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Abstract

With the growing volume of misinformation
online, automated fact-checking systems are
becoming increasingly important. This paper
presents SANCTUARY, an efficient pipeline
for evidence-based verification of real-world
claims. Our approach consists of three stages:
Hypothetical Question & Passage Generation,
a two-step Retrieval-Augmented Generation
(RAG) hybrid evidence retrieval, and struc-
tured reasoning and prediction, which lever-
ages two lightweight Large Language Models
(LLMs). On the challenging AVeriTeC bench-
mark, our system achieves 25.27 points on the
new AVeriTeC score (Ev2R recall), outperform-
ing the previous state-of-the-art baseline by 5
absolute points (1.25× relative improvement).
Sanctuary demonstrates that careful retrieval,
reasoning strategies and well-integrated lan-
guage models can substantially advance auto-
mated fact-checking performance.

1 Introduction

The ease with which information can be pub-
lished and amplified online has intensified long-
standing concerns about the spread of misinfor-
mation and disinformation (Lewandowsky et al.,
2020; Schlichtkrull et al., 2024). Professional
fact-checking organizations such as PolitiFact1,
FactCheck.org2 and Snopes3 have scaled up their
efforts, yet the sheer volume and velocity of claims
far outstrip human capacity (Nakov et al., 2021).
Moreover, not every claim warrants fact-checking;
resources should be directed toward content that
can significantly impact society, such as influenc-
ing elections (Allcott and Gentzkow, 2017) or caus-
ing financial harm (Gold and Stelter, 2025). Con-
sequently, Automated Fact-Checking (AFC) has
emerged as a promising assistive technology aimed

1www.politifact.com
2www.factcheck.org
3www.snopes.com

at (i) identifying check-worthy claims, (ii) retriev-
ing or generating relevant evidence, and (iii) pre-
dicting a veracity verdict transparently to bolster
public trust and adoption (Vlachos and Riedel,
2014; Thorne and Vlachos, 2018).

Figure 1 illustrates a real-world check-worthy
claim, showing the kind of input and output that a
fact-checking system must process and output.

Claim: Several First Nations communities in Canada have
closed their borders to avoid COVID-19.
Date: 19-3-2020
Speaker: Chief David Monias
Reporting Source: Reuters news agency
Location Code: CA
Label: Supported
Justification: Multiple sources confirm some First Na-
tions communities in Canada closed their borders or set up
checkpoints to limit the spread of COVID-19 and protect
vulnerable members.

Figure 1: A sample claim from the AVeriTeC dataset.

We introduce a lightweight, time-efficient
pipeline for automated fact verification. The sys-
tem assigns each claim to one of four verdicts –
Supported, Refuted, Not Enough Evidence (NEE),
or Conflicting Evidence/Cherrypicking (CE/C) –
and outputs a rationale explaining its decision, cit-
ing relevant sources. Our method involves apply-
ing claim decomposition, Large Language Models
(LLMs), a Retrieval Augmented Generation (RAG)
framework, hybrid retrieval, and carefully tuned
prompts to produce explainable fact-checking.

We evaluate our system on the AVeriTeC dataset
(Schlichtkrull et al., 2023), demonstrating a sub-
stantial accuracy improvement (5%) over the of-
ficial baseline, while maintaining slightly faster
performance.

2 Related Work

The 2024 AVeriTeC shared task (Schlichtkrull et al.,
2024) commenced with an initial baseline system
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proposed by (Schlichtkrull et al., 2023), which
utilized BM25-based sentence ranking (Trotman
et al., 2014), question generation with BLOOM
(Le Scao et al., 2023), and BERT (Devlin et al.,
2019) for verdict prediction, achieving a modest
old AVeriTeC score of 11%. Following this initial
benchmark, multiple systems explored various so-
phisticated techniques to significantly enhance per-
formance. For instance, HerO (Yoon et al., 2024)
introduced LLM-based prompting to generate hy-
pothetical “evidence passages” prior to iterative
BM25 retrieval, re-ranking, and subsequent ques-
tion generation, yielding the highest question gen-
eration score and substantially outperforming the
original baseline.

Subsequent entrants further evolved these tech-
niques by incorporating advanced retrieval and gen-
eration strategies. InFact (Rothermel et al., 2024)
achieved top position on the leaderboard by lever-
aging proprietary LLMs such as GPT-4o (Achiam
et al., 2023) in conjunction with dense semantic
retrievers, combined with an aggressive question-
fan-out strategy to further increase evidence recall.
AIC CTU (Ullrich et al., 2024) adopted a stream-
lined RAG (Lewis et al., 2020) approach, integrat-
ing innovative methods such as Maximal Marginal
Relevance (MMR) (Carbonell and Goldstein, 1998)
and structured Chain-of-Thought (CoT) prompt-
ing. Dunamu-ML (Park et al., 2024) expanded
the coverage of evidence by incorporating over-
looked resources such as PDFs and video tran-
scripts, demonstrating the benefits of richer evi-
dence sources. Finally, Papelo (Malon, 2024) uti-
lized a dynamic multi-hop web search approach
with iterative question generation conditioned on
previous results, highlighting potential advantages
in scenarios where an initial fixed corpus might not
be readily available.

Collectively, these systems underscore a progres-
sion from an initial shallow baseline to increasingly
sophisticated methods and, heavier, proprietary
models, leaving plenty of room for optimizations in
terms of reducing model size, improving evidence
completeness, and computational efficiency.

3 Task Description

Verifying the truthfulness of real-world claims is
a complex task in natural language processing. It
requires reasoning over noisy, high-volume unstruc-
tured information from diverse sources, often under
strict time and resource constraints. An effective

fact-checking system must not only assess the fac-
tualness of a claim, but also provide verifiable, in-
terpretable explanations.

We formalize this claim verification task as fol-
lows:

Input
The input to the system is a tuple (c,m, e) where:

• c is an open-domain natural-language claim.

• m contains minimal metadata, including:

– publication date t

– speaker s
– source URL u

– location code ℓ

• e is the set of evidence articles collected from
the Web related to the claim.

Output
Our system produces a triple (v,E, J) where:

• v ∈ {Supported, Refuted, NEE, CE/C} is the
system’s predicted veracity label.

• E is a set of question-answer-document triples
(qi, {ai−j}, di−j), representing the evidence
extracted to support the label, where:

– qi is a fact-checking sub-question de-
rived from the original claim c.

– {ai−j} is a set of evidence snippets rele-
vant to qi.

– di−j denotes the set of source documents
from which {ai−j} are extracted.

• J is the textual justification that explains how
the evidence E collectively supports the pre-
dicted veracity label v.

4 The Sanctuary System

This section outlines the architecture and workflow
of Sanctuary, our end-to-end fact-checking system,
as shown in Figure 2. The system consists of three
main stages: Hypothetical Question & Passage
Generation, a two-step Evidence-Retrieval Pipeline
– Coarse and Semantic Evidence-Retrieval – and
finally, Reasoning and Prediction. Each stage is de-
signed to progressively narrow down the evidence
relevant to proving the factuality of the claim and
subsequent fact-checking. We describe the models,
prompting strategies, and design choices used at
each stage.
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Figure 2: Overview of the SANCTUARY system

4.1 Stage 1: Hypothetical Question and
Passage Generation

Fact-checkers typically approach verification by
formulating multiple nuanced questions, explor-
ing various angles to reach an informed conclusion
(Silverman, 2014). Inspired by this journalistic
practice, our system first employs an LLM – specif-
ically, Qwen2.5-7B-Instruct (Yang et al., 2024) –
to categorize a claim into one of three predefined
veracity labels: Supported, Refuted, or CE/C. This
classification step follows a methodology similar
to that of (Park et al., 2024), with the notable ex-
clusion of the NEE. This ensures that the model
explicitly posits either supporting or opposing evi-
dence; abstention would starve later stages of evi-
dence. This initial assessment step capitalizes on
the LLM’s extensive pretraining and reasoning ca-
pabilities to detect factual inconsistencies based on
its learned internal knowledge.

Following this classification, and drawing inspi-
ration from Hypothetical Document Embeddings
(HyDE) (Gao et al., 2023) as well as the works

by (Yoon et al., 2024; Rothermel et al., 2024), we
prompt the LLM to generate a diverse set of hypo-
thetical question-document pairs using a detailed
prompting template (illustrated in Figure 3). This
process aims to enhance evidence recall in later
stages by utilizing these hypothetical documents
as queries to retrieve relevant evidence, rather than
relying solely on the claim’s text.

The rationale behind conducting an initial assess-
ment prior to generating HyDE content is to condi-
tion the LLM to produce more targeted and contex-
tually relevant hypothetical documents, leveraging
its internal understanding of the claim, events, and
related patterns.

Therefore, this step closely simulates the inves-
tigative process employed by human fact-checkers,
who typically formulate investigative queries and
the kind of evidential responses or documents they
would likely obtain from online sources. By explic-
itly prompting the model to generate plausible yet
fictional questions, associated passages, relevant
entities, and alternative event scenarios, we aim to
fully exploit the LLM’s internal knowledge base
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and reasoning strengths.

4.2 Stage 2.1: Coarse Evidence-Retrieval

After generating a set of hypothetical question-
answer pairs, we use the BM25 algorithm (Trotman
et al., 2014) to retrieve relevant textual evidence
from the knowledge store. Standard BM25 retrieval
often suffers when documents vary significantly in
length, as longer documents can disproportionately
penalize or dilute term frequency scores. To mit-
igate this, we segment each document into fixed-
length segments of approximately 500 tokens using
a sliding-window approach with zero overlap, in
line with previous methodologies (Malon, 2024;
Park et al., 2024; Ullrich et al., 2024). Each doc-
ument in the corpus is chunked in this manner to
construct the BM25 index.

For each generated question-answer pair (treated
as a single query), we retrieve the top 125 ranked
document chunks from the index, a cutoff chosen
based on the development set balancing recall and
runtime. Given the substantial volume and length
of the source documents – averaging 794 docu-
ments per claim in the development set – we prepro-
cess (tokenize, segment, and index) them in parallel
using multiprocessing to improve efficiency.

Finally, we group the top-retrieved chunks by
their originating web article, using the document’s
URL as the key. This step intuitively narrows down
the retrieved content to those segments within Web
articles most relevant to answering queries associ-
ated with fact-checking the claim.

4.3 Stage 2.2: Semantic Evidence-Retrieval

In this stage, we further refine the evidence seg-
ments using a semantic, sentence-based chunking
strategy (Kamradt, 2024) followed by semantic
document retrieval, shifting the focus from key-
word matching to semantic relevance. By applying
semantic filtering, we narrow the scope of evidence
to textual snippets that precisely address the hypo-
thetical questions generated in Stage 1.

Initially, for each retrieved evidence document,
we consolidate the segments selected in the pre-
vious step. We then divide this combined text
into individual sentences and encode each sentence
into semantic vector representations. Sentences
exhibiting high semantic similarity are grouped
together, creating coherent, semantically themed
textual chunks. This step further refines the seg-
ments obtained previously into compact semantic

units, improving the granularity and relevance of
the evidence.

For sentence embeddings, we use the bilingual-
embedding-small model (Conneau et al., 2019;
Nils Reimers, 2019; Thakur et al., 2020), which
offers strong performance across a range of NLP
tasks despite its modest size (117M parameters)
and currently ranks #30 on the HuggingFace
MTEB Multilingual leaderboard.

Next, both the semantically formed chunks and
the previously generated Stage 1 queries are em-
bedded using a retrieval embedding model, treating
chunks as documents, and queries as search input.
For this step, we adopt the snowflake-arctic-embed-
m-v2.0 model (Yu et al., 2024), which provides a
strong balance of retrieval accuracy and computa-
tional efficiency. To avoid redundancy, and reduce
the size of the final evidence list, chunks identified
as semantically duplicate (cosine similarity greater
than 0.9) are filtered out, ensuring that each query
is answered by distinct evidence. Therefore, this
stage ensures that only the most semantically rel-
evant and distinct evidence is retained to address
each query.

4.4 Stage 3: Reasoning and Prediction
Rather than refining questions via sub-query gen-
eration (Rothermel et al., 2024), or generating
new questions after initial coarse evidence-retrieval
(Yoon et al., 2024), or reframing retrieved answers
(Park et al., 2024), or generating question-answer
pairs from initially retrieved coarse evidence (Ull-
rich et al., 2024) – each of which increases com-
putational complexity – we opt for simplicity by
adhering to our initial queries from Stage 1.

For each query, we select up to 8 evidence
chunks from Stage 2.2, while imposing a hard
cosine similarity threshold of 0.52. Our internal
subjective evaluations indicated that this threshold
effectively filters out less relevant evidence.

We then incorporate the selected question-
answer blocks into a carefully crafted veracity
prompt template, as shown in Figure 4, which
includes detailed instructions and guidelines spe-
cific to the task of fact-checking. To further guide
the model’s understanding of the task, we include
four-shot examples, one for each veracity label.
The prompt is then fed into Microsoft’s Phi-4 14B
LLM (Abdin et al., 2024), using its GPTQ 4-bit
quantized version (Frantar et al., 2022), chosen to
maintain computational efficiency while remaining
competitive. Although we had the option to use
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Qwen2.5-7B for this stage, we found that Phi-4 is
better suited for the task, owing to its larger parame-
ter count and better handling of nuanced reasoning,
which is critical for accurate veracity classification.

Additionally, to promote structured reasoning,
groundedness, and explainability in our predictions,
we employ a Chain-of-Thought (CoT) prompting
strategy (Wei et al., 2022), instructing the model
to articulate its reasoning explicitly, citing relevant
Q-A pairs before producing a veracity label.

5 Experimental Results

5.1 Dataset

The AVeriTeC dataset provides three splits of
real-world fact-checking claims containing both
the textual claim and rich metadata. The training
set comprises 3,068 claims, the development set
500 claims, and the blind test set 1,000 claims.
Although the train/dev splits are drawn from
fact-checks published up to 2019, the test set only
contains claims posted from 2024 onward, mak-
ing it a strictly out-of-distribution evaluation for
temporal generalization. For every claim, a bundle
of crawled web pages is provided as a knowledge
store.

5.2 Evaluation Criteria

The new scoring mechanism, as of 2025, replaces
the previous Hungarian METEOR (Banerjee and
Lavie, 2005) string matching-based approach with
the atomic reference-based Ev2R atomic scorer
(Akhtar et al., 2024). An LLM is used to decom-
pose predicted and reference questions and evi-
dence into minimal atomic facts. For every atomic
fact in the reference-set the scorer asks whether it
is supported by the prediction, computing a recall
value.

If the Q + A (Ev2R recall) > 0.50, then the
system’s veracity label is compared with gold, pro-
ducing new AVeriTeC score. The Recall scores are
published for Q-only and Q+A, along with the final
AVeriTeC score.

Why the change? Hungarian METEOR is sen-
sitive to surface form and treats any unannotated
but valid evidence as “wrong” (Akhtar et al., 2024).
The Ev2R scorer rewards factual coverage regard-
less of wording, is robust to alternate evidence
chains, and correlates better with human judgments
of coverage and relevance.

5.3 Baseline

Our reference is the HerO system (Yoon et al.,
2024), Herd of Open LLMs, ranked 2nd in the 2024
AVeriTeC challenge. HerO adopts a multi-stage
approach combining retrieval and generative rea-
soning: First, it uses open-source language mod-
els to produce hypothetical fact-checking passages.
Next, these passages, along with the claim guide
a retrieval process, identifying relevant evidence
from a large-scale, per-claim knowledge store. The
retrieved evidence is further filtered through se-
mantic embedding models to retain only the most
contextually meaningful excerpts. Then, HerO gen-
erates structured questions explicitly connecting
evidence back to the original claim. Finally, a lan-
guage model utilizes these questions and evidence
snippets to classify the claim.

5.4 Hyperparameter Choices

We present the hyperparameter configurations em-
ployed at each stage of our pipeline below:

Stage 1: We utilize Qwen2.5-7B-Instruct,
running under the vLLM4 inference engine with its
weights cast to bfloat16 precision. To balance diver-
sity and instruction-following, we fix the sampling
parameters as follows: temperature = 0.5, top_p
= 0.8, min_p = 0.1, and max_tokens = 2048. We
perform batch inference with four claims processed
concurrently.

Stage 2: This stage leverages two distinct mod-
els: one optimized for Semantic Textual Simi-
larity (STS) and another for document retrieval.
For STS, we use bilingual-embedding-small5

with the python library Chonkie6, using the fol-
lowing chunking parameters: min_chunk_size =
30, chunk_size = 140, min_sentences = 2, and
similarity_window = 1. Since 1–2 sentences av-
erage approximately 30 tokens (OpenAI, 2025), we
enforce a minimum chunk size of two sentences (30
tokens) and a maximum of approximately 4–6 sen-
tences (140 tokens). The similarity_window pa-
rameter controls the number of adjacent sentences
considered during the similarity threshold compu-
tation. These choices ensure that short sentences
are grouped to preserve contextual integrity, while
longer meaningful segments are prevented from
being fragmented arbitrarily.

4https://github.com/vllm-project/vllm
5https://huggingface.co/Lajavaness/

bilingual-embedding-small
6https://github.com/chonkie-inc/chonkie
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System Q only Q + A AVeriTeC Score Avg. time/claim (s)
CTU AIC 0.2003 ± 0.0066 0.4774 ± 0.0035 0.3317 ± 0.0015 53.67
HUMANE 0.1933 ± 0.0048 0.4299 ± 0.0006 0.2707 ± 0.0040 29.19
SANCTUARY 0.1561 ± 0.0057 0.4098 ± 0.0077 0.2527 ± 0.0051 31.71
Baseline 0.2723 ± 0.0006 0.3362 ± 0.0036 0.2023 ± 0.0068 33.88

Table 1: Performance of participating systems on the AVeriTeC 2025 task. Each system is evaluated on Question-
only (Q), Question + Answer (Q+A), and the unified AVeriTeC score. Average inference time per claim (in seconds)
is also reported.

LLM Combination (Stages 1 and 3) Q only Q + A AVeriTeC Score
Qwen2.5-7B and Phi-4 GPTQ 0.3427 0.5167 0.29
Gemini 2.5 Flash (Both Stages) 0.4004 0.6106 0.33

Table 2: Ev2R evaluation comparing our default LLM combination of Qwen2.5-7B and Phi-4 GPTQ with Gemini
Flash 2.5. Metrics reported are recall scores on question-only (Q), question-plus-answer (Q+A), and the final
AVeriTeC score on 100 balanced development claims.

snowflake-arctic-embed-m-v2.07 is used
for retrieval, using the eager attention implementa-
tion. Document and query texts are encoded with a
batch size of 512.

Stage 3: We use Microsoft’s Phi-4-14B
GPTQ 4bit8 quantized variant, also run under
the vLLM inference engine with weights cast to
half precision. Inference parameters are set as:
temperature = 0.9, top_p = 0.7, top_k = 1, and
max_tokens = 2048. We batch four claims per
inference run. Setting top_k to 1 enforces deter-
minism, thereby ensuring reproducibility.

5.5 Constraints
The participating systems were required to comply
with the following conditions:

1. Avoid the usage of proprietary LLMs.

2. Process each claim in under 60 seconds on
average. The evaluation system was equipped
with an NVIDIA A10G GPU (23 GB VRAM),
8 vCPUs, 32GB RAM, and 450GB file-
system.

3. Capture the source of the article of each evi-
dence used in fact-checking to facilitate man-
ual auditing.

5.6 Challenge Results
Table 1 presents the top three submissions from the
2025 AVeriTeC challenge leaderboard (excluding

7https://huggingface.co/Snowflake/
snowflake-arctic-embed-m-v2.0

8https://huggingface.co/jakiAJK/
microsoft-phi-4_GPTQ-int4

the baseline), ranked according to their AVeriTeC
scores on the test set. The Sanctuary system (code-
name yellow_flash) secured third place, achieving
an AVeriTeC score approximately 5% higher than
the baseline, with an average execution time of
31.71 seconds per claim.

On the development set, our system achieved
scores of 0.2454 (Q-only), 0.5152 (Q+A), and
0.376 (AVeriTeC score), placing third on the dev
leaderboard. However, a direct comparison with
other systems on the development set is limited, as
these evaluations were not conducted in a uniform,
time-controlled environment.

However, the development and experimentation
of our system was conducted on a different ma-
chine with a less powerful GPU compared to the
challenge environment. Specifically, it featured an
Intel(R) Xeon(R) Platinum 8253 CPU @ 2.20GHz
(32 cores), an Nvidia Quadro RTX 8000 Turing
GPU (48 GB VRAM), and 32 GB of RAM. On this
setup, our system processed the 500 claims in the
development set with an average execution time of
approximately 55 seconds per claim.

6 Analysis

To assess the impact of backbone language models
on overall system performance, we conducted an
ablation study comparing our default LLM con-
figuration – Qwen2.5-7B-Instruct for HyDE query
generation and Phi-4 GPTQ for final reasoning –
with a variant that uses Google’s Gemini Flash 2.5
(Preview 04-17) (Team et al., 2023) in both stages
1 and 3. The Gemini model was constrained to a
1024-token “thinking” budget. All other pipeline
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LLM Combination (Stages 1 and 3) Accuracy Macro F1 Supported Refuted NEE CE/C
Qwen2.5-7B and Phi-4 GPTQ 0.535 0.486 0.649 0.645 0.222 0.429
Gemini 2.5 Flash (Both Stages) 0.507 0.457 0.598 0.655 0.351 0.224

Gemini 2.5 Flash and Phi-4 GPTQ 0.490 0.438 0.586 0.609 0.223 0.333

Qwen2.5-7B and Gemini 2.5 Flash 0.466 0.421 0.642 0.555 0.278 0.207

Table 3: Local Classification Performance comparing our default combination of Qwen2.5-7B and Phi-4 GPTQ vs.
Gemini Flash 2.5 on the same 100 development claims. Reported metrics include accuracy, macro F1, and per-class
F1 scores.

components, parameters and prompts were kept
fixed to ensure a controlled comparison.

For this experiment, we sampled 100 claims
from the development set while ensuring an equal
representation of each veracity class to reduce bias
in performance estimation.

As shown in Table 2, substituting with Gem-
ini resulted in notable gains across all Ev2R met-
rics. Specifically, we observed improvements of
+5.77 points in Q-only recall, +9.39 points in Q+A
recall, and a +4 point increase in the AVeriTeC
score. These gains suggest that a stronger reason-
ing model enhances both the quality of generated
questions and the utility of retrieved evidence, ulti-
mately leading to better veracity predictions.

However, Table 3 presents a more nuanced pic-
ture. Despite Gemini’s higher recall, our original
configuration achieves a slightly higher classifi-
cation accuracy (+2.8%) and macro F1 (+2.9%).
It particularly excels in the Supported and CE/C
classes, while Gemini notably performs better on
the NEE class – indicating a more conservative
stance when evidence is ambiguous or lacking.

These findings highlight an important trade-off:
while Gemini – leveraging its advanced reason-
ing capacity and thinking mode – significantly im-
proves factual recall and alignment with the Ev2R
metrics, our Qwen–Phi pipeline delivers more bal-
anced veracity classification despite scoring lower
on the official metrics and operates under far lighter
computational demands.

7 Conclusion and Future Work

We introduced SANCTUARY, an open-source time-
efficient fact-checking pipeline that keeps model
and hardware footprints modest while still clos-
ing much of the performance gap to heavier
proprietary systems. By coupling lightweight
question generation, a coarse-to-fine hybrid re-
triever, and quantized reasoning, the system at-
tains a new AVeriTeC score of 25.27, an absolute

5–point gain over the shared-task baseline, yet ver-
ifies each claim in 31.71s on a single A10 GPU,
1.1s faster than the baseline.

Ablation results confirm that reasoning capacity
drives factual recall: swapping in Gemini 2.5 Flash,
a more capable LLM, lifts Ev2R Q-only, Q + A, and
overall scores, at the cost of higher resources, yet
achieves a slightly lower macro-F1 compared to
our pipeline. Crucially, the study also exposes our
main bottleneck, question generation. Phi-4 still
delivers strong label accuracy and reasoning when
fed questions generated by either Qwen or Gemini;
in fact, it scores better with Qwen-generated ques-
tions, despite their lower recall. This suggests that
better-formed sub-questions could unlock further
gains without enlarging the downstream reasoning
model.

Our future work will therefore focus on in-
creased knowledge-aware Q-generation and adap-
tive retrieval windows, in order to push recall
higher while ensuring the same lean footprint that
makes SANCTUARY efficient. We release our code
and prompts to facilitate further research and repro-
ducibility9

Limitations

Despite its efficiency and strong performance,
Sanctuary has three main constraints. First, our
HyDE Question Generation stage can miss multi-
hop subquestions – key background links (e.g.,
Company X → Subsidiary Y) or tertiary events
may go unexplored, capping recall. Second, Ev2R
may penalize correct evidence not covered in the
gold references, which means that valid but unan-
notated sources are treated as “misses”; this issue
warrants further investigation. Third, our retrieval
budget is fixed; complex claims or a larger evidence
corpus may require adaptive context windows to
avoid dropping crucial passages.

9https://github.com/arbaaz-abz/Sanctuary
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Finally, we did not adopt the latest open-source
LLMs at the time, such as Qwen3 (Yang et al.,
2025), which many of the participants used. It is
very likely that swapping in a more capable model,
evidenced by our experiments with Google’s Gem-
ini, while still respecting our 60 s/claim budget,
could yield even higher Ev2R recall and overall
AVeriTeC scores.
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Appendix A: Stage 1 prompt

You are a highly capable, thoughtful, and precise fact-checker.

Given a claim and its metadata, first classify the claim to the best of your knowledge and then generate relevant Question and
Answer pairs. You must assign one of the following labels:

* Supported: The claim is fully backed by clear, consistent evidence.
* Refuted: The claim is directly contradicted by reliable evidence, or there is no concrete evidence to support the claim.
* Conflicting Evidence/Cherrypicking: The evidence has both supporting and opposing arguments for the claim or is
selectively presented to favor the claim.

Guidelines:
– Generate anywhere between 5 to 10 Q-A pairs. Generate more questions for complex and multi-fact claims.
– Ensure questions have context. For example, given the claim "Every week, at least 12 doctors leave Nigeria to seek
employment in the UK.", a better question is "When was the claim made regarding Nigerian doctors moving to the UK to seek
employment?" rather than the overly generic "When was the claim made?"
– A question can have multiple sub-answers derived from various sources.
– Keep your answers brief (not more than 3 sentences).
– Fabricate random facts, figures, statements, or arguments, if and when needed.

Output Format:
“label”: “Supported | Refuted | Conflicting Evidence/Cherrypicking”,
“evidence”: {Question-1: [Answer-1, Answer-2, ...], Question-2: [Answer-1], ...}

1-SHOT EXAMPLE (omitted for brevity)

Now process this claim:
{Claim}
{Claim Date}
{Claim Speaker}
{Location ISO Code}
{Reporting Source}

Figure 3: Prompt template for Hypothetical Question and Passage Generation.

256



Appendix B: Stage 3 prompt

You are a highly capable, thoughtful, and precise fact-checker.

Given a claim, its metadata, question and evidence pairs (each question can be addressed by several related evidences), your
goal is to analyze the claim and how the evidence aligns with it. Then, you must label the claim using one of the following:

* Supported: The claim is fully backed by clear, consistent evidence with no significant contradictions.
* Refuted: The claim is directly contradicted by reliable evidence, or there is no evidence to support the claim.
* Not Enough Evidence: The evidence is insufficient to either support or refute the claim.
* Conflicting Evidence/Cherrypicking: The evidence both supports and opposes the claim or is selectively presented to favor
the claim.

Guidelines:
– Take note of the claim date, the time period it refers to, speaker identity, geographical location, and reporting source for
contextualization.
– Evaluate evidence within the relevant timeline and location constraints.
– Consider trustworthiness and title/URL source of evidence.
– For numerical claims, focus on data points; for events, check occurrence and timing; for position statements, consider the
speaker’s intent.

4-SHOT EXAMPLES (omitted for brevity)

Fact-check this claim:
{Claim}
{Claim Date}
{Claim Speaker}
{Location ISO Code}
{Reporting Source}
{Queries and Evidence}

You must carefully reason step-by-step using the context and evidence to determine the final label of the claim.

OUTPUT FORMAT:
Reasoning:
1. <concise rewrite of claim and intent; Note the timeline, location, statistics, numbers, quotes,
events>
2. <evidence assessment>
3. <contradictions / gaps / biases noted>
4. <why the balance of evidence leads to the chosen label>

Label:
<Supported | Refuted | Not Enough Evidence | Conflicting Evidence/Cherrypicking>

Figure 4: Prompt template for veracity prediction.
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