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Abstract

We propose different modular evaluation met-
rics for Layered Meaning Representation, de-
fined as YARN, a semantic formalism en-
coded using rich structures that generalize AMR
graphs. While existing metrics like SMATCH
evaluate graph-based semantic representations
such as AMR, they cannot directly handle
YARN’s more complex structures. We make
full use of the modular nature of YARN to pro-
pose two families of metrics, depending on the
linguistic features and type of semantic phe-
nomenon targeted. The first one, SMATCHY,
extends the AMR SMATCH metric. We also
propose YARNBLEU, based on the SEMBLEU
metric for AMR. We evaluate both families on a
small dataset of human annotated YARN struc-
tures, adding random modifications simulating
annotation mistakes and show that SMATCHY
provides a more consistent and reliable ap-
proach with respect to the type of modifications
considered.

1 Introduction

Evaluating the similarity between two graphs is a
non-trivial task, as different approaches emphasize
different aspects of structural variation. On the spe-
cific topic of graph based semantic formalisms, the
most popular metric, SMATCH (Cai and Knight,
2013) compares AMR graphs (Banarescu et al.,
2013) by matching nodes from a candidate graph
to a reference graph, and treating the task as pre-
diction, evaluating on the popular f-score metric.
Alternative metrics based on SMATCH have been
proposed like S2MATCH (Opitz et al., 2020) who
allows soft matching by incorporating a distance
function on concepts. Another popular metric for
AMR evaluation is SEMBLEU (Song and Gildea,
2019), which is based on the classical Bleu met-
ric for machine translation, and compares k-grams
in the candidate and reference graphs. SMATCH
and SEMBLEU have been introduced to take into
account the specificities of AMR graphs, and they
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cannot be applied directly to other kinds of seman-
tic formalism that are not graph-based.

We focus on layered meaning representations
such as the recently introduced YARN formal-
ism (Pavlova et al., 2024). YARN is based on
AMR, but extends this formalism by adding typed
edges and vertices, and enabling certain edges to
go from or toward other edges. By allowing one to
choose the features they would like to target (like
quantification, modalities, aspect), YARN provides
a modular framework for partial annotations: it
is more expressive than AMR, can represent first-
order logic and quantification phenomenon, as well
as scope. Meaning representation-based similar-
ity measures have been widely applied to natural
language processing tasks, ranging from Natural
Language Inference (Opitz et al., 2023) to text gen-
eration evaluation (Manning and Schneider, 2021)
and compositional semantic similarity measure-
ment (Fodor et al., 2025). Since YARN provides
a more complete and accurate representation than
AMR, similarity measures on YARN structures have
the potential to yield more precise results on such
tasks, provided parser accuracy. We propose de-
composing the YARN structures as a set of clauses.
This allows us to extend the steps presented in the
original SMATCH paper to YARN structures. Fur-
thermore, by keeping the information related to
edge and vertices types in the clause decomposi-
tion, we are able to evaluate the performance of a
given parser on various type of phenomenon. We
extend SEMBLEU in a similar way, by proposing
a way to represent YARN structures as graphs and
using the same k-grams extraction method as in
SEMBLEU.

We first review the classical AMR metrics
SMATCH and SEMBLEU and present YARN. Then,
we introduce two metrics families based on
SMATCHY and YARNBLEU, and evaluate them
on a small dataset of annotated YARN. Finally, we
discuss the results and propose future work.
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2 AMR metrics

Smatch (Cai and Knight, 2013) uses a seman-
tically motivated approach, by decomposing the
candidate AMR and the reference graph as conjunc-
tions of triples , and computing precision, recall and
f-score based on predicting correct triples. Since
triples involves variables, the score depends on
variable matching of both graphs, and the SMATCH
score is calculated as the best f-score over all possi-
ble partial one-to-one mapping between the set of
variables of the two AMRs. A complete example is
given in Appendix A.

SMATCH is an interpretable and semantics-
driven metric: each triple represents a predicate
in the event structure described by the AMR graph.
Thus, it accurately captures the overlap between
the two meaning associated to AMRS, in terms of
asserted elementary relations between entities or
variables. In particular, SMATCH does not heavily
penalize incorrect labels: two AMR graphs with
similar structure but different vertex labels can still
score high if the number of edges outweighs the
labels differences. However, using a semantically
grounded metric has a cost: finding the optimal
variable matching between two AMRs is NP-hard,
and SMATCH relies on heuristic, non-deterministic
solvers with repeated random initialization.

SemBLEU (Song and Gildea, 2019) on the other
hand, does away with variable matching by tak-
ing inspiration from the classical BLEU (Papineni
et al., 2002) metric and comparing k-grams pre-
dicted by the candidate graph to k-grams present
in a reference graph. Since BLEU is used to evalu-
ate machine translation, it is motivated by casting
AMR parsing as translating from english to AMR.
However BLEU cannot be used as is since an AMR
graph is not a text sequence. Nevertheless, since
BLEU relies on k-grams matching, a straightfor-
ward extension of BLEU for graphs has been pro-
posed by (Song and Gildea, 2019) by considering
k-grams as sequences of connected k-nodes. More
precisely, for a reference graph z and a candidate
graph ¢, SEMBLEU enumerates 1-grams (vertices),
2-grams (labeled edges), ..., n-grams by a travers-
ing both graphs with a breadth-first algorithm, and
then applies the standard BLEU equation:

; 2]
BLEU — ¢ (17510) » oSies we oz

|k-gram(z) N k-gram(c)|
Pk =
| k-gram(c)|
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Figure 1: YARN structures representing for “Each poem
narrates only a part of the war.”. The second structure
focuses only on the quantifier feature and the PA part.

Where w is a sequence of n positive parameters
summing to 1. The authors of the original SEM-
BLEU paper use n =3 and wy = wy = we = 1/3.
SEMBLEU has the property of being determin-
istic and computable in linear time for trees. Al-
though AMR graphs are not necessarily trees, they
are generally sparse, and (Song and Gildea, 2019)
empirically verified that the property still holds.

3 YARN

In this section, we give a brief overview of the
YARN formalism, and how it can be represented as
a set of clauses. We refer to (Pavlova et al., 2024)
for a more detailed description of the formalism.
The features of YARN that we need to take into
account when proposing a metric are the following:
The base of a YARN structure is a graph represent-
ing the basic predicate argument (PA) structure. (i)



YARN has typed vertices. (ii) YARN has typed edge
connecting different types of vertices. (iii) YARN
has typed edges! connecting vertices or edges to
other vertices or edges. (iv) YARN is modular: we
might remove all vertices and edges connected to
the structure only through feature nodes represent-
ing certain features we do not wish to focus on.
This allows to get another simplified YARN struc-
ture. Figure 1 gives an example of this process.

We use the definition by Pavlova (2025) which,
compared to Pavlova et al. (2024), provides a
slightly simplified and more expressive version
of the YARN formalism. We explicitly define the
changes between the former and the later in the
following paragraph.

A YARN structure is defined as a 9-tuple:

Y=(S,V,F,D,E,C,L,H,I)

Each term denotes a set of labeled edges or ver-
tices. The base of the representation follows AMR:
V' elements are vertices representing concepts, in-
dividuals or attributes, while F edges express rela-
tions between V' elements. S elements are nodes
corresponding to elementary events with F' ele-
ments, features associated to them. D elements
are edges representing discourse relations between
elementary events (D is called E in Pavlova et al.
(2024)). L elements are edges connecting F' and
V nodes (L is called Ery in Pavlova et al. (2024)).
For details on their interpretation and use to model
various phenomena, see again Pavlova et al. (2024).
The remaining elements are not present in Pavlova
et al. (2024): C elements are edges linking V' and
S nodes to model clauses. H elements are edges
going either from elements of F' towards other el-
ements of H or L, or from L or other H ones to-
wards V or E. This expresses how features interact
and modulate semantic relations between entities.
Finally, I are undirected edges between V' vertices.

4 SMATCHY

4.1 SMATCHY-BASE

SMATCH uses variables associated to nodes to han-
dle reference towards them, encoding the struc-
ture of a graph as a collection of triples. YARN
structures can be considered as classical directed
graphs that have nodes of different types, with the
addition of specific L or H edges that either go
from another edge to a node or from a node to an

!This is a slight abuse of terminology.
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edge. The only missing element in order to use
SMATCH on YARN structures would be the ability
to encode such edges. This can be done by adding
variables corresponding to edges, as illustrated in
Figure 2. With this encoding, due to the additional
variables assignations, we encode YARN structures
as sets of quadruples® (corresponding to edges)
and triples (corresponding to labels of vertices), or
only quadruples by adding dummy variables. An
easy extension of SMATCH can then be proposed
for YARN, as the best f-score that can be achieved
through partial one-to-one variable matching on the
clauses (triples and quadruples) defining the given
SMATCH structures. We now show how to compute
such a matching using integer linear programming
(ILP).

ILP formulation let Y; and Y5 be two graph
structures, we define Vj as the set of variables in
Y7, V5 as the set of variables in Y5, C; the set
of clauses appearing in Y7, Cs the set of clauses
appearing in Y5.

We say that two clauses are comparable if they
correspond to the same type of edge or vertex in
the YARN structure, and they are labeled with the
same relation, concept or feature type.

We can frame the problem of finding optimal
variable alignment as an integer linear program-
ming problem, with the given binary matrixes:

’U:V1><V2—>{0;1} t:Cl><CQ—>{O;1}

Where v;; is 1 if and only if variable ¢ is assigned
to variable j, and ¢.4 is 1 if and only if the clauses ¢
and d are comparable and match given the variable
assignment.

The constraints for v to represent a partial one
to one alignment are:

n
> wi <1, Vie{l,2,...,m}
=1

m
dwp <1, Vie{l,2,...,n}
7j=1

Additionally clauses ¢; € C and ¢; € Cy match if
they are comparable and their variables match, we
can formalize this in the following way: if ¢; and
c;j are comparable and have respective variables (,
Y, z) and (a, b, c) we write:

<

tcicj- < Vga tcic]- >

> te; c; < Vyb Vze
*We follow SMATCH formulation: a triple correspond to a
relation together with two variables, and a quadruple consists

of a relation together with three variables.
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instance_f(degree, d)
instance_f(temp,t)

( e1 := ARG1_e(h,m)
instance_sgevent,sl)

(

(

(

eg = ARG1_e(h2, hg)
1 :=more_1(d, h)
hi := present_h(t, 1)

instance_v(high-02, h) N/
ho 1= than_h(ll,hg)

instance_v(high-02, h2)
instance_v(hill, h3)
instance_v(mountain,m)
feature_f(d, s1)
feature_f(¢, s1)

Figure 2: Expression of a YARN structure representing “Mountains are higher than hills” as triples and quadruples.

lege; < Uza leie; < vy

Up to this point we follow closely the formulation
of (Cai and Knight, 2013), accounting for addi-
tional variables. Most of the edges in a YARN
graph are directed or between nodes of different
types. The only exception to this rule in YARN
structures are I edges that link V' vertices and that
are undirected. If ¢; and ¢; correspond to such ver-
tices, linking nodes corresponding to variables z,
y and a, b respectively then we may write:

tCZ‘C]' < Vgq + Vb th'Cj < Uya + Uyb

Where the constraints on v insure that both right
hand side are less than or equal to 1, and that if
they are both 1, then {z,y} = {a,b}.

When clauses ¢; and c; correspond to relations
that may not be compared, we write
=0

tCiCj

Naming the set of pairs of matrixes that follow
those constraints A, finding the best alignment is
equivalent to solving the ILP problem:

D

cZ'ECl,Cj €Cy

maX(t,v)EA tcicj-

Since A is not empty (setting v and ¢ equal to O sat-
isfies all the constraints) and the function to max-
imize is bounded by the number of comparable
clauses, the problem is well defined and can be
solved in reasonable time® by ILP solvers.

*To give a rough estimate, computing the optimal aligne-
ment for a given pair of YARN structures takes about 20
ms on a personal laptop using the CBC solver (Forrest et al.,

2024) through the python PuLP(Mitchell et al.) ILP modeling
library.
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Figure 3: A simple YARN structure achieving high aver-
age base SMATCHY score (0.55 average f-score) against
human annotated samples for unrelated sentences

Once an optimal mapping is found, we consider
clauses that match between the candidate graph and
the reference graph as true positives (TP), clauses
that are present in the candidate graph and not in
the reference graph as false positives (FP), and
clauses that are not present in the candidate graph
but are present in the reference graph as false nega-
tives (FN): we then compute recall, precision and
f-score using the usual formulas (Davis and Goad-
rich, 2006). Continuing with (Cai and Knight,
2013), we use the f1-score as the final metric.

4.2 Feature Aware SMATCHY

Using the previously introduced metric to compare
YARN structures is unsatisfactory. It leads to con-
sidering every element of the YARN structure as
equally important, either during alignment or phase.
For instance, instance clauses predicting the very
presence of a feature count as much as clauses re-
lating to how this feature acts on other elements


https://github.com/coin-or/Cbc
https://github.com/coin-or/pulp
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Figure 4: YARN structures for “I also struggle with
passwords”, before and after filtering guant and temp

of the structure, which is not ideal. Using an an-
notated subset of 100 sentences from the English
PUD dataset (Zeman et al., 2017), the average score
of random pairs of graph was 0.45, which is unsat-
isfactory, as one would expect this number to be
closer to zero. In fact, comparing every annotated
graph with a nearly empty YARN graph composed
of only two V' nodes and several common features
gives an average score of 0.55 (see Figure 3).

Additionally, YARN has the advantage of allow-
ing easily one to “switch” features (see Figure 1),
depending on what kind of semantic phenomenon
they would like to focus on. This should be re-
flected in any metric evaluating similarity of YARN
structures: we would like to have not only a score
reflecting how well two structures globally match,
but also a family of derived metrics reflecting how
they match on certain restricted set of features.

To tackle both challenges, we propose to retain
the alignment method of the SMATCHY-BASE met-
ric, but modify the scoring function, in order to
ignore certain easy or irrelevant matches. Con-
cretely, once an optimal variable matching is found
between the variables corresponding to the two
structures, we filter out the set of clauses consid-
ered for the precision and recall calculation.

Clause filtering algorithm Given a set of types
T c{S,V,F,D,E,C,L,H, I}, and a set of fea-
ture labels I, we filter clauses by: (1) removing
instance clauses defining features not in F; (2) re-
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cursively removing clauses referencing variables
from removed clauses; (3) recursively removing
clauses whose variables appear only in removed
clauses; and (4) removing clauses of types not in
T. Steps 1-3 “switch off” layers, see Figure 1 and
Figure 4, while Step 4 filters the clauses considered
according to type in order to ignore easy matches.

We now give an example of this filtering process.
Let T = {V,E,H,L} and F = {quant,temp}.
We might choose this setting to evaluate how well
a parser can extract first-order logical formulas as
well as temporal features.

The YARN structure shown at the top of Figure 4
is split into the following clauses:

(1) e1 := ARGO_e(s, )

(2) e3 := ARG1_e(s,p)

(3) feature_f(s1,m)

(4) feature_f(s1,q)

(5) feature_f(s1,t)

(6) instance_f(mod, m)

(7) instance_f(quant, q)

(8) instance_f(temp, )

(9) instance_s(event, s1)

(10) instance_v(also, a)

(11) instance_v(i,1)

(12) instance_v(password, p)

(13) instance_v(struggle-01,s;)

(14) Iy := edge_1(m,a)

(15) I := exists_1(q,p)

(16) I3 := present_1(¢, s1)

Let’s apply the four steps of the filtering process.

Step 1 Remove the instance clauses that define
feature variables corresponding to features that are
not in IF: Remove clause (6).

Step 2 Recursively remove the clauses referenc-
ing variables defined in clauses that have been re-
moved: Remove clause (3), remove clause (14).

Step 3 Recursively remove clauses whose vari-
ables are referenced only in clauses that have been
removed: Remove clause (10): thus the set of
clause that match the second structure in Figure 4.

Step 4 Remove clauses of types that are not in T:
Remove clause (4), (5), (7), (8) and (9).
The final set of clauses is:
(1) e; := ARGO_e(s, 1)
(2) e2 := ARG1_e(s, p)
(11) instance_v(i,1)
(12) instance_v(password, p)
(13) instance_v(struggle-01,s;)



(15) lg := exists_1(q,p)

(16) I3 := present_1(¢, s1)

To be able to compare the general proximity of
two YARN structures, we propose using our met-
ricwith T = {S,V,D,E,C, L, H, I}, that is, re-
moving only clauses of type F', with no filtering
on features. With this setting, the average prox-
imity score of pairs of structures taken randomly
from our dataset drops to 0.20, while the average
score between YARN structures and the structure
presented in Figure 3 drops to 0.23. This is on
par with results obtained using SMATCH on AMR
graphs (Cai and Knight, 2013). We call the metric
obtained in this setting SMATCHY-GENERAL. To
have a metric focused on the PA substructure of
YARN structures, we propose setting T to {V, E'}.
This is very similar to SMATCH, only using the
additional more complex YARN elements to guide
the variable alignment phase. We call this met-
ric SMATCHY-PA. To evaluate on the fragment of
YARN corresponding to first-order logic, we define
SMATCHY-FOL by setting T to {S,V,E, H, L}
and F to {quant,neg}. We may also set T to
{S, D} in order to evaluate discourse relations pars-
ing, or to {V'} for concept and entity recognition.

5 YarnBLEU

We also extend the definition of SEMBLEU to
YARN structures. We leverage a graph translation
of YARN structures, as seen in Figure 5: every ele-
ment x of the structure is converted to a typed node
n(x), withtypein {S,V, F, D, E,C, L, H,I}. Ad-
ditionally, for every edge e in the YARN structure
connecting two elements x; and x2, we create two
unlabeled edges (n(x1),n(e)) and (n(e),n(z2)).
Like we did previously with SMATCHY, we pro-
pose a family of metrics, depending on the nodes
considered. For a set of types T and features
applying the same process as in Figure 4.2, we
extract a YARN substructure based on I (step 1
to 3) then select only nodes corresponding to the
types in T before k-grams extraction. We then ap-
ply the same formula as SEMBLEU. We build in
this fashion the YARNBLEU-GENERAL and YARN-
BLEU-PA metrics, as well as the YARNBLEU-
FoOL metrics that are analogous to SMATCHY -
GENERAL, SMATCHY-PA and SMATCHY-FOL re-
spectively. Since SEMBLEU additionally depends
on n (the maximal size of k-grams considered)
and w, we also need to set those parameters. The
value proposed by (Song and Gildea, 2019) is w to
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Figure 5: The graph of the YARN structure in Figure 2.

(1/3,1/3,1/3) and n to 3. In order to handle the
same range of global dependencies on the PA struc-
ture while accounting for additional nodes coming
from edges, we set n to 5 and w to (1/5, ..., 1/5).

6 Experiments

6.1 Elementary modifications

We first propose a simple evaluation scheme in or-
der to evaluate the general properties of SMATCHY -
and YARNBLEU- type metrics with respect to ran-
dom modifications that simulate annotator errors.
We do not cover every type of mistake and the wide
range of possible annotation errors. Our main fo-
cus is sensitivity and bias, as we want to measure
how errors of different forms are differently pe-
nalized by such metrics. In particular, SMATCHY -
GENERAL should not penalize overly one type of
errors, while SMATCHY -PA should mostly penal-
ize errors in the PA substructure of a YARN struc-
ture.

We evaluate our more fine-grained first-order
oriented metrics SMATCHY-FOL and YARNBLEU-
FOL on the same dataset. When changing the la-
bels of V or E elements, we carefully introduce
a new distinction. As can be seen with the node
labeled “also” in Figure 4, some elements of the
YARN structure will not be present in the first-order
formula that can be extracted from a given YARN
structure: this is typically the case for modifiers
acting on elementary events. We tag such elements
as “first order irrelevant” (FOI). Other elements are
tagged “first order relevant” (FOR). As the con-



version of YARN structures to logical formulas is
not the focus of this paper, we do not elaborate
on the specific procedure one would use to build
such formulas. We then compare the scores ob-
tained when changing the label of FOR elements
or FOI elements. Furthermore, modification of
L and H edges are also separated between those
that act on edges spanning from quantification and
negation features (considered FOR) and the others
(considered FOI), as only the former will have an
influence on the final logical formula. The results
are shown in Figure 6. As we can see, SMATCHY -
FoL and YARNBLEU-FOL are able to distinguish
between those two types of modifications, and only
penalize acting on FOR elements. However, the
general trend of fuzzier and more biased distribu-
tions for YARNBLEU metrics is still present, with
YARNBLEU-FOL penalizing more modification of
E edges than H or L edges.

6.2 Random chain of modifications

As a way to simulate the influence of more sub-
stantial annotation errors, we now apply sequences
of random transformations to the YARN structures.
This setup complements the first analysis by evalu-
ating how metric scores degrade across cumulative
and structured perturbations, rather than isolated
changes. Our transformations consist in changing
labels, and adding or removing random elements
of types E, V, F', L, H. Those transformations are
not elementary as we keep valid YARN structures at
each transformation step: if a feature F' is removed,
we remove elements that are attached to the main
structure only through this feature.* In the same
spirit, adding a new V element, also adds an F
edge linking it to the main structure. We thus keep
track of the number of elementary modification (in-
sertion, deletion of an element or change of a label)
performed. We check that restricting the type of
modifications to FOI elements doesn’t imply a drop
in YARNBLEU-FOL and SMATCHY-FOL.> We
compute the score of the modified structures with
respect to the original ones, and plot the scores as a
function of the number of elementary modifications
performed for SMATCHY-GENERAL, SMATCHY -
PA, YARNBLEU-GENERAL and YARNBLEU-PA.
The results for a small number of trajectories are
shown in Figure 7. SMATCHY metrics degrada-
tion follow the editing distance more regularly than

‘As a consequence, removing the quantification feature

will also remove every H or L edge expressing quantification.
>Not obvious as FOI elements still influence the alignment.

44

YARNBLEU. In particular, we observe mostly non
increasing trajectories for SMATCHY, while this is
not the case for YARNBLEU.

We note that the occasional increases observed in
YARNBLEU scores is still present when changing
the value of the n and w parameters. This seems to
come from the precision oriented approach of SEM-
BLEU and YARNBLEU: removing valid elements
from a modified structure might increase scores
if those elements are linked to wrong ones, as it
might reduce drastically the amount of wrong pre-
dicted k-grams. It is the role of the brevity penalty
factor to counter this kind of effects, but it is not
always sufficient: the formula proposed by (Song
and Gildea, 2019) seems to rely on the assumption
that AMR graphs are sparse enough that the num-
ber of k-grams extracted from them grows linearly
with size of the graph: while this has been heuristi-
cally verified by the same authors on existing AMR
datasets, it is not the case for YARN structures.

7 Discussion

The observed behavior of SMATCHY and YARN-
BLEU in our evaluation protocol leads us to favor
SMATCHY for its more predictable and controlled
response to parsing or annotation errors. SEM-
BLEU is a biased measure that penalizes mistakes
differently across various regions of a graph, de-
pending on local connectivity patterns. This bias
is even more pronounced for YARN than for AMR,
as complex YARN structures exhibit very different
topological properties in the (H, L) substructure
compared to the rest of the structure, due to spe-
cific constraints on these elements. Additionally, as
noted earlier, the brevity penalty proves insufficient
to address these issues.

Are there still reasons to favor SEMBLEU fam-
ily metrics like YARNBLEU? The main argument
appears to be computational complexity, as YARN-
BLEU can be computed without requiring a variable
alignment phase. However, alternative solutions
exist that arguably provide better approaches to
assessing graph similarity (Kachwala et al., 2024;
Sun and Xue, 2024; Shou and Lin, 2023). By focus-
ing on elementary modifications, we evaluate se-
mantic similarity on architectural grounds. YARN-
BLEU exhibits bias toward penalizing errors more
heavily in highly connected regions of the graph,
which may occasionally be desirable: in the same
way AMR top elements correspond to main verbs
and their core arguments, highly connected regions
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structures.
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in YARN structures might correspond to elements
that are more important for sentence interpretation.

To apply SEMBLEU to YARN structures, we
leverage a graph translation approach. It would also
be possible to apply SMATCH directly to YARN
structures using this graph translation; however,
we argue this is undesirable as it would repre-
sent a quadruple a := rel(b, c) as three triples:
instance(a, rel), ¢(b,a), and ¢(a,c). While this
formulation suffices for checking isomorphy, it is
problematic for fine-grained similarity evaluation.
By tripling the number of clauses related to edges,
it breaks the symmetry between nodes and edges.
Additionally, compared to the quadruple formu-
lation, this approach allows partial matching of
the original edge (matching only source or target),
which is unsatisfactory.

8 Conclusion

Providing evaluation metrics is a necessary first
step toward the development of semantic parsers.
In this context, we have introduced a new fam-
ily of metrics tailored to the evaluation of pars-
ing over YARN structures, derived from SMATCH
and SEMBLEU. We have shown how to extend
those original metrics to handle the specificities of
YARN structures, and how to use it to evaluate pars-
ing on different structural aspects. Those include
the core predicative kernel of the structure with
SMATCHY-PA and YARNBLEU-PA, the general
relatedness with SMATCHY-GENERAL and YARN-
BLEU-GENERAL, or the first-order logic aspect
with SMATCHY-FOL and YARNBLEU-FOL. We
have shown that our metrics are able to distinguish
and penalize different types of modifications on
YARN structures. Our results suggest that using
alignment based methods similar to SMATCH pro-
vide a more robust way of evaluating parsing on
formalisms such YARN structures, as they seem
to be less biased and more predictable than graph
traversal methods such as SEMBLEU. We empha-
size on the fact that many other metrics can be de-
rived from the SMATCHY and YARNBLEU frame-
work, allowing to focus on very specific aspects of
semantic parsing, and to evaluate the overall per-
formance or abilities of different type of models
on those aspects. This results from the structural
richness of YARN structures, which can be used to
model a broad variety of phenomena. Furthermore,
the extreme modularity of YARN allows for many
applications: A single YARN annotated dataset is
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enough to evaluate capacities of parsers and lan-
guage models across many tasks, from named en-
tity recognition and word sense disambiguation to
parsing of AMR like structures, first-order logic
formulas, discourse relations and more simply by
switching the evaluation metrics.

9 Limitations

The metrics we present inherit the same limitations
as the ones they are based on. We can hypothesise
that SMATCHY scoring systems neglect small but
semantically relevant structural differences, lead-
ing to high scores for unacceptable parses, as was
observed with SMATCH in (Opitz and Frank, 2022).
A direction for future research is to align with hu-
man judgment by learning to aggregate different
SMATCHY or YARNBLEU scores, using various
choices of IF and T, with optimized weighting co-
efficients. In addition, the absence of soft concept
matching penalizes structures that contain closely
related but not identical concepts, overlooking nu-
anced semantic similarities. This limitation has
been criticized and addressed in previous work on
SMATCH and SEMBLEU (Opitz et al. (2020), Opitz
et al. (2021)). Future work could explore incor-
porating soft matching in order to provide more
permissive metrics evaluating semantic relatedness
of YARN structures.

Furthermore, the evaluation protocol presented
in this paper is biased in favor of SMATCHY be-
cause it focuses on a restricted set of modifica-
tions that induce a high variability on high level
structural features of the structure as captured by
YARNBLEU k-grams while leaving the underlying
SMATCHY variable alignment largely unaffected.
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A Appendix

AMR graph for “the boy wants to stay”
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Variable Matching Variable
(First AMR) (Second AMR)

W y
b y
s z
(None) a

and its triplet decomposition:
instance(w,want-01)A
instance(s, stay-01)A

ARGO(w, b)A

ARGO(s, b)A

ARG1(w, s)

(
instance(b, boy)A

(

)

The same for the sentence: “the boy wants the
girl to stay”

:ARGO \:ARGI1

instance(z,want-01)A

instance(y, boy)A
instance(z, stay-01)A
instance(a, girl)A
ARGO(z, ) A

ARGO(z, a)A

ARG1(z, 2)

Highlighted triples reflect variable alignment:

blue for matching, red for non-matching. SMATCH
score between the two AMR is 0.77.
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