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Abstract

Uniform Meaning Representation (UMR) is
a semantic framework designed to represent
the meaning of texts in a structured and inter-
pretable manner. In this paper, we evaluate
the results of the automatic conversion of ex-
isting resources to UMR, focusing on Czech
(PDT-C treebank) and Latin (LDT treebank).
We present both quantitative and qualitative
evaluations based on a comparison between
manually and automatically generated UMR
structures for a sample of Czech and Latin sen-
tences. The findings indicate comparable re-
sults of the automatic conversion for both lan-
guages. The key challenges prove to be the
higher level of semantic abstraction required by
UMR and the fact that UMR allows for captur-
ing semantic structure in multiple ways, poten-
tially with varying levels of granularity.

1 Introduction
The challenge of representing meaning has been
fascinating linguists, philosophers, and cogni-
tive scientists for centuries. Traditional seman-
tic frameworks—such as truth-conditional seman-
tics (e.g., Davidson, 1967), frame semantics (e.g.,
Baker et al., 1998; Fillmore et al., 2002), and cog-
nitive semantics (e.g., Langacker, 1987; Croft and
Cruse, 2004)—aimed to formalize how meaning is
constructed, interpreted, and communicated.

Recent advances in natural language process-
ing have been driven by large language models.
These models excel at downstream tasks such as
text generation and translation. However, given
their unclear interpretability—as they rely on sta-
tistical patterns rather than true semantic or logi-
cal understanding—they do not answer the essen-
tial questions about meaning representation.

Thus, symbolic approaches remain central to ef-
forts to search for precise, inference-capable mean-
ing representations. Uniform Meaning Represen-
tation (UMR), the fundamentals described by van

Gysel et al. (2021), is one of the responses to
this interest. We build on this initiative and test
the approach for representing Czech and Latin—
inflected languages with rich morphology and free
word order representing information-structural fea-
tures (such as topic-focus articulation and dis-
course dynamics) rather than syntactic relations.
The results of our effort could thus provide valu-
able insight for the UMR community.

Creating data from scratch is extremely time-
consuming and requires highly trained annotators
with extensive expertise. That’s why we aim to
take advantage of the richly annotated datasets al-
ready available for the two languages, and investi-
gate the possibility of their (semi-)automatic con-
version to the UMR framework. Namely, we rely
on the PDT-C corpus1 (Hajič et al., 2024a) for
Czech and on a subset of the Latin Dependency
Treebank (LDT)2 (Bamman and Crane, 2006) for
Latin. Both are annotated using the same PDT an-
notation scenario, thus supporting the same con-
version process. A similar approach has proved
to be advantageous for English—as described by
Bonn et al. (2023b), who created the extensive En-
glish UMR corpus (Bonn et al., 2025) from struc-
tures used in Abstract Meaning Representation, the
UMR predecessor. Full conversion is not always
feasible, but even partial results are highly ben-
eficial, as shown by Buchholz et al. (2024) and
Gamba et al. (2025).

The paper presents a comparison of (a small
sample of) double-annotated UMR data, that is, the
data with manually created UMR structures and
their counterparts automatically converted from
the PDT-C and LDT corpora, respectively. First,
we briefly describe the UMR and PDT-C ap-
proaches and the available automatic conversion
(§ 1.1, 1.2, and 1.3, respectively) and the Czech

1http://hdl.handle.net/11234/1-5813
2https://itreebank.marginalia.it/

http://hdl.handle.net/11234/1-5813
https://itreebank.marginalia.it/
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and Latin UMR data (§ 2). § 3 introduces the way
we compare the structures and brings a quantita-
tive comparison. A qualitative analysis follows in
§ 4. § 5 then summarizes the results and discusses
further work.

1.1 Uniform Meaning Representation
Uniform Meaning Representation (see esp. van Gy-
sel et al., 2021; Bonn et al., 2023b, 2024) is a se-
mantic framework designed to represent the mean-
ing of texts in an interpretable way, elaborating
the (originally English-centered) Abstract Mean-
ing Representation (Banarescu et al., 2013; Wein
and Bonn, 2023). UMR’s graph-based sentence-
level representation abstracts from the overt sen-
tence syntax; in particular, it encodes the frame-
based predicate-argument structure of all even-
tive concepts, including their aspectual informa-
tion. In addition, UMR models semantic rela-
tions that cross sentence boundaries, such as coref-
erence, temporal chains, and epistemic modality,
which makes it possible to interpret context and
discourse more effectively.3 Its applicability has
been demonstrated on a sample of data from En-
glish, Chinese, and four low-resource American
languages (Bonn et al., 2023a).

1.2 PDT: Deep syntactic representation
Both treebanks that we use as our source data,
Czech PDT-C and Latin LDT, provide representa-
tion at the so-called deep syntactic layer (also tec-
togrammatical or t-layer; see esp. Sgall et al., 1986;
Hajič et al., 2020 for Czech and Passarotti, 2014;
Gonzalez Saavedra and Passarotti, 2014 for Latin).
The core of this dependency-oriented representa-
tion is formed by the predicate-argument structure
(valency) and other deep syntactic relations. This
core structure is enriched with meaning-relevant
morphological information (number and gender for
nouns; tense, aspect, modality for verbs), topic-
focus articulation, and coreference annotation.4

In contrast to UMR, the PDT scenario concen-
trates on linguistically structured meaning; as such,
it more or less directly refers to the annotated text.
Thus, this scenario is less abstract than UMR—
which presents the main obstacles to the automatic
conversion (as will be discussed below).

3The UMR 0.9 specification as available here:
https://github.com/umr4nlp/umr-guidelines/blob/
master/guidelines.md

4For the full PDT-C documentation, see https://ufal.mff.
cuni.cz/pdt-c/documentation.

A more thorough comparison of the two ap-
proaches, envisaging the possibility of the auto-
matic PDT-C to UMR conversion, can be found in
Lopatková et al. (2024).

1.3 PDT to UMR automatic conversion
Here we work with the first attempt to automati-
cally convert PDT structures to UMR structures, as
described in Lopatková et al. (2025). Let us stress
that this conversion is partial—it covers only se-
lected phenomena pertaining to the sentence-level
annotation (esp. structure of the graph, labeling
of nodes and relations, PropBank-like argument
structure for verbs, and selected attributes); in addi-
tion, intra-sentential coreference relations are iden-
tified.

The conversion procedure recursively traverses
the PDT-C tree (namely the t-structure), and in-
crementally builds the corresponding UMR graph.
Each node and edge are analyzed to determine nec-
essary structural and labeling changes, as well as
the addition of UMR attributes.

• In this stage, structural transformations are
a key part of the process. These typically
arise from handling coreference (merging pro-
nouns with their referents, reentrancies, in-
verse roles), coordination (esp. represent-
ing conjuncts and their shared dependents in
a UMR-adequate structure), relative clauses
(merging referential nodes and linking them
semantically), and control or raising verbs
(merging arguments across predicates), as
sketched by Lopatková et al. (2024, 2025).

• Changes in nodes labeling reflect the shift
from deep syntactic elements of PDT-C (iden-
tified as t-lemmata) to UMR concepts (enti-
ties, states, and processes).

• For edges labeling, deep syntactic roles of
PDT-C are converted to UMR semantic re-
lations, using (i) verb-specific mapping of
arguments (whenever available, Hajič et al.,
2024b) and (ii) default mapping of arguments
and adjuncts (Lopatková et al., 2025).

• UMR nodes are enriched with selected UMR
attributes, namely aspect, degree, polar-
ity, quant, refer-number, and refer-person
(Lopatková et al., 2025).

• Nodes alignment is gained from PDT-C.
In the following, we concentrate on evaluating

the quality of conversion for the aforementioned
phenomena. We exclude UMR attributes not listed
above (i.e., wiki, modal-strength, mode, polite, and

https://github.com/umr4nlp/umr-guidelines/blob/master/guidelines.md
https://github.com/umr4nlp/umr-guidelines/blob/master/guidelines.md
https://ufal.mff.cuni.cz/pdt-c/documentation
https://ufal.mff.cuni.cz/pdt-c/documentation
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corpus sentences tokens PDT / LDT UMR nodes UMR nodes
nodes (manual) (automatic)

Czech PDT 25 467 378 375 349
PDTSC 50 374 321 442 305
PCEDT 16 474 400 307 327
total 91 1315 1099 1124 981

Latin LDT 50 889 928 773 865

Table 1: Statistics for both manually and automatically annotated data.

quote), as well as all phenomena represented in the
document-level annotation.5

2 Double-annotated UMR Data
2.1 Czech UMR data
The PDT-C corpus offers a large volume of Czech
data spanning various genres. We selected a sam-
ple of six files from its development data for man-
ual annotation. This sample covers key genres pre-
sented in PDT-C (written texts in both general jour-
nalistic and technical styles, as well as spoken data).
Another selection criterion was that the files in-
clude specific linguistic phenomena where we an-
ticipate problems during the conversion (e.g., not
overtly expressed entities or events, selected types
of special constructions, coordinated structures,
complex coreferential chains, negation). Specifi-
cally, the selected texts are as follows:

• 25 sentences (2 documents) from the core
PDT6 subcorpus (Czech newspaper texts
from 1992-94);

• 50 sentences from the PDTSC7 subcorpus
(spontaneous dialogs);

• 16 sentences (out of 37 sentences, 2 docu-
ments) from the Czech part of the PCEDT8

subcorpus (Czech translations of the Penn
Treebank-WSJ texts).

Table 1 provides more detailed statistics. It re-
veals that the WSJ texts from PCEDT are more
complex (especially compared to spontaneous di-
alogs from PDTSC); thus, despite the lower num-
ber of PCEDT sentences, the sample data selected
for manual annotation provide relatively balanced
coverage of the genres represented in the corpus.

A small portion of the data (21 sentences with
255 tokens from PDT and PDTSC) were annotated

5The Czech and Latin UMR data described and compared
in the paper are available through the Lindat repository, see
http://hdl.handle.net/11234/1-5951.

6https://ufal.mff.cuni.cz/pdt3.5
7https://ufal.mff.cuni.cz/pdtsc2.0
8https://ufal.mff.cuni.cz/pcedt2.0/

by two human annotators in parallel; these data
were used to estimate inter-annotator agreement
(Table 2).

2.2 Latin UMR data
The corpus utilized in this study corresponds to
a portion of the LDT as provided by the Index
Thomisticus Treebank project9 (Passarotti, 2019).
Compared to the original version, this subset was
refined at the syntactic layer and annotated from
scratch at the semantic-pragmatic layer. It includes
the entire De coniuratione Catilinae ‘Conspiracy
of Catiline’ by Sallust along with excerpts from the
works of Caesar and Cicero. For this work, we fo-
cus specifically on Sallust and select the first 50
sentences of his work, corresponding to the first
five (out of 61) chapters of the text. We select these
sentences as they are already part of the UMR 2.0
release. Table 1 provides basic data statistics.

3 Comparison: Global Perspective
3.1 Metrics for graph comparison
Quantitative comparison of semantic graphs is a
non-trivial task because two representations of the
same sentence may differ in the number of nodes,
and the node identifiers (variables) typically differ,
too. It is thus not obvious which nodes should be
taken as corresponding to each other. If we can find
the optimal node mapping between the two graphs,
the rest of the task is easy. Properties of the graph
can be expressed as a set of triples (x, y, z), where
x is a node (now identifiable in both graphs), y is
a name of a relation or an attribute, and z is an-
other node (child node of the relation) or the value
of the attribute. Similarity of two graphs can be
expressed as the F1 score of the triples.

UMR is a successor to AMR, and for AMR, the
smatch metric (Cai and Knight, 2013) has emerged
as the de-facto standard. It defines as optimal the
mapping that maximizesF1 of the resulting triples;

9https://itreebank.marginalia.it/

http://hdl.handle.net/11234/1-5951
https://ufal.mff.cuni.cz/pdt3.5
https://ufal.mff.cuni.cz/pdtsc2.0
https://ufal.mff.cuni.cz/pcedt2.0/
https://itreebank.marginalia.it/
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UMR node mapping:
Anot1 nodes Anot2 nodes mapped recall precision F1

228 221 215 94% 97% 96%

Concept and relation comparison (only mapped nodes):∗
Anot1 triples Anot2 triples match recall precision F1

633 644 595 94% 92% 93%

Concept and relation comparison:∗∗
Anot1 triples Anot2 triples match recall precision juːmæʧ = F1

663 659 595 90% 90% 90%

Table 2: Manually double-annotated UMRs: quantitative comparison for Czech (PDT+PDTSC).
(∗ Unmapped nodes are ignored. ∗∗ Unmapped nodes all counted as incorrect.)

the smatch algorithm employs hill-climbing with
restarts to find an approximate solution to the opti-
mization problem.

An alternative node mapping algorithm, called
AnCast, has been proposed specifically for UMR
(Sun and Xue, 2024). It has been shown to be more
efficient and more accurate than smatch. The au-
thors also define a number of partial metrics, such
as Concept F1 and Labeled Relation F1, which im-
prove interpretability of the results.

One of the improvements of UMR over AMR is
that UMR annotation includes alignment of nodes
to surface tokens. Smatch does not have the notion
of word alignment; AnCast can use it if available,
but it can work without it, too. Nevertheless, An-
Cast’s ability to exploit alignment is limited. The
token–node alignments can be M : N , with a
node potentially mapped to a discontinuous set of
tokens, while AnCast can currently process only
continuous alignments. AnCast also compares con-
cepts of the nodes to be mapped, and it tries to
assess concept similarity rather than identity, al-
though in a restricted manner. To achieve similar-
ity > 0, one concept lemma must be substring of
the other. This would recognize similarity between
e.g., fry and stir-fry, but not between Czech volit
‘to vote’ and nominalized volba ‘election’.

Both smatch and AnCast will map as many
nodes as possible. If one of the graphs has more
nodes that the other, remaining nodes will stay un-
mapped. If the graphs have the same number of
nodes, every node will be mapped to a node in
the other graph, even if they are clearly unrelated.
This may occasionally improve the score when a
random attribute occurs in both nodes, but it blurs
the interpretation of the score. More importantly,

we also want to use the mapping to eye-ball dis-
agreement between annotators, and maximal node
mapping is not helpful for that purpose. There-
fore, we employ a third mapping algorithm called
juːmæʧ, which primarily maps nodes aligned to the
same word(s), and for nodes without word align-
ment (which are a minority in UMR graphs) re-
quires concept identity. As with smatch and An-
Cast, we assess similarity of other node attributes
if needed to get a symmetric one-to-one mapping.
An example comparing juːmæʧ and smatch map-
pings is given in Appendix A.

Note that all scores in the present paper evalu-
ate only the sentence-level graphs in UMR. The
document-level relations (modal and temporal an-
notation, coreference) could be evaluated as triples
using the same node mapping, but the current eval-
uation scripts do not support it.

3.2 Quantitative comparison

Comparison of manually double-annotated
Czech data. First, to gain insight into the prob-
lem, we quantitatively analyzed, using juːmæʧ
scores, a small sample of manually double-
annotated Czech data (21 sentences with 255
tokens, annotated by two annotators in parallel).
The scores cover all concept instance triples,
all relations between nodes, and selected node
attributes. To be able to use the same setting for
the manually double-annotated data and for the
comparison of the manually and automatically
created structures, we skip attributes whose values
cannot be obtained from the source data (wiki,
modal-strength) and not-yet-converted source
attributes (mode, polite, quote). The results are
shown in Table 2.
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UMR node mapping:
corpus MAN nodes AUTO nodes mapped recall precision F1

PDT 375 349 284 76% 81% 78%
PDTSC 442 305 235 53% 77% 63%
PCEDT 307 327 244 79% 75% 77%
total 1124 981 763 68% 78% 72%

Concept and relation comparison (only mapped nodes):∗
corpus MAN triples AUTO triples match recall precision F1

PDT 844 819 502 59% 61% 60%
PDTSC 622 633 352 57% 56% 56%
PCEDT 714 588 342 48% 58% 53%
total 2180 2040 1196 55% 59% 57%

Concept and relation comparison:∗∗
corpus MAN triples AUTO triples match recall precision juːmæʧ = F1 smatch
PDT 1082 916 502 46% 55% 50% 49%
PDTSC 1318 770 352 27% 46% 34% 37%
PCEDT 916 757 342 37% 45% 41% 51%
total 3316 2443 1196 36% 49% 42% 45%

Table 3: Czech UMRs: quantitative comparison of manual and automatic structures.
(∗ Unmapped nodes are ignored. ∗∗ Unmapped nodes all counted as incorrect.
MAN stands for the manual annotation, AUTO for the automatic conversion.)

The table shows that juːmæʧ was able to suc-
cessfully map 96% of Czech nodes, with the over-
all F1 over 90%. However, it is important to note
that these figures were obtained after thorough dis-
cussions and reconciliation of problematic cases;
as such, they represent an upper bound for what
the automatic conversion procedure could achieve.
While the inter-annotator agreement is reasonably
high in this experiment (though the available data
sample is very small), the results still indicate that
we cannot expect perfect agreement, given the na-
ture of the UMR framework.

Comparison of manual and automatic UMR
structures. A basic quantitative analysis with
juːmæʧ scores is provided in Tables 3 and 4. The
same setting is preserved (i.e., the scores cover
all concept instance triples, all relations between
nodes, and the same set of node attributes).

The tables reveal relatively low agreement: only
78% of Czech nodes and 77% of Latin nodes were
successfully mapped by juːmæʧ. For these cor-
rectly mapped nodes, around 60% of the triples
match (57% for Czech and 62% Latin). When all
nodes are scored, the overall F1 drops to 42% for
Czech and 51% for Latin. The results are broadly
consistent across both languages. For Czech, the

most elaborated PDT subcorpus displays consis-
tently better conversion results (juːmæʧ reaching
50%), while the PDTSC subcorpus has a low re-
call, as discussed in § 4.1.

For comparison, Tables 3 and 4 also provide
figures obtained by the smatch metric. For both
languages, these figures are higher than those of
juːmæʧ (increase of 3% for Czech and 10% for
Latin). Note that smatch uses a different nodes
mapping algorithm and that it does not allow for
excluding selected attributes.

4 Comparison: Analysis of Differences

Despite rather low results reported above, visual
comparison of the graphs for individual sentences
often yields a fairly good match. The basic struc-
ture typically aligns, and differences are mostly lo-
cal (concepts, relation types, or local structure).

In this section, we focus on the main sources
of disagreement and attempt to determine whether
they stem from shortcomings in the conversion
process, differing interpretations of the annotation
guidelines, or even annotation errors (which can
potentially be reconciled). Another possible expla-
nation for the observed results lies in the nature of
the UMR framework itself, which—as repeatedly
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UMR node mapping:
MAN nodes AUTO nodes mapped recall precision F1

773 865 629 81% 73% 77%

Concept and relation comparison (only mapped nodes):∗
MAN triples AUTO triples match recall precision F1

1820 1923 1168 64% 61% 62%

Concept and relation comparison:∗∗
MAN triples AUTO triples match recall precision juːmæʧ = F1 smatch

2174 2367 1168 54% 49% 51% 58%

Table 4: Latin UMRs: quantitative comparison of manual and automatic structures.
(∗ Unmapped nodes are ignored. ∗∗ Unmapped nodes all counted as incorrect.
MAN stands for the manual annotation, AUTO for the automatic conversion.)

noted in its specification—allows for multiple valid
annotations of the same meaning (as the compari-
son of two manual structures illustrates).

The main differences between automatic and
manual UMRs lie in the fact that UMR is more ab-
stract than PDT and, at the same time, allows al-
ternative annotations. In particular, abstract pred-
icates (§ 4.1), event-entity distinction (§ 4.2), and
abstract entities (§ 4.3) proved to be challenging.

4.1 Abstract predicates
To foster cross-linguistic comparability of meaning
representations, UMR introduces several types of
abstract predicates (also called abstract rolesets).
Among these, rolesets for nonprototypical predi-
cation, so-called implicit rolesets, and predicates
for reification need special attention during conver-
sion.

Rolesets for nonprototypical predication.
UMR predicates for nonprototypical predication
capture possession, location, property and object
predication, and identity relationships (e.g., have-
91 or belong-91 for possession or have-mod-91
for property predication). In PDT, the corre-
sponding semantic content is represented with the
overt verb, typically být ‘be’ or mít ‘have’.10 The
current version of the conversion keeps the lexical
predicates být ‘be’ or mít ‘have’, which, of course,
is not in compliance with the UMR specification.

As an exemplification, consider the (shortened)
PDT example (1) and its manually and automat-
ically created UMR structures (both simplified).

10In these contexts, být ‘be’ or mít ‘have’ are considered
predicates, i.e., lexical verbs rather than auxiliaries, in Czech
linguistics, with valency frames (PDT analogy to framesets)
characterizing each of their senses.

The use of the first abstract predicate have-place-
91 does not affect the overall structure at the upper
level (the only differences being the node and the
relation labels, :ARG0 and :place instead of :ARG1
and :ARG2, respectively). However, the UMR-
compliant manual annotation substantially differs
from the straightforward PDT annotation when it
comes to the representation of the interpersonal re-
lation; it employs the have-rel-role-92 predicate,
which captures sister as a person (:ARG2) who has
a ‘sister’ relation (:ARG4) to the speaker (:ARG1).

(1) … je tam sestra…
‘… there is (my) sister there…’

MAN:
(b / have-place-91

:ARG2 (t / place) 'there'
:ARG1 (p / person

:ARG2-of (h / have-rel-role-92
:ARG1 (p2 / person

:refer-number singular
:refer-person 1st)

:ARG4 (s / sestra)))) 'sister'

AUTO:
(b / být-011 'be'

:place (t / tam) 'there'
:ARG0 (s / sestra)) 'sister'

Next steps: Typical candidates for nonprototypi-
cal predication should be identified: (i) Among
the valency frames (framesets) of the verbs být
‘be’ and mít ‘have’, identify those corresponding to
UMR predicates for nonprototypical predication,
together with adequate argument role mapping. (ii)
Determine other candidates for possessive predica-
tion (e.g., vlastnit, ‘own, possess’, patřit (někomu)
‘belong to’, possessive pronouns, etc.). (iii) Find re-
lational nouns underlying object predication. How-
ever, identification of all candidates for abstract
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predicates remains a challenging task.

Reifications. Reification, a process of convert-
ing a role (= a relation) into a concept, is another
important UMR feature. From the conversion per-
spective, it represents an additional source of dis-
agreement. See, e.g., the manual annotation of ex-
ample (2), where the :frequency relation is changed
to the have-frequency-91 predicate in the manual
annotation, while the relation is preserved in the
automatic conversion. Formally, the upper struc-
ture of the graph is the same, the only changes deal
with nodes labeling (the lexical predicate být-011
‘be’ to the reification have-frequency-91) and re-
lations labeling (the role :frequency to :ARG2).

(2) … teď je to každý rok.
‘… now it’s every year.’

MAN:
(f / have-frequency-91

:temporal (t / teď) 'now'
:ARG1 (e / event)
:ARG2 (r2 / rate-entity-91

:ARG3 (t / temporal-quantity
:quant 1
:unit (r / rok)))) 'year'

AUTO:
(b / být-011 'be'

:temporal (t / teď) 'now'
:ARG1 (t2 / ten) 'it (refers to event e)'
:frequency (r / rok 'year'

:mod (k / každý))) 'every'

Next steps: Again, while the identification of in-
dividual valency frames of být ‘be’, which often
underlies such structures, appears to be challeng-
ing but doable, automatic recognition of other can-
didates for reification seems a too ambitious task.
As the UMR specification suggests applying reifi-
cation only if needed, this step can be postponed.11

Implicit rolesets. UMR is characterized by a list
of implicit rolesets that specify various types of in-
formation, the most relevant being the following:

• They can identify meta-language informa-
tion (e.g., publication-91, hyperlink-91, and
street-address-91).

• The second group is formed by predicates
that express quantitative observations (e.g.,
include-91 to represent subsets, as in some of
them, 23% of voters; range-91 for more than
2 months).

11A possible way to eliminate this type of disagreement
would be to normalize all graphs into reified forms prior to
an automatic evaluation.

• Yet other implicit rolesets indicate special
constructions, as, e.g., comparison (like
resemble-91 for be like John).

• They can also identify dialog-related struc-
tures (e.g., request-confirmation-91 for
Okay?; say-91 for identifying communica-
tion structure (who says what to whom)).

In general, the comparison has revealed that it is
very difficult to automatically identify language
material in PDT that corresponds to phenomena
covered by the implicit rolesets in UMR. Moreover,
even if such structures are identified, the use of the
relevant implicit roleset typically implies a differ-
ent structure. Compare, for example, the lower part
of (2), with každý rok ‘every year’ specifying fre-
quency; the use of the rate-entity-91 roleset with
its :ARG3 role (together with the abstract entity
temporal-quantity, see § 4.3 below) makes the
structure fairly different.

In particular, abstract predicates indicating
meta-language information and those related to dia-
log structures represent a significant source of dif-
ferences between the manual annotations and the
automatic conversions. As this information is typi-
cally not explicitly structured by the language, it is
not captured within the deep syntactic annotation
(our source data), and thus cannot be straightfor-
wardly converted. This is especially relevant for
PDTSC dialogs, as illustrated in (3). The man-
ual UMR structure clearly identifies the speaker
and the listener and their role changing through
the coreference annotation, in contrast to PDT (and
thus to the automatic conversion).
(3) a. Byla to vaše první motorka?

‘Was this your first motorcycle?’
b. První.

‘First.’
MAN:
(s1s / say-91

:ARG0 (s1e1 / person :refer-person 1st)
:ARG2 (s1e2 / person :refer-person 2nd)
:ARG1 (s1b / have-ord-91

:quote s1s
:ARG1 (s1m / motorka 'motorcycle'

:ARG1-of (s1b2 / belong-91
:ARG2 s1e2)) 'you'

:ARG2 (s1p / ordinal-entity :value 1)))

(s2s / say-91
:ARG0 (s2e1 / person :refer-person 1st)
:ARG2 (s2e2 / person :refer-person 2nd)
:ARG1 (s2b / have-ord-91

:quote s2s
:ARG1 (s2m / motorka 'motorcycle'

:ARG1-of (s1b2 / belong-91
:ARG2 s2e1)) 'I'
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:ARG2 (s2p / ordinal-entity :value 1)))
:coref ((s1e1 :same-entity s2e2)

(s1e2 :same-entity s2e1)
(s1m :same-entity s2m))

AUTO:
(s1b / být-007 'be'

:ARG1 (s1t / ten)
:ARG2 (s1m / motorka 'motorcycle'

:mod (s1e2 / entity :refer-person 2nd) 'you'
:mod (s1p / první))) 'first'

(s2m / motorka 'motorcycle'
:mod (s2p / první)) 'first'

This example illustrates one more open question
in the UMR specification: To what extent should
UMR annotation reconstruct fragmentary usages
and ellipses (highly relevant especially for spoken
data and dialogs)? While the complete replay is re-
constructed in the manual annotation (= Motorka
to byla moje první. ‘This was my first motorcy-
cle.’), the PDT annotation, and thus the conversion,
is limited to the fragment (= První motorka. ‘The
first motorcycle.’)
Next steps: Although not explicitly annotated in
our source files, meta-language information is also
available within the PDT data. The next step,
therefore, is to examine the extent to which UMR-
relevant data can be extracted and utilized to en-
hance the conversion process: not only to identify
speakers in spoken data but also to recognize el-
ements such as headlines and other pertinent con-
textual information. Second, more detailed guide-
lines on proper UMR annotation of fragmentary
sentences would improve data consistency.

4.2 Event-related nouns
The UMR specification suggests representing
agent nouns as arguments of the respective verbs;
thus, for example, teacher is a person annotated as
:ARG0 participant of the predicate teach-01. One
might infer that nouns denoting other participants
should also be represented with respective eventive
concepts (e.g., food can be annotated either as a
thing being :ARG1 of eat-01 or just as an instance
of the lexical entity food). However, it is not clear
how far the abstraction should go.

The possibility of multiple correct UMR struc-
tures for the same lexical content undermines the
potential of any automatic metric considering just
one “gold” annotation. It inevitably fails to pro-
vide comprehensive insight into the quality of the
conversion. Cf. the following text fragment from
the beginning of the Czech data (4).

(4) Vážení čtenáři, …
‘Dear readers (= subscribers), …’

MAN:
(... :vocative (p / person

:ARG0-of (c / číst-002) 'read'
:mod (v / vážený))) 'dear'

AUTO:
(... :vocative (c / čtenář 'reader'

:mod (v / vážený))) 'dear'

Although both structures are correct UMRs, their
proper comparison remains a challenge far exceed-
ing the capabilities of a simple automatic metric.
Next steps: Though PDT-scenario does not distin-
guish which lexemes (words) are related to even-
tive concepts (verbal predicates) and which are en-
tities, additional language resources can be used to
identify at least unquestionable candidates for con-
version (as already discussed in Lopatková et al.,
2024). In addition, a more detailed specification
of the UMR conventions could help reduce the oc-
currence of such ambiguous cases.

4.3 Abstract entities
Artificial lemmas employed in the PDT-scenario
for unexpressed arguments (e.g., #PersPron,
#EmpVerb) roughly correspond to UMR basic
abstract concepts like person, thing, event. How-
ever, since it is not possible to deduce the correct
type from PDT and LDT data automatically, the
conversion introduces two supertypes: (i) entity,
subsuming all UMR non-events (esp. person and
thing), and (ii) concept (used esp. in construc-
tions where two or more events, states, or entities
are compared). The first supertype is illustrated in
ex. (3), where the node s1e2 /person (the posses-
sor) in the manual graph corresponds to the node
s1e2 / entity in the converted one.

Further, UMR employs a rich set of abstract en-
tities that identify structured data; for example:

• “entities” (e.g., url-entity, percentage-
entity, or ordinal-entity in ex. (3), with the
subrole :value),

• “quantities” (e.g., temporal-quantity každý
rok ‘every year’ in ex. (2)),

In the current version of the conversion procedure,
structured data of these types have not yet been pro-
cessed using abstract entities. Thus, they represent
an additional source of disagreement in our com-
parison. (Semi-)automatic identification of at least
most frequent constructions remains one of the im-
portant tasks for further improvement.
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4.4 Discourse relations
The PDT and UMR schemata represent paratactic
structures (such as coordination and discourse rela-
tions) in a similar way, by introducing a dedicated
node in the graph to represent the whole paratactic
construction. As a result, the conversion process is
generally straightforward and primarily concerned
with technical adjustments. However, when parat-
actic constructions intertwine with other phenom-
ena (such as relative clauses, represented in UMR
as inverted relations) additional complexity arises,
making the conversion less trivial. For instance,
in example (5) (simplified), the conversion fails
to accurately capture the :ARG0-of inverted rela-
tions, and the coordinating node and is incorrectly
placed one level lower in the graph structure.
(5) et qui fecere et qui facta aliorum scripsere,

multi laudantur.
‘many who have acted, and many who have
recorded the actions of others, are praised.’

MAN:
(sl / laudo-08 'praise'

:ARG1 (a / and
:op1 (p / person

:quant (m / multus) 'many'
:ARG0-of (f / facio-02 'act' : ...))

:op2 (p2 / person
:quant m

:ARG0-of (s / scribo-14 'write, record' : ...))))

AUTO:
(l / laudo-08 'praise'

:ARG0 (e / entity)
:ARG1 (m / multus 'many'

:mod (a / and
:op1 (f / facio-23 'act' : ...)
:op2 (s / scribo-14 'write, record' : ...))))

Next steps: While discourse relations are generally
handled correctly, their interaction with more com-
plex constructions will be examined. Conversion
will be refined if systematic errors are found.

5 Conclusions
This paper presents a comparison between man-
ually constructed UMRs and those produced by
automatic conversion from deep syntactic annota-
tions in existing corpora—–specifically, PDT-C for
Czech and LDT for Latin. We employed a novel
evaluation metric that offers several advantages
over existing methods to assess similarity of UMR
graphs. The results revealed limitations of the cur-
rent conversion process, which we further analyzed
to suggest areas of possible improvements.

Overall, our evaluation shows that automatic
UMR conversion performs comparably for Czech

and Latin. However, the analysis also reveals sig-
nificant challenges inherent to the task, particularly
the high level of semantic abstraction required by
UMR and the fact that UMR allows for multiple
valid representations with varying degrees of gran-
ularity. These characteristics complicate both the
conversion itself and the evaluation of its accuracy.

Despite the relatively low scores, a simple visual
comparison of manual and automatically created
graphs often reveals reasonable alignment. This
suggests that the automatic procedure—especially
after implementing the proposed improvements—
could serve as a solid basis for subsequent manual
annotation, significantly accelerating and reducing
the cost of creating UMR data.
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A Node mapping in juːmæʧ and smatch
Here we show an example sentence from the test
data and document the word alignments and the
node mapping used by the two metrics.

The full sentence: Vážení čtenáři, je tomu právě
rok, kdy jsme vám oznamovali nepopulární infor-
maci, že se cena našich novin zvyšuje. “Dear read-
ers, it’s been a year since we announced the unpop-
ular news that the price of our newspaper was in-
creasing.”

Our excerpt: Vážení čtenáři, je tomu právě rok,
kdy jsme vám oznamovali informaci “Dear readers,
it’s been a year since we announced the news”
MAN:
(s1p0 / publication-91

:ARG3 (s1s1 / say-91
:aspect activity
:modal-strength full-affirmative
:ARG0 (s1p1 / person

:refer-number plural
:refer-person 1st)

:ARG2 (s1p2 / person

:refer-number plural
:refer-person 2nd
:ARG0-of (s1c1 / číst-002 'read'

:aspect habitual
:modal-strength full-affirmative)

:mod (s1v1 / vážený 'dear'))
:ARG1 (s1h1 / have-temporal-91

:aspect state
:modal-strength full-affirmative
:quote s1s1
:vocative s1p2
:ARG1 (s1o1 / oznamovat-002 'announce'

:aspect performance
:modal-strength full-affirmative
:ARG0 s1p1
:ARG1 (s1i1 / informace 'information'

:refer-number singular)
:ARG2 s1p2)

:ARG2 (s1r1 / rok 'year'
:refer-number singular
:mod (s1p4 / právě 'just')))))

AUTO:
(s1b1 / být-011

:aspect activity
:vocative (s1c1 / čtenář 'reader'

:refer-number plural
:mod (s1v1 / vážený 'dear'))

:ARG1 (s1t1 / ten
:refer-number singular
:temporal (s1p1 / právě 'just'))

:duration (s1r1 / rok 'year'
:refer-number singular
:temporal-of (s1o1 / oznamovat-002 'announce'

:aspect activity
:ARG0 (s1p2 / person

:refer-number plural
:refer-person 1st)

:ARG1 (s1i1 / informace 'information'
:refer-number singular)

:ARG2 s1c1)))

juːmæʧ node mapping between MAN and
AUTO (word alignment, if any, is shown in brack-
ets after the concept):
s1p0 / publication-91 … UNMAPPED
s1s1 / say-91 … UNMAPPED
s1p1 / person (“našich”) … s1p2 / person (“našich”)
s1p2 / person (“čtenáři vám”)

… s1c1 / čtenář (“čtenáři vám”)
s1c1 / číst-002 … UNMAPPED
s1v1 / vážený (“Vážení”) … s1v1 / vážený (“Vážení”)
s1h1 / have-temporal-91 (“je”) … s1b1 / být-011 (“je”)
s1o1 / oznamovat-002 (“tomu jsme oznamovali”)

… s1o1 / oznamovat-002 (“jsme oznamovali”)
s1i1 / informace (“informaci”)

… s1i1 / informace (“informaci”)
UNMAPPED … s1t1 / ten (“tomu”)
s1r1 / rok (“rok kdy”) … s1r1 / rok (“rok kdy”)
s1p4 / právě (“právě”) … s1p1 / právě (“právě”)

smatch node mapping between MAN and
AUTO (showing only differences from juːmæʧ
mapping):
s1s1 / say-91 … s1b1 / být-011 (“je”)
s1h1 / have-temporal-91 (“je”) … s1t1 / ten (“tomu”)

In our excerpt, the only nodes left unmapped by

https://doi.org/10.3115/v1/W14-0615
https://doi.org/10.3115/v1/W14-0615
https://doi.org/10.1515/9783110599572-017
https://doi.org/10.1515/9783110599572-017
https://aclanthology.org/2024.lrec-main.94/
https://aclanthology.org/2024.lrec-main.94/
https://aclanthology.org/2024.lrec-main.94/
https://doi.org/10.1007/s13218-021-00722-w
https://doi.org/10.1007/s13218-021-00722-w
https://doi.org/10.1007/s13218-021-00722-w
https://aclanthology.org/2023.dmr-1.3
https://aclanthology.org/2023.dmr-1.3


12

smatch are s1p0 and s1c1 from the MAN graph, be-
cause there are no nodes left available in the AUTO
graph. There are two other nodes that are left un-
mapped by juːmæʧ but not by smatch: s1s1 in
MAN and s1t1 in AUTO. The mapping that smatch
found for these nodes has no semantic justification
(but it will slightly increase F1 score because both
say-91 and být-011 have :aspect activity).
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