How do LLMs’ Preferences Affect Event Argument Extraction?
CAT: Addressing Preference Traps in Unsupervised EAE

Yunhao Wei, Kai Shuang*, Zhiyi Li, Chenrui Mao
State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications
{2770278140, shuangk, iheadx, maochenruil218} @bupt.edu.cn

Abstract

Large Language Models (LLMs) have signif-
icantly improved the performance of unsu-
pervised Event Argument Extraction (EAE)
tasks. However, the prevalent preferences in
LLMs severely hinder their effectiveness in
EAE, leading to what we term preference traps,
namely, the prior knowledge trap, the syco-
phancy hallucination trap, and the output con-
tradiction trap. Existing methods often fall
into these traps due to low-quality prior knowl-
edge, ambiguous instructions, and contradic-
tory outputs. To address this issue, we pro-
pose Choose-After-Think (CAT), an unsuper-
vised EAE framework based on LLMs. CAT
divides the task into two stages: identifica-
tion of event information (think stage) and se-
lection of arguments from a candidate argu-
ment set for template filling (choose stage).
Both stages employ countermeasures to ad-
dress these preference traps, while the choose
stage’s completely constrained outputs satisfy
EAE’s structured-output requirements. Experi-
mental results demonstrate that CAT (based on
the local 7B model, zero-shot setting) matches
the performance of the best DeepSeek-R1 API-
accessible model, with a significantly lower
time cost.!

1 Introduction

Event Argument Extraction (EAE), which aims
to extract structured event information (arguments
and their roles) from event texts, is a critical
and highly challenging task in Information Ex-
traction (IE). To address the limitations of super-
vised EAE, such as high training costs and poor
model generalization, researchers have increas-
ingly turned to unsupervised frameworks based
on Large Language Models (LLMs), achieving
significant progress (Xu et al., 2024). However,
LLMs’ preference traps in unsupervised EAE tasks

*Corresponding author
"https://github.com/qawesrdtfy/CAT

severely degrade performance. Current main-
stream approaches—including prompt engineer-
ing (Cai et al., 2024; Hong and Liu, 2024), chain-
of-thought reasoning (Wei et al., 2023; Ma et al.,
2024; Guo et al., 2025), and outputting in program-
ming languages (Wang et al., 2023; Guo et al.,
2024b)—only address some of these traps while
succumbing to others (see detailed analysis in Sec-
tion 5).

Prior Knowledge Trap

Text: Everybody would want to Betty.

: Person
v

User: The person who is married.

LLM: None. Because the sentence does
not specify that Betty is married. %X

Sycophancy Hallucination Trap
Text: The troopsKuwait andinto the Iraqi desert.

Origin Destination

User: Where the movement is directed to.

LLM: The Iraqi desert. Because they
"crossed into the Iraqi desert".).(

(Desert is irrelezant tobut to)
Output Contradiction Trap

Prompt: Output like ["arg1", "arg2", ..].

Hard constraint: [arg1, arg2, ..].

Generated content: |

Next tokenzlﬂor ?

The LLM tends to outputmas the prompt wishes, which has
the highest prob. However, it is forced to output anfarg] Thus,
different args share a smaller prob and smaller prob gaps.

Figure 1: The illustration of three preference traps.

Just as many works have demonstrated LLMs’
preferences and their impacts across various tasks
(Panickssery et al., 2024; Li et al., 2024a; Nguyen
et al., 2025), we summarize three preference traps
in unsupervised EAE tasks that severely affect

19529

Findings of the Association for Computational Linguistics: ACL 2025, pages 19529-19543
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

LLMs’ performance, as shown in Figure 1. Prior
Knowledge Trap: LLMs heavily rely on prior
knowledge to identify event information, but low-
quality knowledge often misleads them into ignor-
ing or misidentifying arguments. Sycophancy Hal-
lucination Trap: LLMs often generate answers
that conform to users’ viewpoints or requests, even
if those answers are factually incorrect (Sharma
et al., 2023). This behavior often results in misiden-
tifying arguments, which are either nonexistent or
irrelevant to the target event. Output Contradic-
tion Trap: When LLMs are forced to generate con-
tent that conflicts with their intentions, the resulting
inconsistencies can disrupt the prediction probabil-
ity, significantly degrading their performance on
EAE tasks.

Based on the above observations, we analyze
root causes and utilize countermeasures for the
three preference traps, which are simple yet effec-
tive:

Prior Knowledge Trap: The reason for falling
into this trap is that prior knowledge provided fails
to cover all actual annotations or that LLMs over-
focus on specific patterns. The prior knowledge
discussed here includes the definitions of event
types and argument roles. First, we refine these def-
initions to better reflect actual meanings. Second,
we adjust the expressions of these definitions to
avoid the LLM becoming overly fixated on certain
details.

Sycophancy Hallucination Trap: The reason
for falling into this trap lies in the fact that LLMs
prioritize the task requirement of "extracting event
information". We attempt to reduce the erroneous
outputs resulting from this trap. First, we provide
clear output specifications for cases where argu-
ments do not exist to reduce unspecified results.
Second, we provide a description of the target event
as the extraction scope to reduce irrelevant results.

Output Contradiction Trap: The reason for
this trap is the contradiction between the forced
output and natural output of the LLM. Addressing
this conflict is key to the resolution of the trap.
First, we prompt the LLM to output in its most
preferred format. Second, we adjust the hard output
constraints to align with the LLM’s inherent habits.
Thus, this contradiction is minimized as much as
possible.

Based on the above analysis, we propose
Choose-After-Think (CAT), an unsupervised EAE
framework. We integrate the countermeasures
above into CAT, enabling it to effectively address

the preference traps. CAT splits EAE into two
stages—Think (identifying event information) and
Choose (outputting under constraints)—to reduce
task difficulty. Unlike conventional token-level
generation, our choose stage selects answers from
a candidate argument set to fill the forced-output
templates, considering every token’s probability in
the candidate argument and enabling direct control
over the argument spans.

Experiments on three widely used EAE datasets
demonstrate that our CAT outperforms the unsu-
pervised baselines with lower time cost. We ex-
perimentally demonstrate the prevalence of pref-
erence traps across various families and scales of
LLMs. Ablation studies confirm that CAT’s em-
ployed methods successfully mitigate preference
traps and enhance performance. Additionally, we
investigate the time cost and model adaptability of
CAT.

Our contributions include three aspects: First,
we investigate and summarize the preference traps
in LLM-based unsupervised EAE tasks. Second,
we propose CAT, which effectively mitigates pref-
erence traps and achieves full controllability over
LLMs’ extraction results. CAT (based on the local
7B model, zero-shot setting) matches the perfor-
mance of the best DeepSeek-R1 API-accessible
model (Guo et al., 2025). Third, we conduct ex-
tensive experiments to explore the properties of
CAT. EAE is one of the most challenging and rep-
resentative IE tasks, and we hope our work can
inspire further research on unsupervised unified IE
frameworks.

2 Method

As illustrated in Figure 2, the CAT framework
divides the EAE task into the think stage and
the choose stage, with countermeasures integrated
(Section 2.1). To address the prior knowledge trap,
CAT refines the definitions and revises biased ex-
pressions therein (Section 2.2.1). To mitigate the
sycophancy hallucination trap, CAT provides clear
output specifications and restricts the extraction
scope (Section 2.2.2). To tackle the output con-
tradiction trap, CAT adjusts the prompts and hard
constraints to guide the LLM output in its preferred
format and natural habit (Section 2.2.3). The spe-
cific prompts are presented in Appendix A.

19530

Candidate Argument Set -—--— -

el Filter | ™y
/ Ist 2nd ! 3rd
Text Event Description -~ Free-text Arguments N Arguments in Template
f A T | f
Trigger 1
a9 |:> {\ The LLM ! :> Arguments
Type t \\ \\
yp Q: What event does the \, Q: Please extract needed '\, Q: Please choose from the
trigger indicate? information: ... candidate arugment set: ...
Think Stage Choose Stage

ﬁ Integrate

Countermeasures for Prefrence Traps

Refined Definitions

Clear Output Specifications

The Most Preferred Format

Unbiased Direct Expressions

Restricted Extraction Scope

Inherent Habits

Prior Knowledge Trap

Sycophancy Hallucination Trap

Output Contradiction Trap

Figure 2: The framework of CAT. CAT divides the EAE task into the think stage and the choose stage. Countermea-

sures for preference traps are employed in the two stages.

2.1 Stage Division

The EAE task is divided into two stages: the think
stage and the choose stage, involving three turns
of dialogue with the LLM. To reduce error propa-
gation, earlier inputs are reused in later turns, en-
suring consistent interpretation of the event text,
as indicated by the differently colored boxes in
Appendix A.

2.1.1 Think Stage

The think stage focuses on identifying event infor-
mation and generating results freely. This stage
consists of two turns: the first turn is responsible
for scoping the target event, and the second turn
extracts from this scope.

The 1st turn requires the LLM to describe the
event indicated by the trigger in the event text. This
description serves as the extraction scope in subse-
quent turns to avoid extracting irrelevant informa-
tion caused by the sycophancy hallucination trap.

The 2nd turn requires the LLM to extract event
information within the scope from the 1st turn.
Given the correlations among argument roles in
an event, CAT jointly identifies all possible argu-
ments and their roles.

2.1.2 Choose Stage

The choose stage involves the 3rd turn of dialogue
with the LLM, outputting the final arguments under
constraints based on the think stage’s output.

The 3rd turn selects the final arguments for
each role from the candidate argument set to fill
the forced-output template. This set consists of en-
tities in the text that may serve as event arguments.
Unlike conventional token-level generation, CAT
computes the average log-probability of tokens in
the candidate argument as its selection score. Then,
CAT picks the highest-scoring candidate each time
and fills it into the template until the termination
token or "None" outranks other candidates. This
method effectively reduces the impact of abnormal
initial token probabilities and ensures all generated
content remains constrained.

2.1.3 Candidate Argument Set

We perform an algorithm to construct the candidate
argument set, as shown in Figure 3. This algorithm
extracts entities with varying degrees of modifica-
tion from the event text, enabling direct control
over the argument spans.

As preparation, we parse the event text into a
dependency syntax tree T using NLP tools. We
collect all dependency relations that can serve as
subjects, objects, predicates, modifiers, or comple-
ments, or indicate coordination into a set D.

The building stage 1 aims to identify the head
words C, which are bare entities: If the word’s
dependency relation is in D, we add it to C. The
building stage 2 aims to expand each head word
¢ to get entities with varying degrees of modifica-

19531

tion: First, we find all subtrees rooted at ¢’s sons,
denoted as ¢T. Second, we expand ¢ bidirectionally
and consecutively, using elements from cT as units.
Third, we record all expansion results s from all
elements in C as S1. S1 is the candidate argument
set for the text, near-perfect recall but too large.

Thus, we filter S1 for for each argument role, we
remove arguments in S1 that are absent from the
results of the 2nd turn, obtaining S. S is the candi-
date argument set for each argument role, which
can be directly used in the 3rd turn.

Preparation

Event text: A Cuban patrol boat with four men landed on American
shores.

D: The dependency relation set about subjects, objects, predicates,
modifiers, complements, or coordination.

For example, relations about subjects are "nsubj", "nsubj:outer”, "nsubj:pass",
"esubj", "csubj:outer”, and "csubj:pass”.

T: The dependency syntax tree of the event text.

node_index word relation parent_index
0 A det 3
1 Cuban amod 5)
2 patrol compound 3
3 boat nsubj 7
4 with case 6
5 four nummod 6
6 men nmod 3
7 landed root -1
8 on case 10
9 American amod 10
10 shores obl 7
11 punct 7

Building Stage 1: The Head Words Identification
C: The head words, whose dependency relation is in D.

The C of the event text: Cuban (amod), patrel (compound), boat (nsubj), four
(nummod), men (nmod), American (amod), shores (obl)

Building Stage 2: The Head Words Expansion

For each head word ¢ in C: (Using "boat" as an example)
cT: The subtrees rooted at ¢'s sons.

T
Event text: A Cuban patrol boat with four men landed on American shores.
2 sl ruay

The cT of "boat": "A", "Cuban", "patrol", "with four men"

s: Expand c bidirectionally, use €T as expansion units.

Event text: A Cuban patrol boat with four men landed on American shores.

The s of "boat": "boat", "patrol boat", "Cuban patrol boat", "A Cuban patrol boat",
"boat with four men", "patrol boat with four men", "Cuban patrol boat with four
men", "A Cuban patrol boat with four men"

S1: All the s from all head word ¢ in C. (high recall but too large)

Filter
For each role, remove arguements in 81 that are absent from the
results of the 2nd turn.

Output from the 2nd turn:

- Agent: None.

- Artifact: Four men on the boat.

- Vehicle: A boat is used in this movement.

- Origin: None.

- Destination: The movement is directed to American shores.

S for Agent: --

S for Artifact: men, four men, boat

§ for Vehicle: boat

8 for Origin: -

$ for Destination: American, American shores

Finally, we obtain S, the candidate argument set for each role with
high-recall and a small size.

Figure 3: Construct the Candidate Argument Set: Pre-
pare, Build and Filter

2.2 Countermeasures for Preference Traps

The three preference traps of LLMs significantly
impact their performance on EAE tasks. To ad-
dress these challenges, CAT employs two effective
countermeasures for each trap.

2.2.1 Prior Knowledge Trap

In EAE tasks, LLMs often require crafted defini-
tions of event types and argument roles to fully
capture their intended meanings. However, low-
quality definitions can mislead LL.Ms, resulting in
the prior knowledge trap.

Biased Tense

- Vehicle: The vehicle that was used in this
movement.

Result: X

- Vehicle: No vehicle was used.

{ Use the simple present tense }-@—

One Instance
Text: The plane will arrive in the afternoon.
Trigger: arrive
Event Type: Movement:Transport
Arguments:
- Artifact: None

- Vehicle: plane
:{mﬁ

Initial Definition
- Artifact: The person or the artifact that
moved
Result: X
- Artifact: plane - '
Refined Definition
- Artifact: The person or the artifact that
moved (not including the vehicle)

Result:
- Artifact: None

Unbiased Tense

- Vehicle: The vehicle that is used in this
movement.

Result [

- Vehicle: plane

Undirect Expression

The definition of Vehicle is the vehicle that
is used in this movement. Please extract
the Vehicle of the arrive event.

Use Wh-questions {}

Direct Expression
What vehicle is used in this arrive event?

2. Ajust the biased and undirect expression
in the definitions.

1. For each event type, check 50 instances
and refine the definitions.

Figure 4: Countermeasures for the prior knowledge trap

To address this trap (Figure 4), the first common
countermeasure is to refine these definitions. Ini-
tially, our event type definitions follow (Hsu et al.,
2022), while argument role definitions follow (Dod-
dington et al., 2004; Song et al., 2015). Then, for
each event type, we sample 50 annotated instances
and check their alignment with the definitions. If
not, we refine the definitions.

We propose the second countermeasure to adjust
the biased and undirect expressions. On one hand,
we formulate definitions in the simple present tense
to maintain objectivity and avoid temporal biases
that might arise from other tenses. On the other
hand, we describe argument role definitions using
wh-questions and ask the LLM concisely and di-
rectly.

2.2.2 Sycophancy Hallucination Trap

To meet EAE requirements, LLMs often extract
arguments that are not specified in the event text or
irrelevant to the target event, leading to the syco-
phancy hallucination trap.

To address this trap (Figure 5), the first common
countermeasure is to provide clear output specifica-
tions in prompts for cases where arguments do not
exist. We propose the second countermeasure to

19532

Instance
Text: Former senior banker Callum begins
his job in London, when incumbent Howard
steps down.
Trigger: Former

Without Extraction Scope

Who stop working in this Former event?
Result X

- Person: Callum, Howard

—q Restrict the extraction scope F&
With Extraction Scope

Event Type: Personnel:End-Position
Arguments:
- Person: Callum

- Entity: None The 1st turn of CAT

| Some people stop working for others in this text.
What event does the trigger Former indicate?
Output:

Callum stops working as a seniQr banker.

No Output Specifications M

Please extract Entity of the Former event.
Result X
- Entity: bank

The 2nd turn of CAT
e o The trigger Former indicates that Callum stops
l Add the output specifications L& workinggas a senior banker. Who stops working
Clear Output Specifications in this Former event?
Please extract Entity of the Former event. If Result
it is not specified in the text, output None. - Person: Callum
Result
- Entity: None

2. Get the event description through the 1st
turn and use it as the argument extraction
scope.

1. "If it is not specified in the text,
output None."

Figure 5: Countermeasures for the sycophancy halluci-
nation trap

avoid irrelevant arguments. Specifically, we query
the LLM for a description of the target event, which
is exactly what the 1st turn does. The description is
used as the extraction scope in the following turns.

2.2.3 Output Contradiction Trap

The LLM’s output format depends on its prefer-
ence, instructions, and hard constraints. The differ-
ences among them imply contradictions between
the model, prompts, and already-generated content,
i.e., the output contradiction trap, causing anoma-
lies in token prediction probabilities.

Prompt
What's the {role} in this {trigger} event? Please output like "- {role}: Arg1, arg2..." or "- {role}: None."
Hard C int (Output ion p

Step1 - {role}: + Choose from (" None.", " Arg1", " Arg2", " Arg3", " Arg4", ...)
S {role}: Arg1 + Choose from (".", ", Arg2", ", Arg3", ", Arg4", ...)
S {role}: Arg1, Arg3 + Choose from (".", ", Arg2", ", Arg4", ...)

Step3 - {role}: Arg1, Arg3. END (when "None." is chosed or "." is chosed in Step2)

A A

-

Statistic Output Formats without C i T izati and i
57% - {role}: Arg1, arg2. preferred by the LLM

259% {ole)™" arg1, arg2. _folef ArgT, brg2f] X
11% In this {trigger} event, arg1 is used.

7% Other formats. = roIe Arg1 argZ

1. Use the most frequent output format
without any constraints.

2. Spaces near their right tokens.

Figure 6: Countermeasures for the output contradiction
trap

To address this trap (Figure 6), the first com-
mon countermeasure is to use the preferred output
format. For a given LLM, we identify the most fre-
quent output format without any constraints, then
employ instructions and hard constraints to enforce
this format. In this way, CAT achieves the align-
ment of the three factors.

We propose the second countermeasure to adjust
hard constraints to align with the LLM’s inherent
habits. Specifically, we ensure all spaces in output
templates and candidate arguments are attached
to their right-side tokens, conforming to the tok-

enization patterns of most models (Sennrich et al.,
2016).

3 Experiments Setup

3.1 Datasets

We conduct experiments on ACE05-E2, ACE05-E*
(Doddington et al., 2004), and ERE? (Song et al.,
2015), which are popular datasets on EAE task.
We follow (Wadden et al., 2019)’s and (Lin et al.,
2020)’s pre-processing scripts on ACEQ5 and ERE.
ACE2005 contains 33 event types and 22 argument
roles, while ERE includes 38 event types and 21
argument roles. More dataset details are provided
in Appendix Table 9.

3.2 Baselines

We compare our CAT framework with the fol-
lowing baseline models: (1) Degree (Hsu et al.,
2022) performs supervised EAE tasks with rich
weak supervision signals. (2) BART (Lewis et al.,
2020) is a generative model fine-tuned on full
data. (3) DeepSeek-R1 (Guo et al., 2025) is
an API-accessible model that extracts arguments
using Chain-of-Thought (CoT) reasoning. (4)
CODE4STRUCT (Wang et al., 2023) outputs re-
sults in programming language, supporting few-
shot and zero-shot. (5) DeepSeek-V3 (Liu et al.,
2024) and GPT-40 (Hurst et al., 2024) exhibit
strong zero-shot performance as API-accessible
models. (6) Vanilia means the LLM extracts argu-
ments without any optimization.

3.3 Evaluation Metric

We use Argument F1-score following baseline mod-
els (Wang et al., 2023) : We consider an argu-
ment to be correctly identified when the head word
span of predicted text matches that of the human-
annotated text (denoted as Arg-I); We consider an
argument to be correctly classified if the role of a
correctly identified argument matches that of the
human annotation (denoted as Arg-C).

3.4 Implementation Details

We use Stanza (Qi et al., 2020) to perform depen-
dency parsing on the event texts. The LLMs are
deployed based on SGLang (Zheng et al., 2024a)
on a single NVIDIA A40 GPU and adjust parame-
ters to ensure reproducibility*. We limit generation

Zhttps://catalog.1dc.upenn.edu/LDC2006T06
3https://catalog.1dc.upenn.edu/LDC2023T04
*https://docs.sglang.ai/references/faq.html

19533

ACEO5-E ACEO5-E+ ERE
Method Model
Arg-1 Arg-C Arg-l Arg-C Argl Arg-C
DEGREE (SFT) Bart-b 73.5 69.0 72.0 67.9 75.6 70.0
DEGREE (SFT) Bart-1 76.0 73.5 75.2 73.0 76.2 73.2
BART (SFT) Bart-b 64.1 59.6 65.6 59.2 68.7 63.2
BART (SFT) Bart-1 63.0 61.1 63.4 61.3 69.9 63.8

CODE4STRUCT (0-shot)
CODE4STRUCT (10-shot)
DeepSeek-V3 (0-shot)
GPT-40 (0-shot)
DeepSeek-R1 (CoT)
Vanilia (0-shot)

CAT (0-shot)

DeepSeek-V3
GPT-40
DeepSeek-R1
Qwen2.5-7B-Instruct
Qwen2.5-7B-Instruct

Qwen2.5-Coder-7B-Instruct
Qwen2.5-Coder-7B-Instruct

51.7 36.0 51.0 35.8 50.9 33.7
59.3 54.5 58.4 50.8 55.1 422
70.7 51.2 69.6 49.6 57.2 43.0

70.4 53.7 67.5 51.7 56.8 45.5

72.4 54.9 69.2 52.9 57.3 45.6
49.0 33.8 47.5 321 27.6 19.5
66.2 55.6 63.1 53.3 58.6 46.4

Table 1: The overall performance of our CAT and baselines. We bold the best result and underline the second best.

to 128 new tokens, which is sufficient for all test
set outputs.

4 Results and Analysis

To evaluate the performance of our CAT frame-
work, we compare it with several strong baselines
(Section 4.1). Then, we investigate the three prefer-
ence traps in LLMs of different families and scales
(Section 4.2). The ablation study demonstrates the
effectiveness of each component in CAT (Section
4.3). Finally, we evaluate CAT’s model adaptability
(Section 4.4) and discuss the time cost (Appendix
O).

4.1 Overall Performance

Table 1 presents the main results of all baselines
and our CAT on three datasets. We observe that
CAT achieves the highest Arg-C F1 score on every
evaluation benchmark compared to all the unsu-
pervised baselines. Surprisingly, CAT with a local
7B model in a zero-shot setting surpasses the lat-
est DeepSeek-R1 API-accessible model, with rela-
tive improvements of +0.7%, +0.4%, and +0.8% in
Arg-C F1 scores. It demonstrates that addressing
preference traps significantly enhances model per-
formance on EAE tasks. It also highlights CAT’s
ability to effectively stimulate the IE capabilities
of smaller models, which is of great significance
for reducing the temporal and spatial cost of LLM-
based IE tasks.

4.2 Existence of Three Preference Traps

We investigate the three preference traps in EAE
tasks using LLMs from different families (Mistral-

v0.3 (Jiang et al., 2023), Llama-3.1 (Grattafiori
et al., 2024), Qwen2.5 (Yang et al., 2024), GPT-4o0
(Hurst et al., 2024), and DeepSeek-V3 (Liu et al.,
2024)) and of varying scales (1.5B, 7B, 14B, and
32B).Appendix B exhibits the prompts, formats,
and results for each model. To ensure the reliability
of the results, we conduct sampled evaluation with
six random seeds [7, 14, 21, 28, 35, 42]. In this
section, the average score and standard deviation
of Qwen2.5-7B-Instruct are reported.

4.2.1 Prior Knowledge Trap

We compare the extraction results under definitions
of different argument roles to demonstrate the ex-
istence of this trap. Specifically, under three prior
knowledge settings—A’s name, A’s name + defini-
tion, and A’s name + B’s definition—we measure
the LLM’s F1 scores for extracting argument roles
A or B in the same event type. We test 10 pairs
of argument roles with 50 instances per pair. To
minimize the influence of other factors, we ensure
the names of A and B clearly convey their mean-
ings, and the wording of the definitions remains
consistent.

Figure 7 illustrates the Arg-C F1 score and its
proportion on identification A or B. We find that
the introduction of B’s definition results in an im-
provement in F1 score on Task B (+8.2%), while
a reduction on Task A (-25.4%). In other words,
B’s definition leads the LLM to extract more B
arguments and fewer A arguments. Besides, A’s
definition effectively improves the LLM’s perfor-
mance on Task A (+6.5%). These results reflect
the LLM’s heavy reliance on prior knowledge, con-

19534

100%
90%
80%
70%
60%
50%
40%
30%

20%
10%
0%

(o

I

A's name A's name + A'sdef | A's name + B's def
@F1onB 3.2 22 11.4
EF1onA 37.2 43.7 11.8

Figure 7: The LLM’s performance on Identification A
(blue) and Identification B (orange) under different prior
knowledge.

firming the existence of this trap.

4.2.2 Sycophancy Hallucination Trap

We count the nonexistent or irrelevant arguments
extracted by the LLM to confirm this trap. First,
when an argument role has no matching argument
in the text, we calculate the LLM’s average ex-
tracted arguments per role. Then, when an argu-
ment role has no matching argument in the text and
the text contains more than one event, we calculate
the LLM’s average extracted arguments belonging
to other events per role. Finally, we employ CAT’s
countermeasures and compare the new results with
the above ones.

160 143 018 016

1.40 0.16 -

1.20 0.14 0.12

1.00 0.12 -
0.10

0.80
0.08

0.60 0.06

040 0.04

0.20 0.11 0.02

0.00 i 0.00

Normal1 Counter1 Normal2 Counter2

B unspecified Irrelevant

Figure 8: The average number of extracted arguments by
the LLM under different settings: "Counter1" means the
clear output specifications are provided and "Counter2"
means the extraction scope are restricted. "Normal"
denotes the bare LLM without the countermeasure.

Figure 8 presents all the results. We observe that
without countermeasures, the LLM extracts 1.43 ar-
guments unspecified and 0.16 arguments belonging
to other events per role on average. However, after
employing the countermeasures, the correspond-

ing values decrease to 0.11 and 0.12, respectively.
This demonstrates that LLMs tend to extract non-
existent or irrelevant arguments to meet users’ ex-
traction demands, namely, the sycophancy halluci-
nation trap. CAT’s countermeasures can effectively
mitigate this issue.

4.2.3 Output Contradiction Trap

We compare LLM’s performance with/without out-
put contradiction to verify this trap. Specifically,
we provide three output formats: raw output, JSON,
and natural language. These formats are struc-
turally similar, thereby avoiding the impact of par-
ticular formats on performance. The prompt and
hard constraints each select an output format to
control the LLM’s generation; output contradiction
arises when their chosen formats differ.

Figure 9 presents the F1 score and the log-
probability gap between correct and incorrect an-
swers under different format combinations. Higher
F1 scores and larger gaps indicate better perfor-
mance. We find that for each format, LLMs per-
form better without contradictions (AB = 11, 22,
33) than with them (except for some special cases).
These results show that the output contradiction re-
duces the log-probability gap between correct and
incorrect answers, thereby affecting model perfor-
mance—confirming the trap’s existence.

4.3 Ablation Study

In this section, we individually mask each method
in CAT and compare the performance to study their
effectiveness. Table 2 lists all the methods of CAT
and their ablation experiment results.

Ablated Method Arg-C F1
Refined definitions 48.2
Unbiased and direct expressions 52.0
Clear output specifications 47.8
Restricted extraction scope 50.2
The most preferred format 50.3
Inherent habits 48.4
Stage division -
Choose arguments 422

Table 2: Ablation results of CAT’s Methods. The bolded
ones represent our original contributions. As a compari-
son, the complete CAT’s Arg-C F1 is 55.6.

From Table 2, we observe that masking each
method leads to varying degrees of performance

19535

40.0

35.0

30.0
25.0
20.0
15.0
10.0
5.0
0.0
11 12

F1score 328 155 355

13 21 22 23 31 32 33

16.7 304 167 212 204 380

(@)

20.0
15.0

10.0

“1 1 sl 1
0.0 - .
“T |

-10.0

-15.0
11 12 13 21 22 23 31 32 33

difference 14.2 -5.9 5.2 -25 5.8 3.6 76 -9.0 6.1

(b)

Figure 9: The LLM’s performance on the EAE task un-
der 9 combinations. (a) shows the F1 scores, (b) shows
the log-probability gaps. Combinations are represented
as "AB", for example, "12" indicates that we prompt the
LLM to output the 1st format but enforce the 2nd one.

decline in CAT. Notably, when the choose stage
reverts to the conventional token-level generation
(Row 8), the F1 score sees the largest drop (-13.4%).
Additionally, when CAT performs the EAE task in
a single turn with the LLM (Row 7), the experiment
can not complete within a normal timeframe due to
the large size of the unfiltered candidate argument
set. The above conclusions indicate that, first, each
method employed in CAT contributes to its final
performance. Second, by selecting answers from a
candidate argument set to fill the forced-output tem-
plates, CAT effectively overcomes the drawbacks
of conventional generation, leading to a significant
improvement in performance.

4.4 Model Adaptability

We employ diverse types and sizes of LLMs as base
model to evaluate CAT’s model adaptability. Table
3 presents the experimental results. We observe
that CAT consistently performs better than Vanilia,

demonstrating its strong adaptability across differ-
ent models.

CAT shows little performance variation when
built upon Qwen2.5 models (7B+), as different
models prefer distinct prompt details. CAT’s cur-
rent prompts and prior knowledge have reached
their upper limit in stimulating the information ex-
traction capabilities of these LLM:s.

Model Vanilia | CAT
Qwen2.5-1.5B-Instruct 19.5 41.4
Qwen2.5-7B-Instruct 33.8 55.6
Qwen2.5-14B-Instruct 40.8 52.5
Qwen2.5-32B-Instruct 46.3 54.0
Mistral-7B-Instruct-v(.3 22.1 48.4
Llama-3.1-8B-Instruct 26.9 50.9

Table 3: The performance (the Arg-C F1 score) of
Vanilia and CAT.

5 Related works

Unsupervised event extraction: Recent advance-
ments in unsupervised event extraction (EE) have
focused on methods like prompt engineering, chain
of thought, and programming language output.
Prompt engineering mitigates the prior knowledge
trap by refining event type definitions or optimiz-
ing prompts (Cai et al., 2024; Hong and Liu, 2024).
The chain of thought approach reduces the syco-
phancy hallucination trap by breaking extraction
into stages or reasoning (Wei et al., 2023; Ma et al.,
2024; Guo et al., 2025). Programming language
output leverages code LLMs to generate structured
information (Wang et al., 2023; Guo et al., 2024b),
addressing the output contradiction trap. While
these methods address specific LLM preference
traps, CAT innovatively tackles all three traps by
dividing EE into think stage and choose stage, re-
ducing abnormal token impacts and ensuring com-
pletely constrained outputs.

LLM Preferences and Their Impacts: LLM
preferences significantly influence downstream
task performance and Al reliability, making their
study essential. Research explores inherent LLM
preferences, such as understanding humor (Hessel
et al., 2023), mental models of everyday objects
(Gu et al., 2023), hidden biases (Bai et al., 2024),
and human-like preference similarities (Li et al.,
2024b). Studies also examine preference impacts

19536

in downstream tasks, including evaluation tenden-
cies (Panickssery et al., 2024), learning behaviors
with conflicting knowledge (Li et al., 2024a), and
output format preferences (Nguyen et al., 2025).
To address these issues, preference optimization
has emerged as a key focus. Methods include
multi-modal feedback for long-range decision tasks
(Zhao et al., 2024), and multi-objective alignment
to mitigate the Matthew effect (Guo et al., 2024a;
Zheng et al., 2024b). However, few works, like
CAT, address LLM preferences without training,
which is critical for advancing LLM capabilities in
such scenarios.

6 Conclusion

In this work, we first experimentally investigate
and summarize the preference traps in LLM-based
unsupervised EAE tasks. We then propose CAT, a
two-stage framework employing practical counter-
measures and an innovative generation approach
for LLMs. Experiments demonstrate that CAT
(using a local 7B model in a zero-shot setting)
matches the performance of the best DeepSeek-
R1. Additionally, CAT exhibits low time cost and
robust model adaptation capabilities in further ex-
periments. Future work will extend this work to in-
formation extraction and control extraction bound-

ary.
Limitations

First, since LLMs are built differently, our provided
prompts may not be optimal for all models. Sec-
ond, directly controlling extraction results via the
candidate argument set needs further study. Third,
some countermeasures do not establish a clear cri-
terion for the prompt optimization process. This is
partly due to LLM differences, preventing a univer-
sal standard. Additionally, prompt optimization is
a heuristic process that relies on practical experi-
mentation.

Ethics Statement

Event argument extraction (EAE) task is a well-
defined task in Information Extract (IE) field. In
our research and experimental process, our use of
existing artifacts (e.g., datasets) was licensed and
consistent with their intended use. We do not see
other significant ethical concerns. Meanwhile, we
keep honest in our work and our work will not be
used to harm anyone.

Acknowledgements

This work was supported by National Key R&D
Program of China (Grant No. 2024 YFF0907400).

References

Xuechunzi Bai, Angelina Wang, Ilia Sucholutsky, and
Thomas L Griffiths. 2024. Measuring implicit bias
in explicitly unbiased large language models. arXiv
preprint arXiv:2402.04105.

Zefan Cai, Po-Nien Kung, Ashima Suvarna, Mingyu
Ma, Hritik Bansal, Baobao Chang, P. Jeffrey Brant-
ingham, Wei Wang, and Nanyun Peng. 2024. Improv-
ing event definition following for zero-shot event de-
tection. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2842-2863, Bangkok,
Thailand. Association for Computational Linguistics.

George R Doddington, Alexis Mitchell, Mark A Przy-
bocki, Lance A Ramshaw, Stephanie M Strassel, and
Ralph M Weischedel. 2004. The automatic content
extraction (ace) program-tasks, data, and evaluation.
In Lrec, volume 2, pages 837-840. Lisbon.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Yuling Gu, Bhavana Dalvi Mishra, and Peter Clark.
2023. Do language models have coherent mental
models of everyday things? In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1892-1913, Toronto, Canada. Association for Com-
putational Linguistics.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Yiju Guo, Ganqu Cui, Lifan Yuan, Ning Ding, Zexu Sun,
Bowen Sun, Huimin Chen, Ruobing Xie, Jie Zhou,
Yankai Lin, et al. 2024a. Controllable preference
optimization: Toward controllable multi-objective
alignment. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 1437-1454.

Yucan Guo, Zixuan Li, Xiaolong Jin, Yantao Liu, Yutao
Zeng, Wenxuan Liu, Xiang Li, Pan Yang, Long Bai,
Jiafeng Guo, et al. 2024b. Retrieval-augmented code
generation for universal information extraction. In
CCF International Conference on Natural Language
Processing and Chinese Computing, pages 30-42.
Springer.

19537

https://doi.org/10.18653/v1/2024.acl-long.157
https://doi.org/10.18653/v1/2024.acl-long.157
https://doi.org/10.18653/v1/2024.acl-long.157
https://doi.org/10.18653/v1/2023.acl-long.106
https://doi.org/10.18653/v1/2023.acl-long.106

Jack Hessel, Ana Marasovic, Jena D. Hwang, Lillian
Lee, Jeff Da, Rowan Zellers, Robert Mankoff, and
Yejin Choi. 2023. Do androids laugh at electric
sheep? humor “understanding” benchmarks from
the new yorker caption contest. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
688-714, Toronto, Canada. Association for Compu-
tational Linguistics.

Zijin Hong and Jian Liu. 2024. Towards better ques-
tion generation in QA-based event extraction. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 9025-9038, Bangkok,
Thailand. Association for Computational Linguistics.

I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,
Scott Miller, Prem Natarajan, Kai-Wei Chang, and
Nanyun Peng. 2022. DEGREE: A data-efficient
generation-based event extraction model. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1890-1908, Seattle, United States. Association for
Computational Linguistics.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William EI Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871-7880.

Jiahuan Li, Yiqing Cao, Shujian Huang, and Jiajun Chen.
2024a. Formality is favored: Unraveling the learning
preferences of large language models on data with
conflicting knowledge. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5307-5320, Miami, Florida,
USA. Association for Computational Linguistics.

Junlong Li, Fan Zhou, Shichao Sun, Yikai Zhang, Hai
Zhao, and Pengfei Liu. 2024b. Dissecting human and
LLM preferences. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1790-1811,
Bangkok, Thailand. Association for Computational
Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th annual
meeting of the association for computational linguis-

tics, pages 7999-8009.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Mingyu Derek Ma, Xiaoxuan Wang, Po-Nien Kung,
P Jeffrey Brantingham, Nanyun Peng, and Wei Wang.
2024. Star: Boosting low-resource information ex-
traction by structure-to-text data generation with
large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38,
pages 18751-18759.

Ngoc-Hai Nguyen, Tiviatis Sim, Hieu Dao, Shafiq Joty,
Kenji Kawaguchi, Nancy Chen, Min-Yen Kan, et al.
2025. Llms are biased towards output formats! sys-
tematically evaluating and mitigating output format
bias of llms. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 299-330.

Arjun Panickssery, Samuel Bowman, and Shi Feng.
2024. Llm evaluators recognize and favor their own
generations. Advances in Neural Information Pro-
cessing Systems, 37:68772—68802.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101-108, Online. As-
sociation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Mrinank Sharma, Meg Tong, Tomasz Korbak, David
Duvenaud, Amanda Askell, Samuel R Bowman,
Newton Cheng, Esin Durmus, Zac Hatfield-Dodds,
Scott R Johnston, et al. 2023. Towards understand-
ing sycophancy in language models. arXiv preprint
arXiv:2310.13548.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light to
rich ere: Annotation of entities, relations, and events.
In Proceedings of the 3rd Workshop on EVENTS: Def-
inition, Detection, Coreference, and Representation,
pages 89-98.

19538

https://doi.org/10.18653/v1/2023.acl-long.41
https://doi.org/10.18653/v1/2023.acl-long.41
https://doi.org/10.18653/v1/2023.acl-long.41
https://doi.org/10.18653/v1/2024.findings-acl.535
https://doi.org/10.18653/v1/2024.findings-acl.535
https://doi.org/10.18653/v1/2022.naacl-main.138
https://doi.org/10.18653/v1/2022.naacl-main.138
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2024.emnlp-main.304
https://doi.org/10.18653/v1/2024.emnlp-main.304
https://doi.org/10.18653/v1/2024.emnlp-main.304
https://doi.org/10.18653/v1/2024.acl-long.99
https://doi.org/10.18653/v1/2024.acl-long.99
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784—
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Sijia Wang and Lifu Huang. 2024. Debate as optimiza-
tion: Adaptive conformal prediction and diverse re-
trieval for event extraction. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 16422-16435, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Xingyao Wang, Sha Li, and Heng Ji. 2023. Code4Struct:
Code generation for few-shot event structure predic-
tion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 3640-3663, Toronto,
Canada. Association for Computational Linguistics.

X Wei, X Cui, N Cheng, X Wang, X Zhang, S Huang,
P Xie, J Xu, Y Chen, M Zhang, et al. 2023. Chatie:
Zero-shot information extraction via chatting with
chatgpt. arxiv. arXiv preprint arXiv:2302.10205.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, Yang
Wang, and Enhong Chen. 2024. Large language mod-
els for generative information extraction: A survey.
Frontiers of Computer Science, 18(6):186357.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng
He. 2025. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen?2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Qi Zhao, Haotian Fu, Chen Sun, and George Konidaris.
2024. Epo: Hierarchical 1lm agents with environ-
ment preference optimization. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 6401-6415.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie,
Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gon-
zalez, et al. 2024a. Sglang: Efficient execution of
structured language model programs. Advances in
Neural Information Processing Systems, 37:62557—
62583.

Yongsen Zheng, Ruilin Xu, Ziliang Chen, Guohua
Wang, Mingjie Qian, Jinghui Qin, and Liang Lin.
2024b. Hycorec: Hypergraph-enhanced multi-
preference learning for alleviating matthew effect
in conversational recommendation. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2526-2537.

A The Prompts of CAT

The prompts used in CAT are shown in Figure 10.
Information in earlier inputs are reused in later
turns to reduce error propagation.

B Experiment Prompts and Results

We present the prompts used in the experiments of
preference traps (Section 4.2), along with the per-
formance of models from different families and of
varying scales. DeepSeek-V3 and GPT-40 are API-
accessible models. Detailed prompts and output
formats are presented in Figure 11.

Table 4 presents the LLMs’ performance in the
prior knowledge trap experiment, which comfirms
this trap exists across models. Furthermore, larger
models exhibit a reduced impact from correct ar-
gument role definitions (A’s definition) but an in-
creased influence from incorrect argument role defi-
nitions (B’s definition). A similar trend is observed
when comparing API-accessible models with lo-
cally deployed models.

Table 5 presents the LLMs’ performance in the
sycophancy hallucination trap experiment, which
comfirms this trap exists across models. we ob-
serve that larger models extract fewer arguments
not explicitly specified in the sentence, but more
irrelevant arguments (belonging to other events).
Besides, the output specifications we provided for
cases where arguments do not exist (Counter1) ac-
tually lead the API-accessible models to extract
more unspecified arguments. This occurs because
models prefer different prompt details.

Table 6 and Table 7 presents the LLMs’ perfor-
mance in the output contradiction trap experiment,
which comfirms this trap exists across models. Ad-
ditionally, when the prompt’s required output for-
mat conflicts with the hard constraints, larger mod-
els experience more significant performance degra-
dation.

C Time Cost

To compare CAT’s time cost with other models,
we randomly extract 50 event samples and test
(s/sentence) without any efficiency optimization
(eg. radix-cache). The experiment is repeated five
times with different seeds. The base model used
was Qwen2.5-7B-Instruct, deployed on a single
NVIDIA A40 GPU. Experiment results are pre-
sented in Table 8. We find CAT achieves lower
time cost. Moreover, it has potential for further
time optimization.

19539

https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/2024.findings-emnlp.958
https://doi.org/10.18653/v1/2024.findings-emnlp.958
https://doi.org/10.18653/v1/2024.findings-emnlp.958
https://doi.org/10.18653/v1/2023.acl-long.202
https://doi.org/10.18653/v1/2023.acl-long.202
https://doi.org/10.18653/v1/2023.acl-long.202

The 1st turn
Input:

["A Cuban boat with four armed men landed on American shores, utterly undetected by the Coast Guard." |

Some people or something moves from one place to another in the sentence. What does the word "landed" in this sentence indicate?
Output:

|The word "landed" indicates that the Cuban boat carrying four armed men arrived or came ashore on American shores.

The 2nd turn

Input:
[In this sentence "..." Jthe word "landed" indicates that the Cuban boat carrying ... |

If the sentence does not specify some information, just say "None explicitly mentioned".
Here is the information needed:
- Who promotes the movement
- Who or what moves

Output:
- Who promotes the movement: None explicitly mentioned
- Who or what moves: A Cuban boat carrying four armed men.

The 3rd turn (for each argument role)

Input:

|In this sentence "...",|the word "landed" indicates that the Cuban boat carrying ... |
- Who or what moves: A Cuban boat carrying four armed men.|
‘Based on the above information, answer my question about Artifact: Who or what moves? |

You can only choose the best ones from the entities to answer. If it is not explicitly specified in the information, just say none.
|The entities: A Cuban boat carrying four armed men, A Cuban boat, four armed men, ... \

Output:

- Who or what moves: four armed men.

Figure 10: The prompts used in CAT. Each colored box corresponds to a different type of information.

Model F1 on Task A F1 on Task B
An | An+Ad | An+Bd | An | An+Ad | An+Bd
Qwen2.5-1.5B-Instruct 14.5 28.8 17.9 6.2 5.5 18.8
Qwen2.5-7B-Instruct 37.2 43.7 11.8 3.2 2.2 114
Qwen2.5-14B-Instruct 42.5 49.7 9.1 4.0 2.4 24.0
Qwen2.5-32B-Instruct 43.5 51.8 10.0 7.2 3.6 33.1
Mistral-7B-Instruct-v0.3 | 23.2 24.9 8.4 1.8 1.6 8.1
Llama-3.1-8B-Instruct 37.5 38.1 23.9 5.3 4.6 20.5
DeepSeek-V3 55.6 56.0 24.7 2.9 3.2 20.8
GPT-40 57.4 58.1 22.5 2.8 3.0 21.8

Table 4: The LLMs’ performance in the experiment of the prior knowledge trap. "An" denotes A’s name. "An +
Ad" denotes A’s name and A’s definition. "An + Bd" denotes A’s name and B’s definition.

19540

Model Unspecified Irrelevant
Normall | Counterl | Normal2 | Counter2
Qwen2.5-1B-Instruct 2.24 0.43 0.15 0.10
Qwen?2.5-7B-Instruct 1.43 0.11 0.16 0.12
Qwen2.5-14B-Instruct 1.84 0.27 0.19 0.13
Qwen2.5-32B-Instruct 0.72 0.05 0.18 0.13
Mistral-7B-Instruct-v(.3 1.11 0.33 0.20 0.10
Llama-3.1-8B-Instruct 1.55 1.09 0.29 0.19
DeepSeek-V3 0.66 0.78 0.23 0.18
GPT-40 0.62 0.87 0.17 0.09

Table 5: The average number of extracted arguments in the experiment of the sycophancy hallucination trap.
"Unspecified" denotes the arguments not specified in the text. "Irrelevant” denotes the arguments irrelevant to the
target event. "Counterl" means the clear output specifications are provided and "Counter2" means the extraction
scope are restricted. "Normal" denotes the bare LLM without the countermeasure.

Model 11 12 13 21 22 23 31 32 33
Qwen2.5-1B-Instruct 213 | 21.8 | 222 | 17.1 | 233 | 134 | 193 | 17.0 | 17.0
Qwen2.5-7B-Instruct 32.8 | 155|355 | 167 | 304 | 16.7 | 21.2 | 204 | 38.0
Qwen2.5-14B-Instruct 320|241 | 27.6 | 16.8 | 45.1 | 179 | 18.1 | 24.8 | 46.1
Qwen2.5-32B-Instruct 358 263 | 387 | 142 | 414 | 152 | 179 | 182 | 42.6
Mistral-7B-Instruct-v0.3 | 34.8 | 26.3 | 38.8 | 18.2 | 37.4 | 23.1 | 20.6 | 25.0 | 39.0
Llama-3.1-8B-Instruct 348 | 247 | 345 | 173 | 26.1 | 18.6 | 18.3 | 22.7 | 36.2

Table 6: The LLMs’ performance (the F1 score) in the experiment of the output contradiction trap. Combinations
are represented as "AB", for example, "12" indicates that we prompt the LLM to output the 1st format but enforce
the 2nd one.

Model 11 12 | 13 | 21 22 | 23| 31 32 33
Qwen2.5-1B-Instruct 38 | 431210701]07| 66 | -65 | 3.1
Qwen2.5-7B-Instruct 142 | -59 |52 |-25| 58 |36| 76 | -90 | 6.1
Qwen2.5-14B-Instruct 123 | -77 191 |-57| 64 |49 | 4.1 | -11.5 | 12.3
Qwen2.5-32B-Instruct 185|-76 | 6.1 |-25| 77 | 33| 66 | -147 | 9.8
Mistral-7B-Instruct-v0.3 | 4.1 | -3.6 | 43| 0.0 | 20 |38 | 29 | -55 | 53
Llama-3.1-8B-Instruct 58 | 65140424323 |-01]| -7.1 | 50

19541

Table 7: The LLMs’ performance (the log-probability gap between correct and incorrect answers) in the experiment
of the output contradiction trap. Combinations are represented as "AB", for example, "12" indicates that we prompt
the LLM to output the 1st format but enforce the 2nd one.

The Prior Knowledge Trap

The prompt with argument role definition:

{sentence}

The word "{trigger}" in this sentence indicates that {event_definition}, which is a {event_type} event.

Please extract "{role}" of this event from the sentence. The "{role}" is defined as "{role_definition}".

If it is specified in the sentence, please output like "Answer: answer1, answer2, ...". If not, just output "Answer: none".

The prompt without argument role definition:

{sentence}

The word "{trigger}" in this sentence indicates that {event_definition}, which is a {event_type} event.

Please extract "{role}" of this event from the sentence.

If it is specified in the sentence, please output like "Answer: answer1, answer2, ...". If not, just output "Answer: none".

The Sycophancy Hallucination Trap
P1. The prompt with output specification:

{sentence / event description}

The word "{trigger}" in this sentence indicates that {event_definition}, which is a {event_type} event.
If the sentence does not specify some information, just say "None".

Here is the information needed: {role_definition}".

Please output like "{role_asks_str}: your result splitted by comma" or "{role_asks_str}: None"

P2. The prompt without output specification:

{sentence}

The word "{trigger}" in this sentence indicates that {event_definition}, which is a {event_type} event.
Here is the information needed:\n{role_definition}".

Please output like "{role_definition}: your result splitted by comma"

P3. The prompt to get the event description:

"{sentence}"
{event_definition} in the sentence. What does the word "{trigger}" in this sentence indicate?

Normall = P2, Counterl =1, Normal2 = P1, Counter2 = P3+P1

The Output Contradiction Trap

{sentence}

The word "{trigger}" in this sentence indicates that {event_explain}, which is a {etype} event.

Please extract the {role} of the {etype} event from this sentence. The definition of {role} is: {role_explain}

Please output in the following format: {format-Existing}. If the answer is not explicitly specified in the information, just
output {format-Not Existing}.

Three output formats:

Format Name Existing Not Existing
Raw Output (1) argl, arg2, ... none.
JSON (2) ['arg1", "arg2", ...] 1
Natural Language (3) Answer: arg1, arg2... Answer: none.

Figure 11: The prompts used in experiments of preference traps.

19542

Method

Time cost (s/sentence)

CAT

5.06 (STD:0.216)

GPT-40

10.18 (STD:1.90)

DeepSeek-R1

64.33 (STD:5.71)

CoT

>3 (Xuetal,, 2025)

Multi-Agent

> 10 (Wang and Huang, 2024)

Table 8: The time cost of different methods. The under-
lined results are cited from prior works.

Dataset Split #Sents #Entities #Args
Train 17,172 20,006 4,859
ACEO5-E | Dev 923 2,451 605
Test 823 3,017 576
Train 19,216 47,554 6,607
ACEO5-E* | Dev 901 3,423 759
Test 676 3,673 689
Train 8,886 22,831 4,372
ERE Dev 720 1,949 378
Test 604 1,621 257

Table 9: Statistics of datasets

19543

