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Abstract

Social media has emerged as a valueable source
for early pandemic detection, as repeated men-
tions of symptoms by users may signal the
onset of an outbreak. However, to be a reli-
able system, validation through fact-checking
and verification against official health records
is essential. Without this step, systems risk
spreading misinformation to the public. The ef-
fectiveness of these systems also depend on
their ability to process data in multiple lan-
guages, given the multilingual nature of so-
cial media data. Yet, many NLP datasets
and disease surveillance system remain heavily
English-centric, leading to significant perfor-
mance gaps for low-resource languages. This
issue is especially critical in Southeast Asia,
where symptom expression may vary cultur-
ally and linguistically. Therefore, this study
evaluates the symptom detection capabilities
of LLMs in social media posts across multiple
languages, models, and symptoms to enhance
health-related fact-checking. Our results re-
veal significant language-based discrepancies,
with European languages outperforming under-
resourced Southeast Asian languages. Further-
more, we identify symptom-specific challenges,
particularly in detecting respiratory illnesses
such as influenza, which LLMs tend to overpre-
dict. The overestimation or misclassification of
symptom mentions can lead to false alarms or
public misinformation when deployed in real-
world settings. This underscores the impor-
tance of symptom detection as a critical first
step in medical fact-checking within early out-
break detection systems.

1 Introduction

Social media can be used for early pandemic de-
tection (Shi et al., 2024). When many users repeat-
edly mention or complain about a certain symptom,
it may indicate the potential onset of an outbreak.
Gour et al. (2022) conducted a study on the COVID-
19 outbreak and found that social media activity
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can reflect the state of an outbreak. Specifically,
the study revealed that negative tweets posted dur-
ing a crisis tend to align with the scale of the dis-
ease outbreak. However, to ensure the reliability
of these detections, it is essential to validate them
by fact-checking and verifying against the official
health records. This transition from detection to
health-related fact-checking and verification forms
the foundation for building reliable public health
monitoring systems. If a system detects a poten-
tial pandemic that does not correspond to official
health records, it may contribute to the spread of
misinformation to the public.

Nevertheless, the effectiveness of such systems
relies on their ability to process data in multiple
languages, as social media users come from all
over the world. Yet, a comprehensive study on
Natural Language Processing (NLP) datasets re-
vealed a significant bias towards English, result-
ing in better performance than other languages for
many tasks (Brown et al., 2020; Yu et al., 2022;
Lai et al., 2023). In the field of disease surveil-
lance, most existing epidemiological datasets and
detection systems have also been developed primar-
ily in English, with only limited support for other
languages (Parekh et al., 2024a).

The performance gap is potentially wider for lan-
guages with little labeled or even unlabeled data,
such as the majority of languages in Southeast
Asia (SEA), a linguistically diverse region home to
over 1300 languages (Joshi et al., 2020; Lovenia
et al., 2024). These factors also pose a challenge
in developing automatic symptom detection due
to cultural (Anggoro and Jee, 2021) and linguis-
tic variations (Wang et al., 2010), such as the use
of idiomatic expressions and colloquial terms for
common symptoms. A notable gap persists in ad-
dressing symptom identification and health-related
data processing for languages in this region and
under-resourced languages as a whole.

Addressing those challenges requires technolo-
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LLMs performance? various levels of accuracy? the most challenging?
Figure 1: Overview of this study. We evaluate the symptom detection capabilities of LLMs on social media posts
across seven languages (English: en, German: de, French: fr, Japanese: ja, Arabic: ar, Indonesian: id, Filipino: fil),
six models (large-parameter models, e.g., GPT-4, Gemini 1.5 Flash, and Mistral Large Latest, and small-parameter
models, e.g., GPT-40 mini, Gemini 1.5 Flash 8B, and Mistral Small Latest), and eight symptoms (influenza: FLU,
diarrhea: DIA, hay fever: HAY, cough: CGH, headache: HAC, fever: FEV, runny nose: RUN, and cold: CLD).

On the right side (Output), ‘v’ and ‘-’ mean positive and negative for a symptom, respectively. Labels with a pink
background indicate correct predictions, while labels with a gray background indicate incorrect predictions.

gies that can generalize across diverse linguistic
contexts. In this regard, LLMs offer promising
capabilities for improving symptom detection sys-
tem, supporting health-related fact-checking. This
study aims to investigate how language variability
affects symptom identification using LLMs, high-
lighting the importance of developing practical
systems with multilinguality in building reliable
health-related fact-checking and disease surveil-
lance systems. Specifically, the contribution of
this paper is by answering the following research
questions.

RQ1. How does language variability affect the
LLMs performance for detecting symptom
mentions that support health-related fact-
checking?

RQ2. Do different LLMs exhibit various levels of
accuracy when classifying symptoms?

RQ3. Which symptoms are the most challenging
for LLMs to detect accurately, potentially im-
pacting factuality assessment?

This study used European (English, German, and
French) and Asian (Japanese, Arabic, Indonesian,
and Filipino) languages as shown in Figure 1. Us-
ing an extended version of the NTCIR-13 Med-
Web test dataset, we evaluated two model sizes
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(large- and small-parameter) from three general
LLM providers: OpenAl, Google Gemini, and
Mistral Al. Each model performs zero-shot multil-
abel symptom classification, categorizing posts as
positive or negative for eight symptoms including
influenza, diarrhea, hay fever, etc.Performance is
measured through F1-score (standard NLP evalu-
ation) and Relative Distance (disease-surveillance
perspective) to assess estimation bias.

2 Related Work

2.1 Health-related Fact-Checking

Health-related fact-checking often involves ad-
dressing misinformation and infodemics. Social
media, while being a rapid channel for the spread
of misinformation, also serves as a valuable plat-
form to counter false information, particularly dur-
ing disease outbreaks, by disseminating content
grounded in scientific evidence and supported by
collaborations with local health authorities (Bayani
et al., 2025; Vazquez-Gestal et al., 2024; Purnat
et al., 2024). Approaches to fact-checking typically
include manual verification, automated claim detec-
tion, and evidence retrieval (Sarrouti et al., 2021;
Sharifpoor et al., 2025; Vladika et al., 2024).
Existing studies have primarily focused on ver-
ifying complete health claims. In contrast, this



paper aims to explore symptom mention detection
as a critical first step within the broader framework
of health-related fact-checking, especially in the
context of disease outbreaks.

Accurately identifying symptoms from user-
generated content is essential for improving both
the speed and reliability of outbreak response. Re-
cent research has demonstrated the potential of
social media as an early detection system for pan-
demics, identifying signs of an outbreak before it
is officially declared. Parekh et al. (2024b) con-
ducted research on epidemic prediction using event
detection from social media data. Their framework
was able to generate warnings 4 to 9 weeks ear-
lier than the official epidemic declaration by the
WHO for Monkeypox. The study demonstrated
an alignment between the predicted outbreaks and
the actual epidemic cases later confirmed by the
official sources.

2.2 Multilingual Medical LLMs

Several studies have shown that language and
cultural barriers between patients and healthcare
providers can lead to unequal health outcomes,
such as misdiagnoses, inadequate treatment, and
lower patient safety and satisfaction (Ohtani et al.,
2015; Schouten et al., 2020; Shamsi et al., 2020).
This is especially the case in low-resource settings
and for ethnic minorities, where intermediaries
such as qualified interpreters and comprehensive
translation resources may not easily be available.
The introduction of LLMs has opened up pos-
sibilities for addressing these barriers by enabling
real-time translation and enhancing diagnostic ac-
curacy, especially when fine-tuned for medical ap-
plications. While most medical corpora and lan-
guage models are primarily in and designed for
English, recent advancements have expanded their
capability to support multiple languages. Mod-
els such as Medical mT5, Apollo, and BiMediX,
which were trained on medical datasets for lan-
guages other than English, demonstrate higher av-
erage performance across different languages com-
pared to commercial models (Garcia-Ferrero et al.,
2024; Pieri et al., 2024; Wang et al., 2024). Addi-
tionally, multilingual medical benchmarks such as
in Qiu et al. (2024) have been developed to evalu-
ate LLMs on tasks such as biomedical academical
question-answering and diagnosis assessment.
However, resource constraints and ethical issues
can hinder the development of truly inclusive mul-
tilingual medical LLMs. Building medical cor-

56

pora for low-resource languages to train models
may require substantial effort, such as collecting
and transcribing hand-written health records and
building local data dictionaries for medical termi-
nologies (Wahl et al., 2018). Bias and misinfor-
mation within training data can be reproduced in
LLM-generated content, posing significant risks
in medical decision-making and reinforcing health
outcome inequities (Omiye et al., 2023; Poulain
et al., 2024; Yang et al., 2024).

3 Corpus

The NTCIR-13 MedWeb task test dataset was used
and extended for this study. The dataset was
crowdsourcing-generated short posts as detailed
in Wakamiya et al. (2017). It consists of 640 posts,
with no personal identifiers, related to systemic
(fever and headache), digestive (diarrhea) and respi-
ratory symptoms (cold, cough, hay fever, influenza,
and runny nose).

The posts were labeled as positive or negative for
each symptom based on whether the user indicated
experiencing that symptom at the time, following
the annotation guideline for NTCIR-13 MedWeb
task (MedWeb, 2017). As seen in Table 1, only a
small number of posts are classified as positive for
each symptom. Table 2 shows examples of post
labeled for each symptom.

Symptoms # of Positive label % of Positive label
Influenza (FLU) 24 3.75%
Diarrhea (DIA) 64 10.00%
Hayfever (HAY) 46 7.19%
Cough (CGH) 80 12.50%
Headache (HAC) 77 12.03%
Fever (FEV) 93 14.53%
Runnynose (RUN) 123 19.22%
Cold (CLD) 90 14.06%

Table 1: Positive label count and percentage per symp-
tom.

Aside from English and Japanese which were
included in the original task, the dataset was ex-
panded using human translation service to five dif-
ferent languages: German, French, Modern Stan-
dard Arabic, Indonesian, and Filipino. This repre-
sents a mix of languages from European (specif-
ically Indo-European) and Asian language fam-
ilies, all of which are considered high-resource
except for the SEA languages Indonesian and Fil-
ipino (Joshi et al., 2020; Hammarstrom et al., 2024).
These languages exhibit substantial linguistic di-



versity due to differences in scripts, phonological
structures and other linguistic features, which lead
to varying levels of complexity in text processing.
The use of translation service is to minimize trans-
lation bias and to ensure that the symptom expres-
sions were naturally and appropriately conveyed
in the target language. The service had experi-
enced some translation tasks related to the author’s
research previously and complied with the insti-
tution’s financial procedures. Payment is made
according to the agreed terms between the service
provider and the authors. We provided the instruc-
tion to do the translation and the delivery format as
seen in Appendix A.1.

4 Experimental Setup

4.1 Large Language Models

Two models of different parameter sizes (large and
small) were chosen from each of three LLM fami-
lies. The six chosen models are GPT-4 and GPT-40
mini by OpenAl, Gemini 1.5 Flash and Gemini
1.5 Flash 8B by Gemini Team Google, and Mistral
Large and Small by Mistral AI. GPT-4, GPT-40
mini, Gemini 1.5 Flash, and Gemini 1.5 Flash 8B
are under their respective licenses. Mistral Large
is under Mistral Research License while Mistral
Small is under Apache 2 License.

Not all models are provided with the parameter
size information. OpenAl has not disclosed the
exact parameter size of GPT-4 and GPT-40 mini.
However, as an advancement of GPT-3, which has
175 billion parameters (Dale, 2021), GPT-4 is be-
lieved to have a larger parameter size with its ability
to comprehend natural language in more complex
and nuanced contexts (OpenAl et al., 2024). Mean-
while, OpenAl has described GPT-40-mini as its
most cost-efficient small model (OpenAl, 2024).
The Gemini Team Google has not revealed the pa-
rameter size of Gemini 1.5 Flash as well. However,
it is known that the model has a larger parameter
size than Gemini 1.5 Flash 8B, which, as its name
suggests, contains 8 billion parameters (Kilpatrick
and Mallick, 2024). In contrast, Mistral Al has
announced the parameter sizes for Mistral Large
Latest at 123 billion and Mistral Small Latest at 22
billion (Mistral, 2025).

Pretraining data for these models, nor the lan-
guages within them, are not publicly released.
However, previous studies have demonstrated these
LLM families’ proficiency on multiple languages,
including low-resourced ones. For example, Love-
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nia et al. (2024) showed that GPT-4 and Mistral
LLMs generally matched or outperformed multilin-
gual or language-specific models for various NLP
tasks on SEA languages. In Ahuja et al. (2024),
larger commercial models such as GPT-4 and Gem-
ini performed better than smaller ones across vari-
ous multilingual evaluation benchmarks, although
the possibility of data contamination in pretraining
is not ruled out. Despite this, Zhang et al. (2023)
and Jin et al. (2024) found that commercial mod-
els consistently perform better on English prompts
than their translations in other languages.

Three trials were done for each model, using
default model parameters (temperature, maximum
tokens, etc.) to perform zero-shot multilabel symp-
tom classification on posts using the following
prompt. See Appendix A.2 for the full set of rules,
which follow the original NTCIR-13 task.

-~ The prompt used for the study —

Instruction:

Determine if the creator of this post is exhibiting
symptoms for each of the following: influenza, diarrhea,
hay fever, cough, headache, fever, runny nose, cold. For
each symptom, only answer either O or 1 for negative
(no symptoms) or positive (has symptoms) respectively.

Determination of symptoms is carried out based on the
following rules:

e Cases where the symptom is expressed directly,
including mild symptoms, are considered positive;

e A symptom can be labeled positive with indirect
expressions of having a symptom;

e Other cases, like symptoms belonging to blog friends,
should be labeled as negative since it is difficult to
determine their location.

Post:
{ A post in one of the seven studied languages. }

Return the result as a JSON object with the symptoms
as keys and the values as either O or 1.

G /

4.2 Evaluation Methods

In this study, results were evaluated from two per-
spectives. From the standard NLP perspective,
models are evaluated using the average F1-score.
From the disease surveillance perspective, we pro-
pose a new metric more suitable for capturing
model estimation bias. Both metrics are discussed
in detail in the following subsections.

4.2.1 NLP Perspective: F1-score

The Fl-score is a weighted average between pre-
cision, or accuracy of positive predictions, and re-
call, or ability to capture positive instances. This



Post

Symptom

FLU DIA HAY CGH HAC FEV RUN CLD

I got flu and my temperature is over 100.

It was diarrhea that woke me up in the middle of the
night.

My wife’s allergies are acting up, it seems rough.
It’s almost the flu season.
I think I coughed too much. My stomach muscles hurt.

This cold is rough. I’ve got a headache too, it might not
be an ordinary cold. Yikes.

v

v - -
v - - - - - -

Table 2: Sample English posts with multi-symptom labels. ‘v"” and ‘-> mean positive and negative for a symptom,
respectively. A post may be positive for multiple symptoms.

makes it a preferred evaluation metric for machine
learning and NLP tasks, especially on imbalanced
datasets. We used scikit-learn to calculate the
F1-score for this evaluation.

4.2.2 Saurveillance Perspective: Relative
Distance

While the F1-score is commonly used within NLP,
it is more common and practical to evaluate dis-
ease surveillance models based on how closely the
total predicted positive cases match the actual fig-
ures (Xiang-Sheng and Zhong, 2015; Samui et al.,
2020; Bhatia et al., 2021). We propose a new met-
ric called relative distance (RD) for measuring esti-
mation bias, which reflects a model’s tendency to
overestimate or underestimate positive predictions.
This metric provides added practical relevance for
public health applications beyond what standard
NLP metrics can offer.

We define RD as the ratio change between pre-
dicted and actual positives as described in the fol-
lowing formula:

(TP +FP) — (TP +FN)  FP —FN

RD = =
TP + FN TP + FN

ey

where TP indicates the number of true positives, FP
the number of false positives, and FN the number
of false negatives.

In a binary classification task, O serves as the
gold standard or baseline against which prediction
values are compared. A positive RD indicates over-
estimation of positives while a negative RD indi-
cates underestimation.

5 Results and Discussion

We analyze LLM performance in multilingual
symptom prediction across three dimensions:
language-based, LLM-based, and symptom-based.
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The results provide insights into the applicability
of LLMs for disease surveillance task, revealing
current strengths and remaining challenges for real-
world implementation and decision-making.

5.1 NLP Perspective: F1-Score Insights

The distribution of F1-scores across the three di-
mensions are shown in Figure 2. Appendix A.3
and A.4 provide evaluation details.

5.1.1 Language-based Analysis

Figure 2(a) shows the distribution of F1-scores for
each language, where each point corresponds to a
specific symptom.

Scores range from moderate to high in all lan-
guages. The average Fl1-scores for English, Ger-
man, and French are 0.748, 0.730, 0.719 while
for Asian languages (Japanese, Arabic, Indone-
sian, and Filipino) are 0.714, 0.687, 0.685, and
0.656 respectively. The scores showed that LL.Ms
performed better in the three European languages
(English, German, and French) than the Asian
ones based on average F1-scores, with the mid-
resourced Indonesian and Filipino ranking the low-
est. Furthermore, a comparison based on language
categories as shown in Appendix A.5, European
and Asian, reveals a significant difference in mean
F1 scores. The average F1 scores for European and
Asian languages are 0.73 and 0.68, respectively,
with a p-value of 0.0000. Moreover, variability
across European languages is also lower than all
Asian languages except Japanese.

Vocabulary sharing and cultural nuances be-
tween languages may explain these results. Indo-
European languages were found to improve model
performance on unseen languages in the same
family, but the same was not observed on other
language families (Yuan et al., 2024). Addition-
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Figure 2: Comparative performance of LLMs in several perspectives. Horizontal lines within each shaded area
represent group averages, while shaded areas denote scores within one standard deviation of this average. From
language perspective, (a) suggests that English, German, and French have better performance than Asian languages.
In LLMs’ view, (b) showing large-parameter models are better. Moreover, in language-based (c) presents that

Influenza is harder for LLM to predict accurately.

ally, languages with cultural contexts and idiomatic
expressions that differ from those predominantly
found in training data had lower and less consistent
model performance (Tao et al., 2024).

Numerous outliers with F1-scores below 0.4 are
observed for all languages, indicating possible chal-
lenges in symptom prediction regardless of lan-
guage used. The presence of outliers is crucial in
real-world applications, where low-performance
instances can lead to critical errors, especially in
sensitive tasks such as disease symptom detection.
The following sections examine model-specific and
symptom-specific performance to identify factors
contributing to these outliers.
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5.1.2 LLM-based Analysis

Figure 2(b) shows the distribution of F1 scores
for each LLM, with points representing individ-
ual symptoms. Large-parameter models—GPT-
4, Gemini 1.5 Flash, and Mistral Large Lat-
est—achieved higher average F1 scores. The aver-
age performance of small-parameter models was at
least 0.02 lower than their larger counterparts, with
the largest gap observed between GPT-4 and Mis-
tral Small Latest. Furthermore, statistical testing
(Appendix A.6) confirmed a significant difference
between large- and small-models, with mean scores
of 0.74 and 0.66 and a p-value of 0.0000.

Outliers were observed in some models, indi-



cating potential challenges in predicting certain
symptoms. Additionally, Mistral Small Latest ex-
hibited outlier behavior for certain symptoms in
Figure 2(c), suggesting difficulties in accurately
identifying those symptoms.

In detailed, as shown in Appendix A.3, Gemini
1.5 Flash has the smallest variance across differ-
ent languages among the larger parameter models,
although it does not reach the higher Fl-scores
achieved by GPT-4. All models perform better on
European languages than Asian ones, and English
continues to have the highest F1 scores for most
models. The performance difference between Eu-
ropean and Asian languages is more pronounced
in Mistral LLMs. This may be explained by the
number of languages officially supported by each
family. Only English, French, Spanish, German,
and Italian are officially supported in the Mistral
models (Mistral Al, 2024), compared to the 98 sup-
ported in OpenAl’s speech-to-text Whisper models
(Radford et al., 2023) and over 100 supported in
Google’s Gemini models (Barkley, 2024).

These results highlight two key insights. First,
selecting between large- and small-parameter mod-
els for complex tasks such as multilingual symp-
tom detection involves a significant trade-off be-
tween performance and cost-effectiveness. Second,
even large-parameter models can struggle on lower-
resourced languages like Indonesian and Filipino.
Addressing these challenges is crucial to improving
the reliability and applicability of LLMs in disease
surveillance.

5.1.3 Symptom-based Analysis

Figure 2(c) shows the distribution of F1-scores for
each symptom, with the points representing the
models. Respiratory symptoms generally exhibit
high variability in scores, with RUN and FLU par-
ticularly standing out due to their lower averages
compared to other symptoms. Furthermore, a sig-
nificant difference was observed among digestive,
systemic, and respiratory symptoms. Their mean
F1 scores were 0.84, 0.78, and 0.62, respectively,
with all pairwise p-values below 0.000 (See Ap-
pendix A.7).

Outliers in Figure 2(a) and 2(b) were from FLU
predictions, which occurred across all languages
and most models. Low outliers in multiple lan-
guages and models suggest that this symptom poses
challenges, leading to sharp drops in performance
for these instances.

As detailed in Appendix A.4, symptom scores

60

vary across different languages and language
groups. All European languages scored above aver-
age and all Asian languages scored below average
for HAC and FLU. A similar pattern is observed
for RUN except for Japanese. For other symptoms,
scores for at least one language fell outside the
standard deviation range. Notably, CLD scores
for Indonesian and Filipino and were significantly
lower than those of other languages, while RUN
scores were significantly higher. CGH scores for
Arabic and Filipino were also lower, while scores
for Indonesian were higher.

Score differences like these may be due to cul-
tural variations in how symptoms are named or
described in different languages. Some symptoms
may have no direct counterparts in some languages,
resulting in the use of catch-all terms that can apply
to multiple symptoms depending on the context. In
Filipino, then term sipon can refer to either having a
cold or a runny nose. Additionally, expressions and
colloquial terms may instead be used, such as meler
which can be referred as Runny nose, meriang and
masuk angin in Indonesian which describe feeling
unwell, including having a cold (Anggoro and Jee,
2021). This ambiguity makes it challenging for
LLMs to identify specific symptoms, especially if
pretraining was done primarily on formal texts.

Thus, to address these challenges, expanding
training datasets to include informal and colloquial
expressions is crucial for enhancing model robust-
ness across diverse linguistic contexts, especially
in digital disease surveillance, where social media
data often contains local terms used by the public
to describe symptoms. Additionally, fine-tuning
models for underrepresented languages and cul-
tural contexts can help bridge performance gaps
and improve the accuracy of symptom detection
across languages.

5.2 Surveillance Perspective: Relative
Distance Insights

Table 3 shows that models tend to overestimate
or label symptoms as positive for most languages,
likely due to the dataset being imbalanced for all
symptoms. Even so, RD scores for FLU are much
higher than other symptoms for all languages, es-
pecially Asian ones. For example, the RD score
for FLU in Japanese is 5.019, indicating that the
predicted positive labels are five times higher than
the actual positive cases. When combined with the
low F1-scores for this symptom (Figure 2(c)), this
suggests that LLMs are overly cautious by overpre-



Language

Symptom Average
English German French Japanese Arabic Indonesian Filipino

FEV -0.047  -0.002  0.011 0.084 0.032 0.090 0.038 0.030
RUN -0.139  -0.005 0218 -0.023  -0.071 0.113 0.161 0.036
CGH 0.268 0.246 0.257 0.324 0.178 0.173 0.462 0.273
DIA 0.235 0.309 0.290 0.302 0.253 0.323 0.394 0.301
CLD 0.290 0.270 0.491 0.457 0.356 0.075 0.249 0.313
HAC 0.293 0.271 0.301 0.426 0.498 0.470 0.362 0.374
HAY 0.442 0.582 0.568 0.682 0.437 0.564 0.539 0.545
FLU 2.852 3.250 3.313 5.019 4.519 4.764 3.977 3.596

Average  0.524 0.615 0.684 0.909 0.775 0.821 0.773 0.729

Table 3: Relative distance (RD) scores by language and symptom. Shaded scores are beyond £0.2, showing that
LLMs overestimate positive cases for most symptoms and languages, while bold numbers presenting the highest
overestimation of symptom prediction in each language.

dicting at the cost of performance. On the other
hand, RD scores for FEV are close to 0O for all lan-
guages, indicating minimal bias for this symptom.

Traditional case-based surveillance systems are
generally affected by some degree of underestima-
tion, such as individuals attempting to self-treat
their symptoms or institutions underreporting the
cases. Final estimates usually have to be adjusted
to capture a more accurate picture of disease inci-
dence (Gibbons et al., 2014). Our findings suggest
that text-based digital epidemiological systems, es-
pecially LLMs which are trained on large amounts
of data, may have an advantage over traditional
systems in this regard.

However, overestimation can lead to a loss of
public trust or factuality in digital epidemiological
disease surveillance, especially when underlying
algorithms are not replicable or are hard to inter-
pret. The validity of the now-defunct Google Flu
Trends, which used search query data for predic-
tions, was questioned after it overestimated peak
flu levels during the 2012/2013 epidemic season by
nearly double the actual figures (Butler, 2013; Ol-
son et al., 2013). Mitigating overestimation bias by
fine-tuning for specific symptoms or languages is
recommended when deploying LLLM-based surveil-
lance systems.

In summary, there are two insights that can be
drawn. First, Overestimation Tendency: LLMs
exhibit a tendency to overestimate symptoms. It
means that they are inclined to label symptoms
as positive. From this observation, there are two
key lessons: (1) if an LLM is deployed as a symp-
tom identification and its results indicate a critical
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or dangerous situation, this may not necessarily
reflect the actual case. This highlights that overes-
timation or misclassification of symptom mentions
could lead to false alarms or public misinformation;
however (2) if the system identifies a situation as
safe, this can be considered reliable and trustworthy.
These insights contribute to the practical applica-
tion of LLLM as a symptom identification system.
Second, Influenza Detection Challenges: Detecting
diseases similar to Influenza, such as COVID-19,
using a symptom-based disease surveillance sys-
tem with LLMs can result in poor performance.
One possible contributing factor is the limited ca-
pabilities of LLMs in handling multilingual task,
particularly in medical-related content in underrep-
resented languages. This limitation may lead to
inaccurate symptom identification which can affect
the factual accuracy of detected disease signal.

6 Conclusion

This paper evaluates LLM performance in symp-
tom detection across different languages, LLMs
and symptoms as the first crucial steps in health-
related fact-checking data. In terms of (1) lan-
guages, our experiments show that European lan-
guages outperform Asian languages, particularly
the SEA languages Indonesian and Filipino. Then,
(2) LLMs achieve moderate to high performance
overall, but varies significantly across languages
and symptoms especially for small parameter mod-
els. As for (3) symptoms, respiratory symptoms are
notably challenging for LLMs to predict accurately,
with influenza being significantly overpredicted
across all languages. These findings underscore the



potential of LLMs in digital epidemiology, while
at the same time highlighting the need to address
performance gaps in lower-resourced languages be-
fore practical implementation. We acknowledge
that commercial LL.Ms are helpful, but adapting
them to the public health field is likely needed for
high-risk tasks like disease surveillance which can
be explored in the future research. Moreover, symp-
tom detection for medical fact-checking becomes
critical to ensure that the early outbreak detection
system align with real-world health conditions and
are not based on misclassified or incomplete symp-
tom data.

Limitations

This paper evaluates multiple languages, mod-
els, and symptoms in assessing LLMs for symp-
tom detection for enhancing medical fact-checking,
with a particular focus on the performance of
Southeast Asian languages compared to high-
resource ones. However, many key Southeast
Asian languages remain unaddressed, including
highly under-resourced languages such as Khmer,
Burmese, and Lao. While this study examines
LLM performance in symptom identification across
languages, it does not propose new methods to en-
hance LLM performance. Instead, it aims to high-
light the potential applications of LLMs in fact-
checking for disease surveillance systems. Addi-
tionally, our approach to disease surveillance relies
on identifying common symptoms from social me-
dia, which may be self-diagnosed by users. The
models used also do not incorporate a large lan-
guage model (LLM) specifically designed for the
target language or fine-tuned for languages within
the region. Furthermore, as the posts analyzed were
translated rather than directly sourced from online
platforms, they may not fully capture the linguistic
and cultural nuances of how native speakers com-
municate in their own language online. To address
these limitations, future iterations of this study will
expand the evaluation by covering more languages
and models, providing a more comprehensive as-
sessment of multilingual LLM performance in dig-
ital epidemiology.

Ethics Statement

This study is an extension of the NTCIR-13 Task,
utilizing its test dataset with the consent from the
task organizers. The dataset used was pseudotweets
since the tweet data obtained via the Twitter API
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cannot be publicly shared due to Twitter’s devel-
oper policy on data redistribution. The dataset, orig-
inally in Japanese, was generated through crowd-
sourcing and subsequently translated into six other
languages by human translators to minimize bias
in machine translation. Additionally, all resources
used in this study comply with their respective li-
censes. We have authorized API access to the re-
sources, strictly for research purposes, and have
fully complied with all terms and conditions. No
personally identifiable information (PII) was in-
cluded, and the research does not involve human
subjects requiring IRB approval.

References

Sanchit Ahuja, Divyanshu Aggarwal, Varun Gumma,
Ishaan Watts, Ashutosh Sathe, Millicent Ochieng,
Rishav Hada, Prachi Jain, Mohamed Ahmed, Kalika
Bali, and Sunayana Sitaram. 2024. MEGAVERSE:
Benchmarking large language models across lan-
guages, modalities, models and tasks. In Proceedings
of the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2598-2637.

Florencia K. Anggoro and Benjamin D. Jee. 2021. The
substance of cold: Indonesians’ use of cold weather
theory to explain everyday illnesses. Frontiers in
Psychology, 12.

Warren Barkley. 2024. New strides in making ai acces-
sible for every enterprise. Accessed: 19 May 2025.

Azadeh Bayani, Alexandre Ayotte, and Jean Noel
Nikiema. 2025. Transformer-based tool for auto-
mated fact-checking of online health information:
Development study. JMIR Infodemiology, 5:¢56831.

Sangeeta Bhatia, Britta Lassmann, Emily Cohn, An-
gel N Desai, Malwina Carrion, Moritz U G Krae-
mer, Mark Herringer, John Brownstein, Larry Mad-
off, Anne Cori, and Pierre Nouvellet. 2021. Using
digital surveillance tools for near real-time mapping
of the risk of infectious disease spread. npj Digital
Medicine, 4(1):73.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.


https://doi.org/10.3389/fpsyg.2021.734044
https://doi.org/10.3389/fpsyg.2021.734044
https://doi.org/10.3389/fpsyg.2021.734044
https://cloud.google.com/blog/products/ai-machine-learning/lower-costs-more-languages-for-gemini-on-vertex/
https://cloud.google.com/blog/products/ai-machine-learning/lower-costs-more-languages-for-gemini-on-vertex/
https://doi.org/10.2196/56831
https://doi.org/10.2196/56831
https://doi.org/10.2196/56831
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Declan Butler. 2013. When Google got flu wrong. Na-
ture, 494:155-156.

Robert Dale. 2021. Gpt-3: What’s it good for? Natural
Language Engineering, 27(1):113-118.

Iker Garcia-Ferrero, Rodrigo Agerri, Aitziber
Atutxa Salazar, Flena Cabrio, Iker de la Iglesia,
Alberto Lavelli, Bernardo Magnini, Benjamin
Molinet, Johana Ramirez-Romero, German Rigau,
Jose Maria Villa-Gonzalez, Serena Villata, and
Andrea Zaninello. 2024. MedMTS5: An open-source
multilingual text-to-text LLM for the medical do-
main. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 11165-11177, Torino, Italia. ELRA and ICCL.

Gemini Team Google. 2024. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens
of context. Preprint, arXiv:2403.05530.

Cheryl L. Gibbons, Marie-Josée J. Mangen, Dietrich
Plass, Brooke Russell John Havelaar, Arie H., Pi-
otr Kramarz, Karen L. Peterson, Anke L. Stuurman,
Alessandro Cassini, Eric M. Fevre, and Mirjam EE.
Kretzchmar. 2014. Measuring underreporting and
under-ascertainment in infectious disease datasets: a
comparison of methods. BMC Public Health, 14.

Alekh Gour, Shikha Aggarwal, and Subodha Kumar.
2022. Lending ears to unheard voices: An em-
pirical analysis of user-generated content on social

media. Production and Operations Management,
31(6):2457-2476.

Harald Hammarstrom, Robert Forkel, Martin Haspel-
math, and Sebastian Bank. 2024. Glottolog 5.1. Ac-
cessed: 19 May 2025.

Yigiao Jin, Mohit Chandra, Gaurav Verma, Yibo Hu,
Munmun De Choudhury, and Srijan Kumar. 2024.
Better to ask in English: Cross-lingual evaluation of
large language models for healthcare queries. In Pro-
ceedings of the ACM Web Conference, pages 2627—
2638. Association for Computing Machinery.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Chodhury. 2020. The state and
fate of linguistic diversity and inclusion in the nlp
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282-6293.

Logan Kilpatrick and Shrestha Basu Mallick. 2024.
Gemini 1.5 flash-8b is now production ready. Ac-
cessed: 19 May 2025.

Viet Dac Lai, Nghia Ngo, Amir Pouran Ben Veyseh,
Hieu Man, Franck Dernoncourt, Trung Bui, and
Thien Huu Nguyen. 2023. ChatGPT beyond En-
glish: Towards a comprehensive evaluation of large
language models in multilingual learning. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 13171-13189, Singapore.
Association for Computational Linguistics.

63

Holy Lovenia, Rahmad Mahendra, Salsabil Maulana
Akbar, Lester James Validad Miranda, Jennifer
Santoso, Elyanah Aco, Akhdan Fadhilah, Jonibek
Mansurov, Joseph Marvin Imperial, Onno P. Kamp-
man, Joel Ruben Antony Moniz, Muhammad
Ravi Shulthan Habibi, Frederikus Hudi, Jann Rai-
ley Montalan, Ryan Ignatius Hadiwijaya, Joan-
ito Agili Lopo, William Nixon, Boérje F. Karls-
son, James Jaya, Ryandito Diandaru, Yuze Gao,
Patrick Amadeus Irawan, Bin Wang, Jan Chris-
tian Blaise Cruz, Chenxi Whitehouse, Ivan Halim
Parmonangan, Maria Khelli, Wenyu Zhang, Lucky
Susanto, Reynard Adha Ryanda, Sonny Lazuardi Her-
mawan, Dan John Velasco, Muhammad Dehan Al
Kautsar, Willy Fitra Hendria, Yasmin Moslem, Noah
Flynn, Muhammad Farid Adilazuarda, Haochen Li,
Johanes Lee, R. Damanhuri, Shuo Sun, Muham-
mad Reza Qorib, Amirbek Djanibekov, Wei Qi
Leong, Quyet V. Do, Niklas Muennighoff, Tan-
rada Pansuwan, Ilham Firdausi Putra, Yan Xu,
Tai Ngee Chia, Ayu Purwarianti, Sebastian Ruder,
William Chandra Tjhi, Peerat Limkonchotiwat, Al-
ham Fikri Aji, Sedrick Keh, Genta Indra Winata,
Ruochen Zhang, Fajri Koto, Zheng Xin Yong, and
Samuel Cahyawijaya. 2024. SEACrowd: A multi-
lingual multimodal data hub and benchmark suite
for Southeast Asian languages. In Proceedings of
the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5155-5203, Miami,
Florida, USA. Association for Computational Lin-
guistics.

MedWeb. 2017. Ntcir-13 medweb annotation corpus
guideline. Accessed: 19 May 2025.

Mistral. 2025. Model weights. Accessed: 19 May 2025.
Mistral Al 2024. Au large. Accessed: 19 May 2025.

Ai Ohtani, Takefumi Suzuki, Hiroyoshi Takeuchi, and
Hiroyuki Uchida. 2015. Language barriers and ac-
cess to psychiatric care: A systematic review. Psy-
chiatric Services, 66(8):798-805.

Donald R. Olson, Kevin J. Konty, Marc Paladini, Ce-
cile Viboud, and Lone Simonsen. 2013. Reassessing
Google Flu Trends data for detection of seasonal and
pandemic influenza: A comparative epidemiological
study at three geographic scales. PLOS Computa-
tional Biology, 9(10).

Jesutofunmi A. Omiye, Jenna C. Lester, Simon Spichak,
Veronica Rotemberg, and Roxana Daneshjou.
2023. Large language models propogate race-based
medicine. npj Digital Medicine, 6(195).

OpenAl. 2024. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

OpenAl. 2024. Gpt-40 mini: Advancing cost-efficient
intelligence. Accessed: 19 May 2025.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,


https://doi.org/10.1038/494155a
https://doi.org/10.1017/S1351324920000601
https://aclanthology.org/2024.lrec-main.974/
https://aclanthology.org/2024.lrec-main.974/
https://aclanthology.org/2024.lrec-main.974/
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://doi.org/10.1186/1471-2458-14-147
https://doi.org/10.1186/1471-2458-14-147
https://doi.org/10.1186/1471-2458-14-147
https://doi.org/10.1111/poms.13732
https://doi.org/10.1111/poms.13732
https://doi.org/10.1111/poms.13732
https://doi.org/10.5281/zenodo.14006617
https://doi.org/10.1145/3589334.3645643
https://doi.org/10.1145/3589334.3645643
https://developers.googleblog.com/en/gemini-15-flash-8b-is-now-generally-available-for-use/
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://doi.org/10.18653/v1/2024.emnlp-main.296
https://doi.org/10.18653/v1/2024.emnlp-main.296
https://doi.org/10.18653/v1/2024.emnlp-main.296
http://mednlp.jp/medweb/NTCIR-13/doc/en-ver2.0.pdf
http://mednlp.jp/medweb/NTCIR-13/doc/en-ver2.0.pdf
https://docs.mistral.ai/getting-started/models/weights/
https://mistral.ai/news/mistral-large/
https://doi.org/10.1176/appi.ps.201400351
https://doi.org/10.1176/appi.ps.201400351
https://doi.org/10.1371/journal.pcbi.1003256
https://doi.org/10.1371/journal.pcbi.1003256
https://doi.org/10.1371/journal.pcbi.1003256
https://doi.org/10.1371/journal.pcbi.1003256
https://doi.org/10.1038/s41746-023-00939-z
https://doi.org/10.1038/s41746-023-00939-z
https://arxiv.org/abs/2303.08774
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Fukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav

Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerdn Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Tanmay Parekh, Jeffrey Kwan, Jiarui Yu, Sparsh Johri,

Hyosang Ahn, Sreya Muppalla, Kai-Wei Chang, Wei
Wang, and Nanyun Peng. 2024a. SPEED++: A mul-
tilingual event extraction framework for epidemic
prediction and preparedness. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 12936—12965, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Tanmay Parekh, Anh Mac, Jiarui Yu, Yuxuan Dong,

Syed Shahriar, Bonnie Liu, Eric Yang, Kuan-Hao
Huang, Wei Wang, Nanyun Peng, and Kai-Wei
Chang. 2024b. Event detection from social media
for epidemic prediction. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 5758-5783, Mexico City, Mexico. Association
for Computational Linguistics.

Sara Pieri, Sahal Shaji Mullappilly, Fahad Shah-

baz Khan, Rao Muhammad Anwer, Salman Khan,
Timothy Baldwin, and Hisham Cholakkal. 2024.
BiMediX: Bilingual medical mixture of experts LLM.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 16984—17002, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Raphael Poulain, Hamed Fayyaz, and Rahmatollah Be-

heshti. 2024. Bias patterns in the application of
LLMs for clinical decision support: A comprehen-
sive study. Preprint, arXiv:2404.15149.

T Purnat, M Kajimoto, J Kalinic, A Stevanovic,

S Mandic-Rajcevic, and E Wilhelm. 2024. How
factchecking organizations can partner within public
health for a healthier internet. European Journal of
Public Health, 34.

Pengcheng Qiu, Chaoyi Wu, Xiaoman Zhang, Weixiong

Lin, Haicheng Wang, Ya Zhang, Yanfeng Wang, and


https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2024.emnlp-main.720
https://doi.org/10.18653/v1/2024.emnlp-main.720
https://doi.org/10.18653/v1/2024.emnlp-main.720
https://doi.org/10.18653/v1/2024.naacl-long.322
https://doi.org/10.18653/v1/2024.naacl-long.322
https://doi.org/10.18653/v1/2024.findings-emnlp.989
https://arxiv.org/abs/2404.15149
https://arxiv.org/abs/2404.15149
https://arxiv.org/abs/2404.15149
https://doi.org/10.1093/eurpub/ckae144.242
https://doi.org/10.1093/eurpub/ckae144.242
https://doi.org/10.1093/eurpub/ckae144.242

Weidi Xie. 2024. Towards building multilingual lan-
guage model for medicine. Nature Communications,
15(1):8384.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. JMLR.org.

Piu Samui, Jayanta Mondal, and Subhas Khajanchi.
2020. A mathematical model for covid-19 trans-
mission dynamics with a case study of india. Chaos,
Solitons Fractals, 140:110173.

Mourad Sarrouti, Asma Ben Abacha, Yassine Mrabet,
and Dina Demner-Fushman. 2021. Evidence-based
fact-checking of health-related claims. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 3499-3512, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Barbara C. Schouten, Antoon Cox, G6zde Duran, Koen
Kerremans, Leyla Koseoglu Banning, Ali Lahdidi-
oui, Maria van den Muijsenbergh, Sanne Schinkel,
Hande Sungur, Jeanine Suurmond, Rena Zendedel,
and Demi Krystallidou. 2020. Mitigating language
and cultural barriers in healthcare communication:
Towards a holistic approach. Patient Education and
Counseling, 103(12):2604-2608.

Hilal Al Shamsi, Abdullah G. Alumtairi, Sulaiman Al
Mashrafi, and Talib Al Kalbani. 2020. Implications
of language barriers for healthcare: A systematic
review. Oman medical journal, 35(2).

Elham Sharifpoor, Maryam Okhovati, Mostafa
Ghazizadeh-Ahsaee, and Mina Avaz Beigi. 2025.
Classifying and fact-checking health-related infor-
mation about COVID-19 on Twitter/X using machine
learning and deep learning models. BMC Medical
Informatics and Decision Making, 25(1):73.

Boyang Shi, Weixiang Huang, Yuanyuan Dang, and
Wenhui Zhou. 2024. Leveraging social media data
for pandemic detection and prediction. Humanities
and Social Sciences Communications, 11(1):1075.

Yan Tao, Olga Viberg, Ryan S Baker, and René F Kizil-
cec. 2024. Cultural bias and cultural alignment of
large language models. PNAS Nexus, 3(9):pgae346.

Juraj Vladika, Phillip Schneider, and Florian Matthes.
2024. HealthFC: Verifying health claims with
evidence-based medical fact-checking. In Proceed-
ings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 8095—
8107, Torino, Italia. ELRA and ICCL.

Montse Vazquez-Gestal, Jestis Pérez-Seoane, and Ana-
Belén Fernandez-Souto. 2024. Disinformation and
health: fact-checking strategies of spanish health pub-
lic institutions through youtube. Frontiers in Com-
munication, Volume 9 - 2024.

65

Brian Wahl, Aline Cossy-Gantner, Stefan Germann, and
Nina R Schwalbe. 2018. Artificiall intelligence (AI)
and global health: how can Al contribute to health in
resource-poor settings? BMJ Global Health, 3(4).

Shoko Wakamiya, Mizuki Morita, Yoshinobu Kano,
Tomoko Ohkuma, and Eiji Aramaki. 2017. Overview
of the NTCIR-13 MedWeb Task. In Proceedings
of the 13th NTCIR Conference on Evaluation of In-
formation Access Technologies (NTCIR-13), pages
40-49.

Xidong Wang, Nuo Chen, Junyin Chen, Yidong Wang,
Guorui Zhen, Chunxian Zhang, Xiangbo Wu, Yan Hu,
Anningzhe Gao, Xiang Wan, Haizhou Li, and Benyou
Wang. 2024. Apollo: A lightweight multilingual
medical llm towards democratizing medical ai to 6b
people. Preprint, arXiv:2403.03640.

Xin Shelley Wang, Charles S. Cleeland, Tito R. Men-
doza, Young Ho Yun, Ying Wang, Toru Okuyama,
and Valen E. Johnson. 2010. Impact of cultural and
linguistic factors on symptom reporting by patients
with cancer. JNCI: Journal of the National Cancer
Institute, 102(10):732-738.

Wang. Xiang-Sheng and Luoyi Zhong. 2015. Ebola
outbreak in West Africa: real-time estimaion and
multiple-wave prediction. Mathematical Biosciences
and Engineering, 12(5).

Yifan Yang, Xiaoyu Liu, Qiao Jin, Furong Huang, and
Zhiyong Lu. 2024. Unmasking and quantifying racial
bias of large language models in medical report gen-
eration. Communications Medicine, 4(176).

Xinyan Yu, Trina Chatterjee, Akari Asai, Junjie Hu,
and Eunsol Choi. 2022. Beyond counting datasets:
A survey of multilingual dataset construction and
necessary resources. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
3725-3743, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Fei Yuan, Shuai Yuan, Zhiyong Wu, and Lei Li. 2024.
How vocabulary sharing facilitates multilingualism in
LLaMA? In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 12111-12130,
Bangkok, Thailand. Association for Computational
Linguistics.

Xiang Zhang, Senyu Li, Bradley Hauer, Ning Shi, and
Grzegorz Kondrak. 2023. Don’t Trust ChatGPT
when your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing. Association for
Computational Linguistics.

A Appendix

A.1 Instruction to the Human Translation
Services

Method
The text written in cells B2 to B641 of the attached
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Excel file will be translated into the following
languages. Text written in cells other than column
B will not be translated.

e Indonesian

o Filipino

e Arabic

e German

e French

The target text consisted of 640 sentences with a
total of 8,276 words. The manuscript tweet data is
available in two files, one written in Japanese and
one written in English, with the same content.

Delivery form
Excel data (any data format can be delivered via
email attachment or file sharing system) Please
create Excel data according to the following
procedure.

e Separate files for each language

e Edit only columns A and B, and copy the values
from the manuscript to columns C to J.

e Column A (ID)

e Enter the same number + language code as the
original

e Example: If the row in column A of a
Japanese manuscript with "1921ja" is to
be translated into German, the ID of col-
umn A in the German Excel file should be
"1921de". For language codes, see below https:
//mt-auto-minhon-mlt.ucri.jgn-x.jp/
content/help/detail.html?q_pid=FAQ_ETC e
Column B (Tweet)

e Enter the translated text.

Delivery Date
Friday, November 29, 2024

A.2  Complete Prompts

Instruction:

Determine if the sender of this Twitter message is
exhibiting symptoms for each of the following:
influenza, diarrhea, hay fever, cough, headache,
fever, runny nose, cold. For each symptom, only
answer either O or 1 for negative (no symptoms)
or positive (has symptoms) respectively. Determi-
nation of symptoms is carried out based on the
following rules:

e Cases where the symptom is expressed directly
including mild symptoms are considered positive;
e A symptom can be labeled positive with indirect
expressions of a symptom;
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o If a symptom is mentioned but then also
dismissed or denied, this information is regarded
as positive;

e It is considered positive if someone or the
user is still affected with such mild symptoms
during recovery. However, if the symptoms are
completely gone, it is considered negative;

e A symptom is positive even if the user expresses
uncertainty regarding its cause;

e Since it is generally presumed that many patients
may overlook symptoms or diseases due to
insufficient medical knowledge, even suspicion of
symptoms and diseases are recognized and labeled
positive;

e Symptoms that disappeared completely are
recognized and labeled negative. Note that we
regarded and labeled positive when a user took
medicine that could cause temporary recovery
from a symptom;

e For cases that express expectation or process,
indicated with words such as “if,” “going,” “if it
is,” etc., these should be labeled as negative;

o If the disease is mentioned merely as a topic
rather than someone having it, these tweets should
be labeled as negative. These include news,
general theories, and advertisements;

o If the disease is mentioned in the context of a
joke, these should be labeled as negative;

e The symptoms are only for humans;

e Symptoms are within 24 hours including today;

e The label for symptoms that occurred yesterday
are dependent on the disease or symptom;

e Past Symptoms Including Two or More Days
Ago considered as negative;

e Recent occurrence and Recurring Symptom that
Still Persists considered as positive;

e We regard as a symptom in the vicinity and label
positive regardless of living together or not (i.e.
family members). We also label positive when a
symptom was observed from hearsay;

e As for symptoms of people belonging to a
specified group in the vicinity (school, club, etc.),
we labeled them positive.

e Other cases, like symptoms belonging to blog
friends, should be labeled as negative since it is
difficult to determine their location.

Post:
A post in one of the seven studied languages.

Return the result STRICTLY as a JSON object
with the symptoms as keys and the values as either
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Figure 3: F1-Score Distribution of Each LLM Across Different Language.
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Figure 4: F1-Score Distribution of Each Symptom Across Different Language
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Figure 6: One-way ANOVA Test in LLM Category

Figure 5: One-way ANOVA Test in Language Category

A.3 F1-Score Distribution of Each LLM

Across Different Language

Figure 3 illustrates the F1 scores of each LLM
across different languages, aiming to analyze per-

Oorl.
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Figure 7: One-way ANOVA Test in Symptom Category

formance variations across languages.

A.4 F1-Score Distribution of Each Symptom
Across Different Language

Figure 4 provides the F1-scores of each symptom
in various languages, with the goal of examining
performance differences across languages.

A.5 Statistical Testing on F1-Score for
Language Categories

Figure 5 shows the mean comparison of F1-score
for language categories to determine significant
statistical differences.

A.6 Statistical Testing on F1-Score for LLM
Categories

Statistical testing was presented in Figure 6 to com-
pare average F1-score for LLM categories.

A.7 Statistical Testing on F1-Score for
Symptom Categories

The comparison of mean F1 scores across symp-
toms was analyzed to identify statistically signifi-
cant differences as presented in Figure 7.
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