = P(y?*|y;). In this way,
we temporarily disregard the impact of the graph
structure when generating hard OOD labels. The
hard OOD label generation prompt is shown in
Figure 3.

4.2.2 ID-Related Hard OOD Node Synthesis

Due to the interdependent nature of graph data,
well-structured OOD nodes require essential con-
textual information to establish meaningful and
coherent connections with existing nodes. For
example, the same OOD label, such as Machine
Learning, may exhibit different characteristics de-
pending on the surrounding graph context. In a

@t: ID labels \
Instruction:

Given the In-Distribution (ID) labels, generate K distinct
Out-Of-Distribution (OOD) labels for each. These OOD
labels should be related conceptually but belong to
different categories, making them distinguishable with
effort.

Answer:

ID label: Machine Learning

OOD label: Data Mining

Explanation: Data mining uncovers patterns in data, while
machine learning builds prediction models. The key
difference is the exploratory focus of data mining versus

)

Figure 3: Prompt example for generating hard OOD
labels.

citation network, nodes with this label primarily
exhibit academic characteristics, whereas in a co-
purchase network, they are more likely to reflect
consumer-oriented information.

To tackle this challenge, we propose a hard
OOD node generation strategy that leverages ID-
subgraph information. Specifically, we randomly
select an ID node v; € V} with its label y; € Y4
as an anchor. To provide background knowledge,
we extract a subgraph G; centered on v;, with its
corresponding text attribute set denoted as 7;. The
generated OOD node is primarily derived from the
anchor node v;, allowing us to obtain the corre-
sponding hard OOD label y?°? € ¢(y;) based on
the original ID label y;. Following this approach,
the probability distribution for generating new text
t;?‘)d, conditioned on the sampled ID subgraph G;
and label y;, is formulated as:

PP | Giy) = 30 P | 4) P | 4, G)

ood

(6)
More derivation details can be found in Ap-
pendix B. According to Equ. 6, we can summarize
the following generation process for hard OOD
nodes. First, we obtain the hard OOD label by sam-
pling y9°¢ ~ P(y?°? | y;). This step is equivalent
to randomly selecting an OOD label from the hard
OOD label set ¢(y;). Next, we generate new text
attributes by sampling t2°¢ ~ P(t%°4 | y2°d G,).
This process can be implemented by combining
the selected subgraph G; with the hard OOD label
yiOOd to prompt the LLM to generate the desired
OOD node text attributes. Finally, the process of
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(put: OOD label & anchor paper & background papers \

Instruction:

You are an expert researcher writing a research paper on a

given OOD label. Your task is to:

1. Identify Key Concepts: Extract ideas from the OOD label
and anchor paper to establish the paper’s core theme.

2. Select Supplementary Papers: Determine which
background papers contribute to shaping the title and
abstract.

3. Assess Citation Relevance: Assign a citation strength
score (1-5) based on each paper’s relevance, where 5

represents the most central reference and 1 denotes

minimal relevance.
Figure 4: Prompt example for hard OOD node genera-

wwer: Abstract + Title + Citation Strength
tion.

ID-subgraph related hard OOD node generation
can be formalized as:

t0°0, B = LLM(vi; 9 1) (D)

where tZ«OOd is the newly generated OOD node’s
attribute information. E?‘I records the strength of
the relationships between the generated OOD node
with other ID nodes in GG;, which will be utilized
for subsequent edge prediction training. Figure 4
provides a specific example for hard OOD node
generation process in a citation network.

4.2.3 Retrieval-Based OOD-OOD Relation

While above generation process involves the re-
lationship (i.e., EOT1) between OOD nodes and
existing ID nodes, the links among OOD nodes
themselves remain unexplored. The absence of
OOD-0OOD links misaligns with real-world rela-
tionships, thereby degrading the quality of OOD
nodes. Here, we aim to construct an informative
OOD-00D strength dataset £°-° with minimal
LLM calls to support efficient subsequent edge pre-
diction training.

We maintain an OOD node bank B, to store
previously generated OOD nodes v,‘;"d along with
their text attributes tz"d and OOD labels yg"d.
With a pre-trained language model such as De-
BERTa (He et al., 2020), we convert correspond-
ing text attributes into embeddings, i.e., hz‘)d =
fext([t8°% y2°4]).  Then, for a new OOD node
v}-’Od, we retrieve a few related OOD nodes from
B,oq and query LLMs to determine potential links.
For efficient retrieval, we use cosine similarity for
embedding-based matching:

Vot = Top-LL ({0f*" € Booa | cos(h§, h*")} )
®)

In this way, we query LLMs at most L times to

determine whether edges exist between U;-)Od and

the OOD nodes in V}OOd. This ensures that the total
number of LLM queries remains within O(N L),
where N is the total number of generated OOD
nodes. An example is provided in Appendix E.

4.3 Two-Staged OOD Edge Completion

During the OOD node generation process, we re-
tain only a limited set of link strengths in £° and
EO99, derived from a few LLM calls. The forma-
tion of these edges relies on sampling or retrieval
strategies, which inevitably result in missing po-
tential links. To fill this gap, we aim to maximizes
the utilization of edge datasets from LLM calls
to distill the LLM’s edge reasoning ability into
lightweight modules for efficient edge completion.

4.3.1 Tuning Local LLM for Node Distinction

Since newly generated OOD nodes exhibit fine-
grained textual differences from ID nodes, directly
using existing language models for representation
extraction may overlook these distinctions. To ad-
dress this, we first fine-tune a local LLM to better
differentiate between the two types of nodes, en-
abling it to generate more precise representations,
particularly for ID nodes and hard OOD nodes. As
illustrated in Figure 2, we construct an instruction-
tuning task based on the generated OOD nodes and
their corresponding anchor ID nodes.

4.3.2 Lightweight Edge Predictor Training

After fine-tuning the local LLM, we use it as a
feature extractor for informative text representa-
tions. With the local LLM frozen, we then train two
lightweight edge predictors based on these features
to determine two edge types: OOD-ID and OOD-
OOD. To achieve this, we initialize two simple
multilayer perceptrons (MLPs) fo.1 and fo.0, as
edge predictors. For edge datasets £°° and E°T,
we introduce a threshold 7, where edge strength
scores within the two datasets below 1 are labeled
0 and scores above or equal to 7 are labeled 1. The
loss function of two edge predictors are defined as
follows:

Loi= Z

(viyvj,ci5) EEOT

Loo = Z

(vi,vj,¢45)EEOO

CE (foa([hs; hj)); cij)

CE (fo-o([hi; hjl); cij)

®
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Table 1: Node-level graph OOD detection performance comparision on various datasets. The best results are

highlighted and the second-best results are underlined.

Method Cora Arxiv Products-subset WikiCS
AUROC (1) FPR95(]) AUROC (1) FPR95(]) AUROC (1) FPR95 () AUROC (1) FPR95 ()

MSP 91.15 37.73 63.91 90.59 75.45 81.79 79.82 81.66
ODIN 49.80 89.98 55.07 95.07 45.94 96.84 57.15 95.27
Energy 91.40 41.08 51.24 91.61 78.31 80.24 77.62 81.25
GKDE 57.23 88.95 46.48 95.62 63.73 91.14 72.19 82.07
GNNSAFE 92.69 31.24 70.91 86.94 79.89 72.25 83.27 64.44
NodeSAFE 85.58 53.35 72.44 84.27 84.38 58.44 84.42 58.22
GRASP 93.50 29.70 73.93 81.24 92.89 38.47 83.25 64.71
GNNSAFE++ 92.74 32.96 74.40 78.28 76.31 80.91 85.55 61.57
NodeSAFE++ 87.73 72.01 75.49 75.24 81.19 65.87 83.53 71.14
Ours 96.09 23.14 76.56 74.17 94.58 31.64 88.84 51.13

where h; and h; are the embeddings of v; and v;
from the frozen local LLM, and ¢;; denotes the
edge label (0 or 1). CE refers to the cross-entropy
function. After training, the lightweight predictors
can be used to complete potential edges.

5 Experiments

To assess the effectiveness of our proposed LLM-
Guard model, we conduct extensive experiments
aimed at addressing the following key research
questions:

* RQ1: Can the proposed method achieve signifi-
cant performance improvements in the node-level
graph OOD detection task?

* RQ2: How do the various components of the
proposed approach influence performance?

* RQ3: How do the generated graph OOD data
contribute to improving the model’s detection
capability? What is the impact of their quantity
on detection performance?

5.1 Experimental Settings

Datasets. We conduct experiments on four widely
used real-world TAG datasets, covering two cita-
tion networks: Cora (Liu et al., 2023; Chen et al.,
2024) and Arxiv (Hu et al., 2020; Liu et al., 2023),
a co-purchase network: Products-subset (He et al.,
2023), and a Wikipedia page network: WikiCS
(Mernyei and Cangea, 2020; Liu et al., 2023). More
dataset details are in Appendix A.

Evaluation Metrics. Following the convention in
(Yang et al., 2024b; Wu et al., 2023), we evalu-
ate OOD detection performance using two metrics:
AUROC and FPR95. Here, AUROC represents

the area under the receiver operating characteristic
curve, while FPR95 refers to the false positive rate
of OOD samples when the true positive rate of ID
samples is fixed at 95%.

Baselines. We mainly compare our method with
three groups of baselines: (1) Classical OOD de-
tection methods: MSP (Hendrycks and Gimpel,
2016), ODIN (Liang et al., 2017), and Energy (Liu
etal., 2020). (2) Node-level graph OOD detection
methods: GKDE, GNNSAFE (Wu et al., 2023),
NODESAFE (Yang et al., 2024b), and GRASP
(Ma et al., 2024). These methods take into ac-
count the interdependence characteristics of graph
structures. (3) Extra Dataset-Based OOD Meth-
ods: GNNSAFE++ (Wu et al., 2023) and NODE-
SAFE++ (Yang et al., 2024b). These two methods
are enhanced variants of GNNSAFE and NODE-
SAFE, incorporating additional OOD datasets to
improve detection performance. More implementa-
tion details are in Appendix C.

5.2 Performance Comparision (RQ1)

We compare our approach with other classicial
baselines over four classical datasets. The ex-
periments is summarized in Table 1. As shown,
our method consistently outperforms other detec-
tion approaches, demonstrating its effectiveness
in constructing high-quality OOD graph data to
enhance detection performance. Overall, extra
dataset-based OOD detection methods achieve rel-
atively superior performance compared to those
relying solely on ID data. This result highlights
that incorporating extra OOD data enhances the
model’s ability to better understand the domain
shift between ID and OOD data. However, these
methods still fall short of ours, as our approach gen-
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erates more challenging graph data, thereby facili-
tating the formation of a tighter and more accurate
decision boundary.

5.3 Ablation Study (RQ2)

Table 2: Ablation study on node-level OOD detection
performance.

Cora Arxiv
AUROC (1) FPR95({) AUROC (1) FPR95 (})
w/o HOOD 94.32 29.40 74.82 76.90
wlo IDG 95.13 18.31 75.56 75.67
w/o EC 94.94 23.21 75.09 76.15
w/o FT 95.12 17.29 75.74 75.31
Ours 96.09 23.14 76.56 74.17

To assess the contribution of each component
in our method, we conduct extensive experiments
comparing the following variants: (i) w/o HOOD:
Removes the node generation process and instead
incorporates randomly generated OOD nodes from
LLMs into training. (ii) w/o IDG: Generates OOD
node information using only a single ID node and
its hard OOD label, without leveraging ID subgraph
information. (iii) w/o EC: Omits the two-stage
OOD edge completion process, relying solely on
LLM-predicted OOD-ID and OOD-OOD edges, re-
sulting in fewer connections. (iv) w/o FT: Removes
instruction tuning for the local LLM, directly using
the pretrained LLM with two edge predictors.

As shown in Table 2, our method significantly
outperforms the w/o HOOD variant, highlighting
the advantage of our generated hard OOD nodes
over randomly generated ones. This improvement
stems from the fact that hard OOD nodes often lie
near the decision boundary, encouraging the model
to learn a more refined and precise separation. Fur-
thermore, the performance drop in the w/o IDG
variant suggests that isolated OOD nodes provide
limited benefits, emphasizing the importance of
incorporating subgraph information. The w/o EC
variant underperforms compared to LLMGuard, as
the lack of edges linking OOD nodes to existing
nodes results in structurally distinct OOD samples.
This makes them easier for the model to differenti-
ate, ultimately reducing their effectiveness as hard
OOD examples.

5.4 More Analysis (RQ3)

Energy score distribution visualization. We com-
pare the energy score density on Cora dataset be-
tween our method and the baseline GNNSAFE++.
As shown in Figure 5, our approach exhibits a

0.8 1 1D (GNNSAFE++)
=1 00D (GNNSAFE++)

=3 ID (Ours)
[==1 00D (Ours)

0.6

Density

0.2

0.0
2 4 6 8 10 12 14 2 4 6 8 10 12 14

Energy Energy

Figure 5: Density of the ID and OOD energy score with
baseline GNNSAFE++ (left) and our approach (right).
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Figure 6: Effect of the proportion of OOD nodes relative
to ID nodes on Cora.

greater divergence between ID and OOD data.
This suggests that the selected OOD graph data
in GNNSAFE++ are of lower quality, as they are
often too simple for the detector to differentiate
from ID data. In contrast, our method leverages
LLMs to generate more challenging OOD graph
data, thereby facilitating a more precise decision
boundary between ID and OOD data.

The effect of the number of OOD nodes. We
fruther examine the impact of the number of gener-
ated OOD nodes on OOD detection performance
using. As illustrated in Figure 6, we select OOD
nodes at proportions of 1%, 5%, 10%, 20%, and
30% relative to the total number of ID nodes. Ex-
periments demonstrate that the AUROC metric ini-
tially increases and then stabilizes once the OOD
ratio reaches approximately 10%. And FPR95
achieves its best performance at a 20% OOD ra-
tio. These results highlight that the generated OOD
data effectively enhance the detector’s performance,
even when the OOD node ratio is low.

Quality of Generated Nodes. To further demon-
strate quality of the generated OOD nodes, we em-
ploy sentence-transformers to encode generated
OOD node’s text content into vector representa-
tions. And then we apply t-SNE to project these
vectors into a 2D space. Based on this, we compare
the distribution of these embeddings with those
of randomly generated nodes. As shown in Fig-
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Figure 7: Hyperparameters analysis.
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Figure 8: Node content representation visualization.

ure 8, we observe that the generated OOD nodes
are more overlapped compared with random gen-
erated ones, which confirm that generated hard
OOD nodes maintain relevant semantic relation-
ships with ID nodes. Besides, the generated OOD
nodes are dispersed across the entire space, which
demonstrates their diversity. This can be attributed
to the use of hard OOD labels and the subgraph
background, which provide diverse information.
Hyperparameter Analysis. We further conduct an
extensive hyperparameter analysis, as illustrated in
Figure 7. For the weight parameter \, our approach
achieves the best performance when A = 0.01. A
smaller A fails to sufficiently leverage OOD infor-
mation, while a larger value can compromise the
main supervised learning objective. Regarding the
size of the hard OOD label set K, the performance
gradually stabilizes as K increases. This suggests
that the most influential OOD nodes are those near
the decision boundary, and enlarging K beyond a
certain point yields diminishing returns. For the
retrieved OOD node set size L, increasing it al-
lows for more OOD-OOD context during LLM
calls, but also leads to higher computational costs.
When L > 5, performance improvements become
marginal, so we set the default value to 5. Finally,
for the edge strength threshold 7, a smaller 7 favors
denser connections, while a larger value promotes
a sparser structure. Empirical results indicate that
setting 7 = 3 yields the best performance.

Table 3: Comparison of edge prediction efficiency on
three benchmark datasets (time per edge).

Method Metric Cora WikiCS Arxiv

Oure Time (ms) 0.04 004  0.04
AUROC 9609 8884 7656
Time (s) 1076 1265  8.54

LLMPred — \iroC 9583 8823  77.09

Edge Completion Efficiency. To demonstrate our
Two-stage Edge Completion strategy can efficient
to achieve edge generation process. We compare
time cost of our approach and direct LLM calls
on datasets of varying sizes. From Table 3, we
can conclude our approach achieves performance
comparable to direct LLM calls (LLM Pred) while
significantly reducing inference time. Since our
edge prediction process relies solely on two node
embeddings (which can be precalculated) and a 2-
layer MLP, the time cost for each node pair remains
fixed. In contrast, LLM calls must account for
token count and network delays.

6 Conclusion

This paper explores node-level OOD detection on
text-attributed graphs. While existing approaches
incorporate additional OOD graph data for train-
ing, we argue that these collected OOD samples
are often of low quality, as their textual attributes
and topological structures typically exhibit signifi-
cant deviations from ID graph data. This discrep-
ancy limits their effectiveness in refining a precise
decision boundary. To address this, we propose
LLMGuard, a novel framework for generating high-
quality OOD graph data. It consists of two key
modules: LLM-Guided Hard OOD Node Synthe-
sis and Two-Stage OOD Edge Completion. Ex-
tensive experiments demonstrate that our approach
significantly enhances detection performance by
generating valuable synthetic OOD graph data.
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7 Limitations

In this section, we analyze the current limitations of
our approach. As an early exploration of leveraging
LLMs to generate high-quality OOD graph data,
certain modules in our framework can be further
refined. In OOD node generation, for efficiency
reasons, we primarily use direct node information
as background knowledge, which may limit con-
textual richness. Additionally, in constructing the
OOD-0O0D strength dataset, exploring more ad-
vanced retrieval methods could further improve the
quality of OOD-OOD strength dataset.
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A Dataset Details

Here, we provide additional details about the
dataset and summarize its statistics in Table 4.
Cora. The Cora dataset is a widely used citation
network in the graph community. Each node rep-
resents a paper, while edges model citation rela-
tionships between papers. The textual information
associated with each paper includes its title and
abstract.

Arxiv. The Arxiv dataset is a larger-scale citation
network derived from the arXiv platform. Similar
to Cora, nodes correspond to research papers, and
edges capture citation relationships.
Products-subset. The Products-subset is a co-
purchase graph where nodes represent product
items from Amazon, and edges indicate co-
purchase relationships between products. Each
product is associated with textual attributes such as
its title and description.
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WikiCS. WikiCS is a Wikipedia page link network,
where nodes correspond to Wikipedia pages, and
edges represent hyperlinks between them.

B Formulation

In Equ. 6, we assume the following conditional in-
dependence properties: (a) P(t; | y°, yi, Gi) =
P(t; | y2°¢, G;). This assumption implies that the
generated node’s textual information is indepen-
dent of the ID label y; once yf"d and G are given.
(b) Py | i, Gs) = P(y?*" | y;). This suggests
that the transformation from y; to yf"d does not
depend on the graph structure G;, meaning nyd is
solely determined by y;. Based on these assump-

tions, the derivation proceeds as follows:
Pt | Gi,yi)

1 00 00
(:) Z‘P(tl d7yi 4 | G’Hyl)

ood
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(2) 00 00 00
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Each step follows: (1) Law of total probability. (2)
Chain rule: P(A,B) = P(B)P(A | B). (3) and
(4) employ conditional independence assumptions
(a) and (b) respectively.

Table 4: Statistics of the datasets.

| Cora Arxiv  Products-subset ~ WikiCS
#Nodes 2,708 169,343 54,025 11,701
#Edges 10,556 1,166,243 144,638 216,123
#Labels 7 40 47 10
Domain citation citation co-purchase wikipedia
ID Class {0, 3} {0, -, 10} {0, .., 10} {0, .., 3}
OOD Class | {4,5,6} {11, 39} {11, ..., 46} {4,..,9}

C Implementation Details

We adopt GNNSAFE++ as our backbone and re-
placing their collected OOD dataset Doop with
our generaed high-quality OOD graph data. After
generating high-quality OOD ndoes and structur-
ing them, we utilize the loss function Ly, in
Equ. 6 to train the detector with A = 0.01. We
choose a;;, = 5 and a,,: = 4 in Equ. 4. The hard
OOD label set size K for each ID label is set to 3,

Gput: Node 1 & Node 2 \
Instruction:

Given information about two nodes: Node 1 and Node 2,
determine whether an edge exists between them. Assign
a strength score from 1 to 5 based on their relevance,
where 5 indicates the highest relevance and 1
represents the lowest relevance.

Q\swer: strength score j

Figure 9: Example prompt for edge prediction using
LLMs.

while the retrieved OOD node set size L is set to 5.
Strength score threshold 7 is set to 3. The number
of generated OOD nodes is set to 20% of the ID
node count. We choose Vicuna-v1.5 as the local
LLM, trained using the LoORA method. GPT-40
serves as our default LLM for querying. For a fair
comparision, we set the hidden size as 64.

D Graph Neural Networks

Many contemporary graph neural networks
(GNNs) utilize the message-passing mechanism
to iteratively update node representation by aggre-
gating messages from neighboring nodes (Kipf and
Welling, 2016; Hamilton et al., 2017; Velickovié
et al., 2017) . The update process foranode v € V'
at the [-th layer can be expressed as:

h) = COMB (hfj—U,AGG (hg—U lu€ N(v)))

(10)
Here, hq(,l) represents the embedding of node v at
the [-th layer, and N (v) denotes the set of neigh-
bors of node v. The functions COMB and AGG
correspond to the combination and aggregation op-
erations, respectively, which vary depending on the
specific GNN model employed, such as GCN (Kipf
and Welling, 2016), GraphSAGE (Hamilton et al.,
2017), and GAT (Velickovi¢ et al., 2017).

E More Example Prompts

An edge prediction prompt is shown in Figure 9.
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